

SR301

SEP / 12 SR301

Specifications and information are subject to change without notice. Up-to-date address information is available on our website.

web: www.smar.com/contactus.asp

INTRODUCTION

The **SR301** is a Remote Seal that allows the pressure transmitter to make measures in situations where the immediate contact of the transmitter diaphragm with the process fluid it is not allowed.

The remote seal is made up by one connection with the diaphragm and one capillary connection with filling fluid. The filling fluid transfers the pressure measured in the process fluid to the transmitter sensor. The capillary connection links the seal diaphragm to the transmitter.

The remote seals available in the **SR301** series are: Flanged "T" Type (SR301T), Threaded (SR301R), Pancake (SR301P) both models having an optional flush connection, Sanitary (SR301S), Flanged with Extension (SR301E) and Pancake with Extension (SR301Q).

The SR301 is assembled with gauge and differential pressure transmitters. When used in food applications the connections are sanitary type. Level models are also available.

The SR301T, SR301E and LD300L models are available with two flange types for process connection: integral and slip-on flange. To the integral flange model the diaphragm is welded directly on the flange. To the slip-on flange model the diaphragm is not welded on the flange, so it is possible to rotate the flange, becoming easier the assembly in the field. Using the slip-on flange model it is possible to choose a less noble material to the flange than the used to the diaphragm, as Coated Carbon Steel. The figures below illustrate these flange models.

Slip-on Flange Model

Integral Flange Model

The typical applications of the remote seal on the transmitter are:

- For corrosive process fluid;
- For viscous process fluid or with solids in suspension;
- The process fluid may freeze, crystallize or solidify;
- Processes that require easy cleaning and others.

The choice of the remote seal must be based on the recommendations of this manual.

The quality of measurement is important, because there is a growing demand for better electronic accuracy and stability on transmitters.

Some remote seal characteristics influence measurement, as capillary length, work temperature, response time, correct seal model and type of installation.

For example, in regard to the **remote seal model**, it is common practice to standardize the seal type and the capillary length in the longest extension offered by supplier, aiming to guarantee interchangeability in the entire plant without considering the application characteristics for each point of measurement. As for the **installation**, not always the device life span is taken into consideration, as it suffers various mechanical aggressions as line and tank vibration, high agitation or turbulence of the process fluid, free or inadequately supported capillaries.

There are problems also in relation to mechanical assembly, inadequate installation of gaskets, plug point centralization and alignment, excessive squeeze or bad distribution of the holding bolts.

Thus, in choosing the seal size these factors must be considered according to each case in order to guarantee excellent performance and long life span.

This manual was made to help install, operate, and maintain the SR301. It contains information about transmitter/seal assembly, organized in the following categories:

- Installation;
- Selection;
- Operation;
- Maintenance;
- Examples;
- Types of Seal and Ordering Code.

Read these instructions carefully to get the most out of the SR301.

Waiver of responsibility

The contents of this manual abides by the hardware and software used on the current equipment version. Eventually there may occur divergencies between this manual and the equipment. The information from this document are periodically reviewed and the necessary or identified corrections will be included in the following editions. Suggestions for their improvement are welcome.

Warning

For more objectivity and clarity, this manual does not contain all the detailed information on the product and, in addition, it does not cover every possible mounting, operation or maintenance cases.

Before installing and utilizing the equipment, check if the model of the acquired equipment complies with the technical requirements for the application. This checking is the user's responsibility.

If the user needs more information, or on the event of specific problems not specified or treated in this manual, the information should be sought from Smar. Furthermore, the user recognizes that the contents of this manual by no means modify past or present agreements, confirmation or judicial relationship, in whole or in part.

All of Smar's obligation result from the purchasing agreement signed between the parties, which includes the complete and sole valid warranty term. Contractual clauses related to the warranty are not limited nor extended by virtue of the technical information contained in this manual.

Only qualified personnel are allowed to participate in the activities of mounting, electrical connection, startup and maintenance of the equipment. Qualified personnel are understood to be the persons familiar with the mounting, electrical connection, startup and operation of the equipment or other similar apparatus that are technically fit for their work. Smar provides specific training to instruct and qualify such professionals. However, each country must comply with the local safety procedures, legal provisions and regulations for the mounting and operation of electrical installations, as well as with the laws and regulations on classified areas, such as intrinsic safety, explosion proof, increased safety and instrumented safety systems, among others.

The user is responsible for the incorrect or inadequate handling of equipments run with pneumatic or hydraulic pressure or, still, subject to corrosive, aggressive or combustible products, since their utilization may cause severe bodily harm and/or material damages.

The field equipment referred to in this manual, when acquired for classified or hazardous areas, has its certification void when having its parts replaced or interchanged without functional and approval tests by Smar or any of Smar authorized dealers, which are the competent companies for certifying that the equipment in its entirety meets the applicable standards and regulations. The same is true when converting the equipment of a communication protocol to another. In this case, it is necessary sending the equipment to Smar or any of its authorized dealer. Moreover, the certificates are different and the user is responsible for their correct use.

Always respect the instructions provided in the Manual. Smar is not responsible for any losses and/or damages resulting from the inadequate use of its equipments. It is the user's responsibility to know and apply the safety practices in his country.

TABLE OF CONTENTS

CHAPTER 1 - INSTALLATION	1.1
APPLICATION	
GENERAL RECOMMENDATIONS FOR REMOTE SEAL USE	1.1
TYPE OF REMOTE SEAL	12
RECEIVING AND HANDI ING	12
MOUNTING OF TRANSMITTER WITH REMOTE SEAL	12
	I.2
CHAPTER 2 - SELECTION	21
	2 1
	2.1 ວາ
	2.2 2.2
	2.3 2 /
	2.4 25
TEMPERATI IRE ERROR PRESENTED BY SEAI	2.5 2.6
	2.0 2 7
FOLIATIONS	2.1 27
DETERMINATION OF THE SEAL /LEVEL ERROR FOR HIGH (H) OR LOW (L) SIDES	
ERROR FOR TWO SEALS INFLUENCED BY TEMPERATURE SYMMETRY	
ASSEMBLY ACCURACY	2.13
TOTAL PROBABLE ASSEMBLY ERROR	2.14
REMOTE SEAL RESPONSE TIME	2.14
CALCULATION OF REMOTE SEAL RESPONSE TIME	2.15
CAPILLARY LENGTH	2.17
ERROR GUIDE TREND FOR TRANSMITTER ASSEMBLED WITH REMOTE SEAL	
CASE 1 – TPE % OF THE SPAN WITH CALIBRATION IN RANGEABILITY (1:1)	
CASE 2 – TPE % OF THE SPAN WITH CALIBRATION IN RANGEABILITY (1:1)	2.23
CASE 3 – TPE % OF THE SPAN WITH CALIBRATION IN RANGEABILITY (1:1)	2.24
CASE 4 – TPE % OF THE SPAN WITH CALIBRATION IN RANGEABILITY (10:1)	2.25
CASE 5 – TPE % OF THE SPAN WITH CALIBRATION IN RANGEABILITY (10:1)	
CASE 6 – TPE % OF THE SPAN WITH CALIBRATION IN RANGEABILITY (10:1)	
CHAPTER 3 - OPERATION	31
OPERATION OF THE REMOTE SEAL SENSOR	31
OPERATION START UP	3.1
CALIBRATION	3.1
OUTPUT SIGNAL TEST AND SETTING	
RANGE BEGINNING CHANGE	
SPAN CHANGE ON DIFFERENTIAL AND FLOW PRESSURE TRANSMITTERS	
LEVEL TRANSMITTER SPAN CHANGE	3.3
CAPILLARIES FILLING FLUID EFFECT	3.3
CHAPIER 4 - MAINIENANCE	
REMOTE SEAL CLEANING	4.1
DISASSEMBLING AND PACKING THE REMOTE SEAL TRANSMITTER	4.1
	4.1
RETURN OF MATERIALS	4.1
REMOTE SEAL SPARE PARTS	4.2
	5 1
	J. I د ع
	ו.כ בי
CALCULATION OF SEAL/LEVELERROR	
CALCULATION OF THE TRANSMITTER ACCURACY WITH SEAL / FVFL	
CALCULATION OF THE GLOBAL ERROR OF TRANSMITTER ASSEMBLING WITH SEALS/LEVEL	
CALCULATION OF THE RESPONSE TIME	
	57

APPENDIX B – SMAR WARRANTY CERTIFICATE	B.1
APPENDIX A – SERVICE REQUEST FORM	A.1
SR301S – SANITARY REMOTE SEAL WITHOUT EXTENSION	6.35
SR301S – SANITARY REMOTE SEAL WITH EXTENSION	6.34
LD300S – SANITARY TRANSMITTER WITHOUT EXTENSION	
LD300S – SANITARY TRANSMITTER WITH EXTENSION	
LD300L (RF/FF/RT.)) – LEVEL TRANSMITTER	
LOVVER TOUGING	0.29 מ ה צח
SK301P – PANCAKE REMOTE SEAL WITHOUT EXTENSION AND SR301Q – PANCAKE REMOTE S	EAL WITH
	6.27
WITH EXTENSION	6.26
SR301T (RF/FF/RTJ) - "T" TYPE FLANGED REMOTE SEAL AND SR301E (RF/FF/RTJ) - FLANGED R	EMOTE SEAL
WITH EXTENSION	6.24
SR301T (RF/FF/RTJ) - "T" TYPE FLANGED REMOTE SEAL AND SR301E (RF/FF/RTJ) - FLANGED R	EMOTE SEAL
	6.24
TPE – TOTAL PROBABLE ERROR (SOFTWARE)	6.23
PERFORMANCE SPECIFICATION	
TECHNICAL SPECIFICATION	
APPLICATION WITH HALAR FOR SEALS AND LEVELS	0.21 6 22
SMAR INSUL ATOR KIT MOUNTING	۰.2 I ۶ 21
SMAR INSUL ATOR KIT	0.20 ຣ ว1
GOLD F LATED STAINLESS STEEL DIAFTINAGIVI RESISTANCE TO DIAPHRAGM HYDROGEN MIGRATION	20_د
	ບ.20 ຄວາ
51 EP5 10 FAUILITATE THE MIGRATION FORM TO INHIBIT THE HYDROGEN MIGRATION	
	6.20
	6.17
SANITARY DIFFERENTIAL PRESSURE TRANSMITTER – LD300S	6.14
DESCRIPTION	
LEVEL TRANSMITTER – LD300L	6.11
DESCRIPTION	
PANCAKE REMOTE SEAL WITH EXTENSION - SR301Q	6.9
DESCRIPTION	6.7
PANCAKE REMOTE SEAL - SR301P	6.7
DESCRIPTION	6.6
SANITARY REMOTE SEAL – SR301S	6.6
DESCRIPTION	
THREADED REMOTE SEAL – SR301R	6.4
DESCRIPTION	
FLANGED REMOTE SEAL WITH EXTENSION - SR301E	6.2
DESCRIPTION	
"T" TYPE FLANGED REMOTE SEAL - SR301T	61
CHAPTER 6 - TYPE OF SEAL AND ORDERING CODE	6.1
CHECKING THE CAPILLARY LENGTH	
CALCULATION OF THE GEODAL ERROR OF TRANSMITTER ASSEMBLING WITT SEALS/LEVEL	5 12 5
CALCULATION OF THE TRANSMITTER ACCURACY WITH SEAL/LEVEL	5.12 5.12
CALCULATION OF SEAL/LEVEL ERROR	
ERROR CALCULATION BY TEMPERATURE	5.11
EXAMPLE 2	5.9

INSTALLATION

Application

The SMAR Remote Seals must be used when:

- ✓ The process fluid is corrosive and the transmitter must be protected from this;
- The process fluid contains solids in suspension or is viscous enough to block the transmitter connections;
- The process fluid may freeze, crystallize or solidify inside the transmitter;
- It is necessary to maintain aseptic or sanitary conditions, as well as cleaning ease; and
- ✓ The process temperature is higher than 100°C.

The LD301 transmitter series manufactured by SMAR and used with remote seal keeps the characteristics of the insulated transmitters, such as external zero and span adjustments or via programmer, facilitating the device installation, functioning and maintenance.

General Recommendations for Remote Seal Use

The seals require a special construction for pressure below atmosphere (vacuum). Therefore, Data-Sheet must inform when they will be used in this condition.

The temperature variation may cause unacceptable errors in transmitter reading. To minimize this effect, see the necessary recommendations in Chapter 2 - "Temperature Error Presented by Seal".

For applications in corrosive environments, select materials compatible for contact with the process fluid. However, also consider materials not in contact with the process but subject to corrosive atmospheres or the spatter of fluids from the corrosion process.

The capillary length, the diaphragm sensitivity and the characteristics of the fill fluid (the coefficient of thermic expansion and the density) present error in the measurement making impracticable the application of the remote seal for ranges below to 0-625 mmH2O.

Should it be possible to empty the fill fluid due to puncture of the insulator diaphragm, verifies if its volume (less than 5 ml) may contaminate the process of inadmissible form. If this happen requests a seal with fill fluid compatible with the process.

Choose the fill fluid that does not evaporate at the pressure and process temperature conditions.

Type of Remote Seal

The types of remote seal, as well as the dimensions available are presented in the Chapter 6 of this Manual - "Type of Seal and Ordering Code".

Receiving and Handling

- Verify if the plate data are according to the order;
- The transmitter and the remote seal, with its respective capillary, must be in the package until
 installation to prevent possible damages;
- The set must not be handled by the capillary;
- The sealed bolts must not be handled. If this is done, the remote seal can be permanently damaged and lose the manufacturer's warranty.

Mounting of Transmitter with Remote Seal

In the Transmitter Manual see the suggested mounting positions. The Transmitter and the Remote Seal can be mounted according to the Figure 2.1 of Chapter 2 of this Manual.

The Remote Seals must be installed so that the process fluid wets all its surface. Installations that can provoke the deposition of any incrustation on the diaphragm must be avoided.

Choose a place free from mechanical shocks (seal and transmitter) that facilitates access to the measuring points. The ambient temperature must be within the limits allowed by the Transmitter Manual.

Use a valve in the process connection, before the seal, as this facilitates the transmitter calibration and the seal maintenance.

The maximum upper or lower height allowed for the transmitter on the remote seal, depends on the density of the seal fill fluid and the pressure on it. If this height is exceeded it may cause saturation in the transmitter due to difference of the hydrostatic columns in both sides.

The correct heights of the transmitter, in relation to the seal, are shown in Table 2.3 of Chapter 2 of this Manual.

The capillaries must be held firm to avoid oscillations in the reading.

Choose an installation site lowly sensitive to temperature variation or, instead, keep the temperature equal in both sides of the seal.

The minimum radius of the capillary bending is 70mm. In order to prevent damages, avoid twisting and folding the capillary.

The connections for the lower "L" side and higher "H" side are indicated in the transmitter by letters "L" and "H".

In the seals horizontally mounted, the gasket must be centralized and not be in contact with the diaphragm. Hold the set in the counterflange by applying equal torques in the bolts.

ATTENTION

In hot environment, the transmitter and the seals must be installed in a way to prevent the exposition to the sun, as much as possible. Also avoid the installation closed with lines and vases subject to high temperatures. The use of sun protector or heat shield to protect both devices from external heat source is recommended.

The temperature increase, due to direct exposition to the sun, can cause a zero deviation, mainly if one of the sides will be exposed. The seal, due to its metal construction, can have an increase of 60°C in the temperature when exposed to the sun. For example, a transmitter with a remote seal of 2", calibrated in 1000 mmH2O, with capillary of 1m, exposed to 20°C of variation will have an error of 49 mmH20 (4.9%). Check Chapter 2 for more information about temperature effect.

SELECTION

Procedure for Remote Seal Specification

Tables 2.1 and 2.2 show, respectively, the steps that must be followed for the ideal Remote Seal specification and the recommendations to improve its performance.

STEP	PROCEDURE	PAGE		
	Type of assembly and calculation of the transmitter range	2.2		
1	Transmitter Range	2.3		
1	Diaphragm Material according to chemical compatibility of the process	2.4		
	Filling Fluid	2.4		
	Maximum Seal temperature variation in relation to calibration			
	temperature			
	Maximum capillary temperature variation in relation to calibration	2.8		
	temperature	2.0		
2	Maximum body temperature variation in relation to calibration			
	temperature			
	Maximum and Minimum process pressure	-		
	Type of Seal according to process connection	2.9		
	Capillary Length	2.8		
3	To inform about the error and accuracy of the pressure transmitter	-		
4	Calculate temperature error	2.7		
5	Transmitter Assembly Accuracy with the Remote Seal / Level	2.12		
6	Transmitter Global Error with the Remote Seal / Level	2.13		
7	Calculate the Response Time	2.14		
8	Verify the Capillary Length	2.16		
9	Use the guidelines shown in Table 2.2. Make changes possible in order	21		
9	to improve performance	<u> </u>		

Table 2.1 – Steps for Remote Seal Selection

OBJECTIVE	Reduce the Error due to Temperature	Reduce the Response Time	Improve the Accuracy
Choose the oil with lesser coefficient of volumetric expansion (see Table 2.5)	٢		
Choose the oil with lesser viscosity (see Table 2.5)	٢	\odot	
Increase the seal diaphragm diameter	٢		
Decrease the capillary length	\odot	\odot	
Specify the equal capillary lengths of both sides	\odot	\odot	
Install the equipment preferably where lesser variation of temperature occurs	٢		
Choose the transmitter in the upper limit of the range (1:1)	٢	٢	0

Table 2.2 – Recomendations to Improve the Remote Seal Performance

Legend: O - Positive Action / O - Neutral Action / O - Negative Action

Choosing the Ideal Assembly for Application

Figure 2.1 shows the most common types of remote seal assembly and its applications.

Figure 2.1 – Types of Remote Seal Assembly and Applications

Transmitters Range for Remote Seal Application

Verify in Table 2.3 the transmitter range, the pressure and overpressure limit and the applicable static pressure.

After calculating the ranges according to the type of installation, always try to work with the upper limits of each transmitter range to achieve the best equipment accuracy.

TRANSMITTER		TRANSMITTER RANGE (-URL TO URL) (1)						
TRANSIVITTER		Range 2	Range 3	Range 4	Range 5	Range 6		
	Pressure	-50 to 50 kPa	-250 to 250 kPa	-2500 to 2500 kPa				
LD30XD	Overpressure and Static Pressure	160 bar	160 bar	160 bar				
	Pressure	-50 to 50 kPa	-250 to 250 kPa	-2500 to 2500 kPa	-25 to 25 MPa			
LD30XH	Overpressure and Static Pressure	320 bar	320 bar	320 bar	320 bar			
	Pressure	-50 to 50 kPa	-100 to 250 kPa	-100 to 2500 kPa	-0.1 to 25 MPa	-0.1 to 40 MPa		
EDSOAW	Overpressure and Static Pressure	160 bar	160 bar	160 bar	400 bar	520 bar		
	Pressure	0 to 50 kPa	0 to 250 kPa	0 to 2500 kPa	0 to 25 MPa	0 to 40 MPa		
LD30XA	Overpressure and Static Pressure	160 bar	160 bar	160 bar	320 bar	520 bar		
	Pressure	-50 to 50 kPa	-250 to 250 kPa	-2500 to 2500 kPa	-25 to 25 MPa			
LD30XL / LD30XS	Overpressure and Static Pressure	(2)	(2)	(2)	(2)			

(1) The calibration maximum limit of the remote seal or level/sanitary transmitter should be smallest value between the connection/flange pressure limit (Tables 1 to 6, chapter 6) and the upper range limit of the transmitter (URL). According to flange/connection pressure limit. See Tables 1, 2, 3, 5 and 6 – Chapter 6.

(2)

Table 2.3 – Transmitter Pressure Range, Overpressure Limits and Static Pressure

Where:

LD30XD: Differential Pressure Transmitter (Family 301, 302 and 303) LD30XH: Differential Pressure Transmitter - High Static Pressure (Family 301, 302 and 303) LD30XM: Gage Pressure Transmitter (Family 301, 302 and 303) LD30XA: Absolute Pressure Transmitter (Family 301, 302 and 303) LD30XL: Level Transmitter (Family 301, 302 and 303) LD30XS: Sanitary Transmitter (Family 301, 302 and 303)

For more information, consult SMAR Pressure Transmitters Catalogs and Manuals.

NOTE	Ν	OTE	
------	---	-----	--

The overpressure shown in Table 2.3 above, does not damage the transmitter, although it will be necessary to recalibrate the transmitter.

Figure 2.2 below shows the Transmitter Operation Range, where the work range can be located in many positions within range.

Figure 2.2 – Transmitter Operation Range

Where:

URL –Transmitter Range Upper Limit LRL –Transmitter Range Lower Limit V. sup. –Work Range Upper Value V. inf – Work Range Lower Value

Diaphragm Material

The diaphragm material should be selected considering its chemical resistance to external agents, process fluid and temperature involved.

For more information about materials corrosion, consult the Smar's Application Engineer.

Filling Fluids

Filling fluids must be selected considering its physical properties at extreme conditions of temperature, pressure, chemical compatibility with the process fluid and its contamination in a unacceptable way.

Table 2.4 shows the filling fluids used by Smar with some physical properties and types of application. On Figures 2.3 and 2.4 the Steam Pressure curves (mmHg) are shown against the Temperature (\mathbb{C}) of these fluids.

Fluid	Limit of ℃ Temperature (뚜) to Pabs < 1 atm (Vacuum) (3)	Limit of ℃ Temperature (뚜) to Pabs > 1 atm	Viscosity (cSt) at 25℃	Density (g/cm3) at 25℃	Volumetric Expansion Coefficient 1/ºC (1/ºF)	Types of Application
Sillicone DC200	-40 to 100 (-40 to 212) (3)	-40 to 170 (-40 to 338)	20	0.950	0.001070 (0.000594)	General (Atoxicity, not irritating, odorless, Food Processing)
Sillicone DC704	0 to 200 (+32 to 392) (3)	0 to 315 (+32 to 599)	39	1.070	0.000950 (0.000528)	General (High Temperatures and Vacuum)
Fluorolube MO-10	N.A. (2)	-20 to 100 (-4 to 212)	50	1.910	0.000874 (0.000486)	Oxygen, Chlorine, Nitric Acid
Syltherm 800	N.A. (2)	-40 to 350 (-40 to 662)	10	0.934	0.001500 (0.000833)	General (High Temperatures)
Neobee M20 ⁽¹⁾	-15 to 120 (+5 to 248) (3)	-15 to 225 (+5 to 437)	9.5	0.920	0.001008 (0.000560)	Foods, Beverage and Pharmaceuticals
Glycerin (50%) and Water (50%)	N.A. (2)	-15 to 93 (+5 to 199.4)	12.5	1.130	0.000500 (0.000280)	Foods
Fomblim	-20 to 100 (-4 to 212) (3)	-20 to 200 (-4 to 392)	48	1.87	0.000900 (0.000500)	Low toxicity, excellent compatibility with metals, plastics and elastomers, excellent performance in high vacuum
Krytox	-40 to 100 (-40 to 212) (3)	-40 to 120 (-40 to 248)	42	1.88	0.000900 (0.000500)	Inert, nontoxic, biologically inert, nonexplosive, nonreactive to all elastomers, plastics and metals, excellent performance in high vacuum
Halocarbon	-45 to 80 (-49 to 176) (3)	-45 to 130 (-49 to 266)	5.6	1.85	0.001199 (0.000667)	Inert, low odor, low toxicity, noncorrosive. Standard for manufacturers of oxygen and reactive liquids

Table 2.4 – Filling Fluid Characteristics

Legend: (1) Propylene Glycol Diester of Octanoato / Decanoato; (2) N.A. – Nonapplicable; (3) Consult graphs in the Figures 2.3 and 2.4 below when the vacuum pressure is known.

Figure 2.3 – Pressure x Temperature Curve (1)

Figure 2.4 – Pressure x Temperature Curve (2)

Temperature Error Presented by Seal

With the variation of ambient or process temperature, the filling fluid, which fills the internal cavity of the remote seal and capillaries, its volume also varies. The volume variation provokes a displacement of the seal diaphragm. To absorb this volume variation, the diaphragm, due to its characteristic of rigidity, reacts with a change in pressure that it exerts on the filling fluid. This change causes a deviation in relation to the process pressure, which is the error caused by the temperature variation.

This error can be minimized if some important cautions are taken when choosing the remote seal model, the capillary length and the conditions of temperature and process ambient.

The seal model also counts, as the bigger is the diaphragm diameter of the remote seal, the less rigidity it presents, achieving more absorbing capability of volume variations without causing too many errors in the transmitter.

The capillary length has a direct effect, namely, the longer its length, the greater the volume of the filling fluid, causing higher volume variation with the temperature.

The influence of the temperature conditions can be reduced through the installation of the seal in places less susceptible to it. If possible choose a transmitter with identical seals in the two sides of the pressure plug, and that possess similar conditions of temperature variation and length, so that the two sides suffer the same temperature conditions. Thus the errors tend to minimize.

With basis on these information, it was developed a process of simplified calculation that takes into account the internal volumes of the remote seal, the capillary lengths, the rigidity of the sensing diaphragms and the coefficient of volume expansion of the filling fluid, thus supplying the approximate error calculation caused by the temperature variation.

Calculation of Temperature Errors

Remote seal temperature errors are due to the volume variation of the filling fluid in the transmitter body, extension, capillary and remote seal. Following, the necessary information for the error calculation are described.

Equations

To obtain a volume variation for each leg of the remote seal, the temperature variation in the seal, in the capillary and in the transmitter body must be known and then insert the value in the equations below.

$$^{\Delta}T_{seal} = T_{seal} - Tref$$
(2.1)

$$\Delta T_{cap} = T_{cap} - Tref$$
(2.2)

$$\Delta T_{body} = T_{body} - Tref$$
(2.3)

$$\Delta V_{rdf} = V_{rdf} \cdot \Delta T_{seal} \cdot \gamma_{oil} \tag{2.4}$$

$$\Delta V_{ext} = (0.012 + 0.9 \cdot L_{ext}) \cdot \Delta T_{seal} \cdot \gamma_{oil}$$
(2.5)

$$\Delta V_{cap} = (0.9 \cdot L_{cap}) \cdot \Delta T_{cap} \cdot \gamma \text{ oil}$$
(2.6)*

$$\Delta V_{body} = (1.154) \cdot \Delta T_{body} \cdot \gamma_{oil}$$
(2.7)

$$\Delta V_{Total} = \Delta V_{rdf} + \Delta V_{ext} + \Delta V_{cap} + \Delta V_{body}$$
(2.8)

$$V_{Total} = \Delta V_{total}$$
 , (diaphragm initial volume is zero) (2.9)

$$Error = Error (Graphic) Fm$$
(2.10)

$$Error \% = \frac{Error}{Calibrated Span} \cdot 100$$
(2.11)

Where:

 ΔT_{seal} : Variation in the seal temperature in relation to the calibration temperature (°C) ΔT_{cap} : Variation in the capillary temperature in relation to the calibration temperature (°C) △T_{body} : Variation in the body temperature in relation to the calibration temperature (°C) T_{seal}: Seal Temperature (°C) T_{cap} : Capillary temperature (°C) T_{body} : Transmitter body temperature (°C) T_{ref} : Reference Temperature equal to 25°C V_{rdf} : Volume of the diaphragm reservoir (cm³) ΔV_{rdf} : Variation in the reservoir volume (cm³) ΔV_{ext} : Variation in the extension volume (cm³) ΔV_{cap} : Variation in the capillary volume (cm³) ΔV_{body} : Variation in the body volume (cm³) ΔV_{total} : Volume variation in the capillary, extension and seal set (cm³) Vtotal: Total diaphragm volume after contraction or expansion effect yoil: Volume expansion coefficient of the oil presented in the Table 2.5 (1/ °C) L_{cap} : Capillary length (meters). For the LD30XL consider L = 0.5m Lext: Extension length (meters) Error: Error (mmH₂O @ 4 °C) Error(Graphic): Error Removed from Figures 2.6, 2.7 and 2.8 in terms of the V_{total}, for diaphragm of 0.05 mm, 0.075 mm and 0.1mm respectively. Error%: Error Percentage relative to Transmitter Calibration

Calibrated Span: Transmitter Calibration (mmH₂O @ 4 °C) Fm: Diaphragm Material Factor *Only for capillary standard diameter (≈1.0 mm)

ATTENTION
The temperature of reference for adjustment is 25 °C. The Errors in terms of the temperature occur with the deviation of the temperature beyond 25 °C.

Determination of the Seal/Level Error for High (H) or Low (L) Sides

a) Upper Variation of Temperature

In this case adopt the temperature variation above zero line.

b) Lower Variation of Temperature

In this case adopt the temperature variation below zero line.

Figure 2.5 – Transmitter/Seal Set Temperatures

Where:

T seal max H: Maximum Temperature on the seal high Side (°C)

T seal min H: Minimum Temperature on the seal high Side (°C)

T cap max H: Maximum Temperature on the capillary high Side (°C)

T cap min H: Minimum Temperature on the capillary high Side (°C)

T body max H: Maximum Temperature on the body high Side (°C)

T body min H: Minimum Temperature on the body high Side (°C)

T seal max L: Maximum Temperature on the seal low Side (°C)

T seal min L: Minimum Temperature on the seal low Side (°C)

T cap max L: Maximum Temperature on the capillary low Side (°C)

T cap min L: Minimum Temperature on the capillary low Side (°C)

T body max L: Maximum Temperature on the body low Side (°C)

T body min L: Minimum Temperature on the body low Side (°C)

Error for Two Seals Influenced by Temperature Symmetry

If the transmitter has a remote seal, the error is directly obtained using Figures 2.6, 2.7 and 2.8. In case the transmitter has two remote seals, it will be necessary to know the thermal symmetry in the seals.

We can say that a Set of Seals/Level and Transmitter has thermal symmetry when the temperatures applied on the High side (H) are equal to the temperatures applied on the Low side (L). When they are different there is a Thermal Asymmetry.

After determining the thermal symmetry, the error for each one of the seals must be found independently (see Figures 2.6, 2.7 and 2.8). Then, substitute these values in equations 2.12 or 2.13.

Thermal Symmetry:
$$Es = \sqrt{(E_H)^2 + (E_L)^2} \times \left(\frac{1}{\sqrt{6}}\right)$$
 (2.12)

Thermal Asymmetry:
$$Es = \sqrt{\left(E_H\right)^2 + \left(E_L\right)^2}$$
 (2.13)

Where:

Es: Total error of both remote seals due to temperature variation (mmH2O @ 4°C)

 E_{L} : Error on the remote seal L side (mmH₂O @ 4°C)

 E_H : Error on the remote seal H side (mmH₂O @ 4°C)

ATTENTION

The effects caused by geometric variations, as the increase of the capillary length or diameter are considered in the calculations of diaphragm errors in terms of the diaphragm families. Therefore, when calculating the errors of the High or Low sides, the differences between capillaries diameters and length are already taken into account.

Table 2.5 below shows the diaphragm family in terms of the transmitter/seal model.

Model Diaphragm Family	LD301L (WITHOUT /EXT)	LD301L (WITH/ EXT)	SR301T	SR301E	LD/SR 301 S (WITHOUT/ EXT)	LD/SR 301 S (WITH/ EXT)	SR301 R	SR301P	\$R301Q
0	_	—	1" DN25	_	1.1/2" (SMS;RJT *;IDF *;TC)	DN25	_	_	_
1	_	1.1/2" DN40	_	1.1/2" DN40	_	DN40 DN50 2" (SMS;RJT;IDF;TC) 1.1/2" (SMS;RJT;IDF;TC)	_	_	1.1/2" DN40
2	_	2" DN50	_	2" DN50	DN40 DN50 2" (SMS;RJT;IDF; TC)	_	_	_	2" DN50
3	1.1/2" DN40	—	1.1/2" DN40	—	—	—	-	1.1/2" DN40	-
4	2" DN50	—	2" DN50	—	—	—	2500 PSI	2" DN50	—
5	_	2 1/2" (Special)	_	2 ½" (Special)	—	—	-	—	-
6	_	—	_	_	—	DN 80 3" (SMS;RJT;IDF;TC)	_	_	_
7	3" DN80	3" DN80	3" DN80	3" DN80	DN 80 3" (SMS *;RJT *;IDF *;TC)	_	_	3" DN80	3" DN80
8	4" DN100	4" DN100	4" DN100	4" DN100	_	_	_	4" DN100	4" DN100

Legend: SR3017 – "T" Type Flanged; SR301R – Threaded; SR301S – Sanitary; SR301E – Flanged with Extension; SR301P – Pancake; SR301Q – Pancake with Extension; LD301L – LD Level; LD301S – Sanitary;.

Table 2.5 - Diaphragm Family

Diaphragm Family	Vrdf (x 10 ⁻² cm ³)
0	18.1
1	20.4
2	24.8
3	29.2
4	38.4
5	47.7
6	82.8
7	105.6
8	274.2

The Table 2.6 below shows the value of the diaphragm reservoir volume (Vrdf) for each family.

Table 2.6 – Diaphragm Volume

The Table 2.7 below shows the value of the material factor (Fm) in function of the diaphragm material.

Diaphragm Material	Fm
316/316L SST	1.00
Hastelloy	1.08
Monel	0.96
Tantalum	0.99
Titanium	0.56
304/304L SST	1.00
Duplex	1.01
Super Duplex	1.05

Table 2.7 – Materials Factor

The Table 2.8 below shows the crescent classification (better to worst) of the diaphragms in relation to performance and mechanical resistance.

Diaphragm Material	Performance	Mechanical Resistance
316L SST	4	6
Hastelloy	7	4
Monel	2	5
Tantalum	3	7
Titanium	1	2
304L SST	4	8
Duplex	5	3
Super Duplex	6	1

Table 2.8 – Comparative

The Figure 2.6 shows the error of the remote seal in terms of the diaphragm total volume (V_{total}) for diaphragms of 0.05mm thick in 25°C.

Figure 2.6 – Error for Diaphragms with 0.05mm thickness

The Figure 2.7 shows an error of the remote seal in terms of the diaphragm total volume (V_{total}) for diaphragms of 0.075mm thick in 25°C.

Figure 2.7 – Error for Diaphragms with 0.075mm thickness

The Figure 2.8 shows an error of the remote seal in terms of the diaphragm total volume (V_{total}) for diaphragms of 0.1mm thick in 25°C

Figure 2.8 – Error for Diaphragms with 0.1mm thickness

Assembly Accuracy

The transmitter accuracy is not significantly modified by the addition of seals/level. However, the error of resulting measurement of the combination significantly increases due to geometric and physical parameters in terms of the temperature variation.

Total Probable Assembly Error

The Total Probable Error (TPE) of the transmitter and seal/level assembly is a measure that involves all the probable error sources in this measurement, such as: transmitter accuracy, ambient temperature, static pressure, vibration and changes in the transmitter power supply.

To know the TPE of the transmitter and remote seal assembly, use the method of the square root addition for each error as shown in equation 2.14:

$$ETP = \sqrt{(E_s)^2 + (E_T)^2}$$
 (2.14)

ETP : Total Probable Error of the transmitter and remote seal assembly (mmH₂O)

 E_s : Total Error of both remote seals due to temperature variation (mmH₂O)

 E_{T} : Pressure Transmitter Error (mmH₂O) – See the Transmitter Manual

Remote Seal Response Time

The response time of a measurement system having a remote seal with capillary and a transmitter is defined as the time the transmitter pressure takes to read 63% of the pressure variation value applied on a 10% to 90% range of the measured pressure, as in Figure 2.9.

Figure 2.9 – Response Time

The response time is the result of the resistance of the oil displacement in the capillary, so that, the bigger the capillary and the oil viscosity are, the longer will be the response time. The transmitter range influences the response time due to the rigidity of the sensor diaphragm, so that the wider the range, the quickest the response time.

The response time is also influenced by the viscosity of the filling fluid, which varies with the temperature. The higher the temperature, the lesser the viscosity of the filling fluid, which, consequently, reduces the response time.

Calculation of Remote Seal Response Time

The response time is obtained through the equation 2.15, below:

$$TR_{S} = TR_{listed} \cdot L$$
 (2.15)

Where:

 TR_{s} : Remote seal response time (seconds)

TR : Response Time through the capillary length (seconds/meters) – See Table 2.10 *listed*

L: Capillaty length (meters)

NOTE The values obtained for the seal response time do not consider the response time of the transmitter. Therefore, the response time of the seal and transmitter set will be the addition of both.

NOTE

Capillary lengths whose difference of response time between H and L sides exceeds 0.5s must be avoided. This measure prevents wrong measurements.

ΪR	, ≣(°C)		R	esponse T	ime in se	conds/me	ter of capi	illary (s/m)) ⁽⁶⁾	
TRANSMITTE RANGE	CAPILLARY TEMPERATUR I	DC 200	DC 704	FLUOROLUBE	SYLTHERM 800	NEOBEE M20	Glycerin 50% + Water 50%	FOMBLIM	КҮТКОХ	HALOCARBOM
	100 ⁽⁴⁾	2.69E-01	3.99E-01	1.72E-01	1.09E-01	5.59E-02	2.16E-02	2.66E-01	3.08E-01	8.37E-02
	75	3.38E-01	5.75E-01	2.84E-01	1.52E-01	8.89E-02	4.32E-02	4.46E-01	4.83E-01	1.19E-01
	50	4.55E-01	9.29E-01	7.86E-01	2.23E-01	1.57E-01	1.19E-01	1.00E+00	9.85E-01	1.88E-01
•	25	6.98E-01	1.72E+00	3.78E+00	3.47E-01	3.15E-01	5.32E-01	3.41E+00	2.90E+00	3.80E-01
2	10	9.87E-01	2.69E+00	1.28E+01	4.67E-01	5.09E-01	2.01E+00	9.03E+00	6.92E+00	6.90E-01
	0	1.30E+00	3.74E+00	3.26E+01	5.77E-01	7.21E-01	6.20E+00	1.94E+01	1.37E+01	1.13E+00
	-10	1./0E+00	N.A.	9.10E+U1	7.21E-01	1.04E+00	N.A.	4.02E+01	2.99E+01	1.99E+00
	-20	2.30E+00	N.A.	2.00E+02	9.12E-01	N.A.	N.A.		7.19E+01	3.00E+00
	-40 100 ⁽⁴⁾	5.30E-02	7.07E_02	N.A.	2 18E-02	1 12E_02	1 32E-03	5 32E-02	6.17E-02	1.90L+01
	75	6.75E-02	1.57L-02	5.68E-02	3.03E-02	1.72E-02	9.52L-03	8.01E-02	9.67E-02	2 38E-02
	50	9.09E-02	1.13E-01	1.57E-01	4.45E-02	3.15E-02	2.38E-02	2.01E-02	1.97E-02	3.76E-02
	25	1 40F-01	3 45E-01	7.56E-01	6.94E-02	6.30E-02	1.06E-01	6.81E-01	5.80E-01	7.60E-02
3	10	1.97E-01	5.38E-01	2.56E+00	9.34E-02	1.02E-01	4.02E-01	1.81E+00	1.38E+00	1.38E-01
	0	2.60E-01	7.48E-01	6.53E+00	1.15E-01	1.44E-01	1.24E+00	3.88E+00	2.75E+00	2.25E-01
	-10	3.57E-01	N.A.	1.84E+01	1.44E-01	2.09E-01	N.A.	9.24E+00	5.98E+00	3.98E-01
	-20	5.12E-01	N.A.	5.72E+01	1.82E-01	N.A.	N.A.	2.45E+01	1.44E+01	7.73E-01
	-40	1.22E+00	N.A.	N.A.	3.03E-01	N.A.	N.A.	N.A.	1.15E+02	3.96E+00
	100 ⁽⁴⁾	4.86E-03	7.19E-03	3.11E-03	1.97E-03	1.01E-03	3.90E-04	4.80E-03	5.56E-03	1.51E-03
	75	6.09E-03	1.04E-02	5.13E-03	2.74E-03	1.60E-03	7.80E-04	8.04E-03	8.72E-03	2.14E-03
	50	8.20E-03	1.68E-02	1.42E-02	4.02E-03	2.84E-03	2.15E-03	1.81E-02	1.78E-02	3.39E-03
	25	1.26E-02	3.11E-02	6.82E-02	6.26E-03	5.68E-03	9.60E-03	6.15E-02	5.24E-02	6.86E-03
4	10	1.78E-02	4.85E-02	2.31E-01	8.42E-03	9.18E-03	3.62E-02	1.63E-01	1.25E-01	1.25E-02
	0	2.35E-02	6.75E-02	5.89E-01	1.04E-02	1.30E-02	1.12E-01	3.50E-01	2.48E-01	2.03E-02
	-10	3.22E-02	N.A.	1.66E+00	1.30E-02	1.89E-02	N.A.	8.33E-01	5.39E-01	3.59E-02
	-20	4.61E-02	N.A.	5.16E+00	1.65E-02	N.A.	N.A.	2.21E+00	1.30E+00	6.97E-02
	-40	1.10E-01	N.A.	N.A.	2.73E-02	N.A.	N.A.	N.A.	1.04E+01	3.57E-01
	100(*)	2.11E-04	3.13E-04	1.35E-04	8.54E-05	4.38E-05	1.69E-05	2.09E-04	2.42E-04	6.56E-05
	/5	2.65E-04	4.50E-04	2.23E-04	1.19E-04	6.96E-05	3.39E-05	3.49E-04	3.79E-04	9.31E-05
	50	3.50E-04	1.28E-04	0.10E-04	1.75E-04	1.23E-04	9.32E-05	7.87E-04	7.72E-04	1.47E-04
5	20	3.47E-04	1.30E-03	2.90E-03	2.72E-04	2.47E-04	4.17E-04	2.07E-03	2.27E-03	2.90E-04
°,	0	1.02E_03	2.11L-03	2.56E-02	4.52E-04	5.65E-04	4.86E-03	1.00L-03	1.08E-02	8.82E-04
	-10	1.02E 00	N A	7 20E-02	5.65E-04	8 19E-04	N A	3.62E-02	2.34E-02	1.56E-03
	-20	2 00F-03	N A	2 24F-01	7 15E-04	NA	N A	9.59E-02	5.64E-02	3.03F-03
	-40	4.78E-03	N.A.	N.A.	1.19E-03	N.A.	N.A.	N.A.	4.52E-01	1.55E-02
	100 ⁽⁴⁾	1.66E-04	2.46E-04	1.06E-04	6.71E-05	3.44E-05	1.33E-05	1.64E-04	1.90E-04	5.16E-05
	75	2.08E-04	3.54E-04	1.75E-04	9.34E-05	5.48E-05	2.66E-05	2.75E-04	2.98E-04	7.32E-05
	50	2.80E-04	5.73E-04	4.84E-04	1.37E-04	9.70E-05	7.33E-05	6.19E-04	6.07E-04	1.16E-04
	25	4.30E-04	1.06E-03	2.33E-03	2.14E-04	1.94E-04	3.28E-04	2.10E-03	1.79E-03	2.34E-04
6	10	6.08E-04	1.66E-03	7.89E-03	2.88E-04	3.13E-04	1.24E-03	5.56E-03	4.26E-03	4.25E-04
	0	8.01E-04	2.31E-03	2.01E-02	3.56E-04	4.44E-04	3.82E-03	1.20E-02	8.46E-03	6.93E-04
	-10	1.10E-03	N.A.	5.66E-02	4.44E-04	6.44E-04	N.A.	2.85E-02	1.84E-02	1.23E-03
	-20	1.58E-03	N.A.	1.76E-01	5.62E-04	N.A.	N.A.	7.54E-02	4.43E-02	2.38E-03
	-40	3.76E-03	N.A.	N.A.	9.33E-04	N.A.	N.A.	N.A.	3.55E-01	1.22E-02

Table 2.9 - Remote Seal Response Time

Notes:

Notes:
(1) The response time is defined as the time that the indication of the instrument pressure takes to show 63% of the pressure variation value applied in the 10% to 90% range of the measured pressure.
(2) If the transmitter has two capillaries add their lengths to calculate the response time.
(3) N.A: No applicable due to temperature limit.
(4) The temperature limit for (Water 50% + Glycerin 50%) is 93°C.
(5) The user will have to analyze the total response time to the related application.
(6) Without the transmitter response time.
(7) The table above is only for capillary standard diameter (≈1 0 mm)

(7) The table above is only for capillary standard diameter (≈1.0 mm)

Capillary Length

The capillary length is a variable defined in terms of the application need, as for example, the tank height or distance of the remote point to be measured.

To evaluate the maximum capillary length, three conditions must be fulfilled:

 To check if the expanded or contracted volume relative to the initial volume of the corrugated is within Lower and Upper limits (VC_{min} and VC_{max});

$$VC_{\min} \le V_{total} \le VC_{\max}$$
 (2.16)

Where:

 V_{total} : Total diaphragm volume after expansion or contraction effect (defined in this Chapter)

 VC_{\min} : Minimum Critical Volume of the Seal

 $VC_{\rm max}$: Maximum Critical Volume of the Seal

To obtain the VC_{max} value, use Tables 2.10 to 2.17, where the maximum critical volume for different materials and diaphragm thickness in function of temperature is presented

To obtain the VC_{min} value use the Table 2.18, where the minimum critical volume for the transmitter range and applied process pressure is presented.

$$\% VC_{\min} = \frac{MVP}{URL} \times 100 \tag{2.17}$$

Where:

 $\% VC_{\rm min}$: Percentage of $VC_{\rm min}$ regarding URL

- MVP : The higher value between |V.sup| and |V.inf|
- 2) Verify if the response time is compatible with the process variables and there will be enough time so that the pressure transmission guarantees the application control limits.
- 3) Verify if the assembly global error is within client expectations.

After these three analysis, the maximum remote seal capillary length needed is acceptable.

					۷	'Cmax	(10 ⁻² x	cm³) f	or 316L	. Stair	nless S	iteel Di	iaphra	gm				
ට				:	# 0.05m	ım								# 0.1m	m			
Tp (⁰	Family 0	Family 1	Family 2	Family 3	Family 4	Family 5	Family 6	Family 7	Family 8	Family 0	Family 1	Family 2	Family 3	Family 4	Family 5	Family 6	Family 7	Family 8
-25 to 35	9.6	15.9	24.3	29.8	36.6	47.9	86.6	100.6	248.9	8.1	13.4	21.2	26.7	32.6	42.2	76.6	88.4	231.4
75	9.0	14.8	22.6	27.6	34.0	44.5	80.5	93.7	230.5	7.6	12.6	19.8	24.7	30.5	39.5	71.8	82.9	215.7
125	8.2	13.6	20.7	25.2	31.0	40.8	73.7	85.9	210.0	7.0	11.6	18.2	22.9	28.0	36.4	66.2	76.7	198.0
175	7.6	12.5	19.0	23.1	28.5	37.5	67.9	79.2	192.6	6.4	10.8	16.9	21.1	25.9	33.7	61.4	71.2	182.8
225	7.1	11.7	17.7	21.4	26.5	34.9	63.0	73.6	178.5	6.0	10.1	15.7	19.6	24.1	31.5	57.4	66.6	170.1
275	6.7	11.0	16.6	20.1	24.9	32.8	59.3	69.3	167.7	5.7	9.5	14.9	18.5	22.7	29.8	54.2	63.0	160.4
325	6.4	10.5	15.9	19.2	23.8	31.4	56.8	66.4	160.2	5.5	9.1	14.3	17.7	21.8	28.6	52.1	60.5	153.6
375	6.2	10.3	15.5	18.8	23.2	30.7	55.4	64.8	156.2	5.3	8.9	13.9	17.3	21.3	27.9	50.9	59.2	150.0

Table 2.10 – Maximum Critical Volume for 316L Stainless Steel Diaphragm (See Note - page 2.20)

						V	Cmax ((10 ⁻² x (cm³) foi	· Hast	elloy D	Diaphra	agm					
ΰ				:	# 0.05m	ım								# 0.1m	m			
Tp (°	Family 0	Family 1	Family 2	Family 3	Family 4	Family 5	Family 6	Family 7	Family 8	Family 0	Family 1	Family 2	Family 3	Family 4	Family 5	Family 6	Family 7	Family 8
-25 to 35	14.0	23.0	35.9	45.0	54.9	70.8	128.0	147.5	379.8	11.5	18.9	30.2	39.0	47.0	59.8	108.2	123.7	336.0
75	13.5	22.1	34.4	43.1	52.6	68.0	122.9	141.8	363.1	11.1	18.3	29.1	37.5	45.2	57.7	104.2	119.5	323.2
125	12.8	21.1	32.7	40.8	49.9	64.6	116.7	134.9	343.3	10.6	17.5	27.8	35.7	43.1	55.2	99.8	114.4	307.8
175	12.2	20.1	31.1	38.6	47.3	61.4	110.7	128.3	324.7	10.1	16.7	26.5	33.9	41.1	52.7	95.4	109.5	293.2
225	11.6	19.1	29.5	36.6	44.8	58.3	105.4	122.0	307.3	9.7	16.0	25.3	32.3	39.2	50.4	91.3	104.8	279.3
275	11.1	18.2	28.1	34.7	42.6	55.5	100.3	116.2	291.2	9.2	15.3	24.2	30.8	37.4	48.2	87.3	100.4	266.3
325	10.6	17.4	26.8	33.0	40.5	52.9	95.6	110.9	276.6	8.8	14.7	23.2	29.4	35.8	46.1	83.7	96.3	254.4
375	10.1	16.7	25.6	31.5	38.7	50.5	91.3	106.1	263.5	8.5	14.1	22.2	28.4	34.3	44.3	80.4	92.6	243.6

Table 2.11 – Maximum Critical Volume for Hastelloy Diaphragm (See Note - page 2.20)

							VCmax	k (10 ⁻² x	cm ³) fo	or Mon	el Dia	phragr	n					
ට					# 0.05r	nm								# 0.1m	m			
Тр (°	Family 0	Family 1	Family 2	Family 3	Family 4	Family 5	Family 6	Family 7	Family 8	Family 0	Family 1	Family 2	Family 3	Family 4	Family 5	Family 6	Family 7	Family 8
-25 to 35	10.0	16.5	25.4	31.2	38.3	50.1	90.5	105.1	260.8	8.4	13.9	22.0	27.9	34.0	43.9	79.7	91.8	241.3
75	9.4	15.6	23.8	29.2	35.9	47.0	85.0	98.8	244.0	7.9	13.2	20.8	26.2	32.0	41.5	75.3	86.9	227.2
125	8.8	14.5	22.2	27.1	33.4	43.8	79.1	92.1	226.2	7.4	12.4	19.5	24.5	29.9	38.8	70.6	81.6	212.0
175	8.3	13.7	20.9	25.4	31.4	41.2	74.4	86.7	212.0	7.0	11.7	18.4	23.1	28.2	36.7	66.8	77.3	199.7
225	7.9	13.1	19.9	24.2	29.8	39.2	70.9	82.7	201.7	6.7	11.2	17.6	22.0	27.0	35.1	63.9	74.0	190.7
275	7.7	12.7	19.3	23.4	28.9	38.0	68.7	80.2	195.2	6.5	10.9	17.1	21.3	26.2	34.1	62.1	72.0	185.0
325	7.6	12.5	19.0	23.1	28.5	37.6	67.9	79.2	192.7	6.4	10.8	16.9	21.1	25.9	33.7	61.4	71.2	182.8
375	7.5	12.4	18.8	22.7	28.2	37.2	67.7	78.2	190.0	6.3	10.6	16.7	21.0	25.4	33.0	60.5	70.8	180.5

Table 2.12 – Maximum Critical Volume for Monel Diaphragm (See Note - page 2.20)

						۷	Cmax ((10 ⁻² x c	:m³) for	Tanta	lum Di	iaphra	gm					
G					# 0.05n	nm								# 0.1m	m			
Tp (º	Family 0	Family 1	Family 2	Family 3	Family 4	Family 5	Family 6	Family 7	Family 8	Family 0	Family 1	Family 2	Family 3	Family 4	Family 5	Family 6	Family 7	Family 8
-25 to 35	8.5	13.9	21.3	25.9	32.0	42.0	75.8	88.3	216.4	7.1	11.9	18.7	23.5	28.7	37.3	67.9	78.5	203.5
75	7.1	11.7	17.8	21.5	26.6	35.0	63.8	74.0	179.4	6.0	10.1	15.8	19.7	24.2	31.6	56.6	66.8	170.9
125	5.6	9.2	13.9	16.8	20.8	27.4	49.6	58.0	139.4	4.8	8.0	12.5	15.5	19.1	25.1	45.8	53.3	134.5
175	4.3	7.2	10.7	12.9	16.0	21.2	38.3	44.9	107.1	3.7	6.3	9.7	12.0	14.8	19.6	35.8	41.8	104.2
225	3.4	5.6	8.4	10.0	12.4	16.5	29.3	35.0	83.1	2.9	4.9	7.6	9.3	11.6	15.3	28.0	32.8	81.3
275	2.8	4.6	6.8	8.1	10.1	13.4	24.3	28.5	67.6	2.4	4.0	6.2	7.6	9.4	12.5	22.9	26.9	66.3
325	2.5	4.1	6.1	7.3	9.1	12.1	21.8	25.6	60.8	2.1	3.6	5.6	6.9	8.5	11.3	20.6	24.2	59.6
375	2.2	3.8	5.7	7.0	8.3	11.2	19.7	22.4	58.7	1.9	3.1	4.8	6.0	7.9	10.7	18.6	22.8	55.8

Table 2.13 - Maximum Critical Volume for Tantalum Diaphragm (See Note - page 2.20)

						۷	'Cmax	(10 ⁻² x ∣	cm³) fo	r Titan	ium D	iaphra	agm					
					# 0.05r	nm								# 0.1m	ım			
T (0)	Family 0	Family 1	Family 2	Family 3	Family 4	Family 5	Family 6	Family 7	Family 8	Family 0	Family 1	Family 2	Family 3	Family 4	Family 5	Family 6	Family 7	Family 8
-25 to 35	18.2	29.9	47.5	61.0	73.6	93.8	169.5	194.0	519.6	14.7	24.0	38.8	50.9	60.8	76.5	137.8	156.6	438.1
75	16.7	27.4	43.4	55.3	67.0	85.7	154.9	177.7	469.6	13.6	22.2	35.8	46.7	55.9	70.6	127.5	145.1	402.3
125	14.9	24.5	38.5	48.6	59.1	76.0	137.4	158.1	410.9	12.2	20.0	32.1	41.6	50.1	63.6	114.9	131.1	359.1
175	13.3	21.8	34.0	42.5	51.9	67.1	121.3	140.0	358.1	10.9	18.0	28.7	36.9	44.6	56.9	103.0	117.9	319.1
225	11.8	19.4	30.0	37.2	45.6	59.3	107.1	124.0	312.9	9.8	16.1	25.7	32.8	39.8	51.0	92.4	106.1	283.6
275	10.6	17.4	26.8	33.0	40.5	52.9	95.6	110.9	276.8	8.8	14.6	23.1	29.4	35.7	46.1	83.6	96.2	254.3
325	9.7	15.9	24.4	30.0	36.9	48.2	87.2	101.3	250.9	8.1	13.5	21.3	26.9	32.8	42.4	77.0	88.8	232.8
375	9.2	15.1	23.1	28.2	34.8	45.6	82.4	95.8	236.2	7.7	12.8	20.2	25.4	31.1	40.2	73.2	84.5	220.4

Table 2.14 - Maximum Critical Volume for Titanium Diaphragm (See Note - page 2.20)

					١	/Cmax	κ (10 ⁻² x	cm³) f	or 304L	. Stain	less S	teel D	iaphra	ıgm				
~					# 0.05r	nm								# 0.1m	nm			
T p	Family 0	Family 1	Family 2	Family 3	Family 4	Family 5	Family 6	Family 7	Family 8	Family 0	Family 1	Family 2	Family 3	Family 4	Family 5	Family 6	Family 7	Family 8
-25 to 35	8.1	13.4	20.4	24.9	30.7	40.3	72.9	84.9	207.5	6.9	11.5	18.0	22.6	27.7	36.0	65.6	75.9	195.8
75	7.6	12.5	19.0	23.0	28.4	37.4	67.6	78.9	191.9	6.4	10.7	16.8	21.0	25.8	33.6	61.2	71.0	182.1
125	6.9	11.4	17.3	21.0	25.9	34.2	61.8	72.1	174.7	5.9	9.9	15.4	19.2	23.6	30.9	56.3	65.4	166.8
175	6.4	10.5	15.9	19.2	23.8	31.4	56.8	66.4	160.2	5.5	9.1	14.3	17.7	21.8	28.6	52.1	60.5	153.6
225	5.9	9.8	14.8	17.8	22.1	29.2	52.7	61.6	148.3	5.1	8.5	13.3	16.5	20.3	26.6	48.5	56.5	142.8
275	5.6	9.2	13.9	16.7	20.7	27.2	49.5	58.0	139.2	4.8	8.0	12.5	15.5	19.1	25.1	45.8	53.3	134.4
325	5.3	8.8	13.3	16.0	19.8	26.2	47.4	55.0	133.0	4.6	7.7	12.0	14.8	18.3	24.0	43.9	51.1	128.5
375	5.2	8.6	12.9	15.6	19.3	25.5	46.2	54.0	129.5	4.5	7.5	11.7	14.4	17.8	23.5	42.8	49.9	125.3

Table 2.15 – Maximum Critical Volume for 304L Stainless Steel Diaphragm (See Note - page 2.20)

							VCmax	: (10 ⁻² x	cm ³) fo	or Dup	lex Di	aphra	gm					
					# 0.05r	nm								# 0.1m	nm			
d D	ily 0	ily 1	iily 2	ily 3	ily 4	ily 5	ily 6	ily 7	ily 8	ily 0	ily 1	iily 2	ily 3	ily 4	ily 5	ily 6	ily 7	ily 8
	Fam	Fam	Fam	Fam	Fam	Fam	Fam	Fam	Fam	Fam	Fam	Fam	Fam	Fam	Fam	Fam	Fam	Fam
-25 to 35	16.9	27.7	43.8	55.8	67.5	86.3	156.0	179.0	473.2	13.7	22.5	36.1	47.1	56.4	71.2	128.5	146.2	405.3
75	15.9	26.1	41.2	52.2	63.3	81.2	146.8	168.7	442.2	13.0	21.3	34.2	44.4	53.4	67.5	121.9	138.9	382.7
125	14.8	24.4	38.2	48.2	58.6	75.4	136.3	156.8	407.0	12.2	20.0	32.0	41.4	49.8	63.2	114.3	130.4	356.6
175	13.9	22.8	35.6	44.6	54.4	70.2	126.9	146.4	376.3	11.4	18.8	30.0	38.7	46.6	59.2	107.3	122.8	333.4
225	13.1	21.5	33.4	41.7	50.9	65.9	119.1	137.5	350.8	10.8	17.8	28.3	36.4	43.9	56.1	101.6	116.3	313.7
275	12.4	20.4	31.7	39.4	48.2	62.5	112.9	130.5	331.0	10.3	17.0	27.0	34.5	41.8	53.5	97.0	111.2	298.2
315	12.0	19.8	30.6	38.0	46.2	61.1	109.3	126.4	319.5	10.0	16.5	26.2	33.5	40.6	52.0	94.2	108.1	289.1

Table 2.16 - Maximum Critical Volume for Duplex Diaphragm (See Note - page 2.20)

						VCr	nax (10) ⁻² x cm	³) for S	uper I	Duple>	c Diapl	hragm					
					# 0.05r	nm								# 0.1m	nm			
тр (°С)	Family 0	Family 1	Family 2	Family 3	Family 4	Family 5	Family 6	Family 7	Family 8	Family 0	Family 1	Family 2	Family 3	Family 4	Family 5	Family 6	Family 7	Family 8
-25 to 35	18.7	30.7	48.9	62.9	75.8	96.4	174.2	199.3	535.5	15.1	24.7	39.9	52.3	62.5	78.5	141.4	160.5	449.9
75	17.8	29.2	46.3	59.3	71.7	91.4	165.2	189.2	504.5	14.4	23.6	38.0	49.8	59.5	74.9	135.0	153.5	427.9
125	16.8	27.5	43.5	55.3	67.0	85.7	155.0	177.8	469.6	13.6	22.3	35.9	46.8	56.1	70.8	127.7	145.4	402.7
175	15.9	26.0	41.0	51.9	63.0	80.8	146.1	167.8	439.6	12.9	21.2	34.0	44.2	53.1	67.2	121.4	138.3	380.8
225	15.1	24.8	38.9	49.1	59.7	76.8	138.8	159.6	415.3	12.4	20.3	32.5	42.1	50.6	64.3	116.1	132.4	362.8
275	14.5	23.9	37.4	47.0	57.2	73.7	133.3	153.5	397.1	11.9	19.6	31.3	40.5	48.8	62.0	112.1	128.0	349.1
300	14.3	23.5	36.8	46.3	56.3	72.6	131.3	151.2	390.5	11.8	19.4	30.9	39.9	48.1	61.2	110.6	125.6	344.1

Table 2.17 - Maximum Critical Volume for Super Duplex Diaphragm (See Note - page 2.20)

Note - Tables 2.10 to 2.17 The tables 2.10 to 2.17 are Theoretical. For the VcMax values in diaphragm with 0.075 mm of thickness, interpolate the listed values. All the thickness and listed materials are not available. In case of doubt it consults our representatives.

See below the Table 2.18 of Minimum Critical Volume.

				VCm	in (10 ⁻² x	cm³)						
% VCmin Transmitter Range	120%	110%	100%	90%	80%	70%	60%	50%	40%	30%	20%	10%
2	7.02	6.44	5.85	5.27	4.68	4.10	3.51	2.93	2.34	1.76	1.17	0.59
3	7.02	6.44	5.85	5.27	4.68	4.10	3.51	2.93	2.34	1.76	1.17	0.59
4	6.34	5.81	5.28	4.75	4.22	3.70	3.17	2.64	2.11	1.58	1.06	0.53
5	2.75	2.52	2.29	2.06	1.83	1.60	1.37	1.15	0.92	0.69	0.46	0.23
6	3.46	3.17	2.88	2.59	2.30	2.02	1.73	1.44	1.15	0.86	0.58	0.29

Table 2.18 – Minimum Critical Volume

Error Guide Trend for Transmitter Assembled with Remote Seal

There are factors that influence the remote seal response, like process temperature, ambient temperature, seal diameter and capillary length.

To better understand the influence of these parameters, a Total Probable Error behavior guide for the transmitter and the remote seal assembly was devised.

This guide is valid only for the assembly of the Remote Seal SR301T and the Smar pressure transmitter LD30X with the following conditions:

- Stainless Steel # 0.05mm diaphragm;
- Filling Fluid DC200;
- Stability for 12 months;
- Static pressure variation up to 10 bar (only for LD30XD);
- Reference Temperature of 25°C;
- Thermal simmetry for two seals assembly;
- Transmitter Calibration with Rangeability 1:1 for cases 1,2,3.

Therefore, the transmitter calibrations are the following:

Range 2 : 0 to 50 Kpa; Range 3 : 0 to 250 Kpa; Range 4 : 0 to 2500 Kpa; Range 5 : 0 to 2500 Kpa; Range 6 : 0 to 40000 Kpa.

Transmitter Calibration with Rangeability 10:1 for cases 4,5,6.

Therefore, the transmitter calibrations are the following:

Range 2 : 0 to 5 Kpa; Range 3 : 0 to 25 Kpa; Range 4 : 0 to 250 Kpa; Range 5 : 0 to 2500 Kpa; Range 6 : 0 to 4000 Kpa.

The Guide is divided in six cases that must be chosen according to the process temperature and ambient temperature. Through these six cases it is possible to observe some factors that influence measuring:

- Ambient and Process Temperature: This is the most important factor and can turn the remote seal use unfeasible. Note that by comparing the six tables (cases 1, 2 and 3; cases 4, 5 and 6), as the temperatures increase, the errors also increase. Cases 3 and 6, where temperatures are higher, present more specifications where the remote seal is not applicable (N.A.).
- Capillary Length: In cases with high temperatures (cases 2 and 3; cases 5 and 6), the shorter the capillary length, the smaller the seal response time and the better the assembly Total Probable Error (TPE).
- Remote Seal Diameter: In cases with high temperatures (cases 2 and 3; cases 5 and 6), the bigger the seal diameter, the better the the assembly Total Probable Error (TPE).

For cases 1 to 6, are:

- N.A.: Nonapplicable by outdatet mechanical limits;
- Error %: TPE lesser or equal to Error % of the calibrated span;
- Δtp: Variation of Temperature in the process;
- Δta: Variation of Temperature in the capillary and pressure transmitter;
- Obs.: For median capillary lengths, use the higher listed value.

Case 1 – TPE % of the Span with Calibration in Rangeability (1:1)

Process Temperature: Ambient Temperature: 40 °C \pm 0 °C $\rightarrow \Delta tp = +$ 15°C 25 °C \pm 0 °C $\rightarrow \Delta ta = 0$ °C

				LD30X	(M (2 to 6)				LD30X	(D (2 to 4))	
Capillary	Range			1 Sea	I SR301T					2 Seals S	R301T(equ	ial)	
		Tr (s)	1"	1.1/2"	2"	3"	4"	Tr (s)	1"	1.1/2"	2"	3"	4"
	2	< 1	0.25%	0.25%	0.25%	0.25%	0.25%	< 1	0.25%	0.25%	0.25%	0.25%	0.25%
-	3	< 1	0.25%	0.25%	0.25%	0.25%	0.25%	< 1	0.25%	0.25%	0.25%	0.25%	0.25%
.5 n	4	< 1	0.25%	0.25%	0.25%	0.25%	0.25%	< 1	0.25%	0.25%	0.25%	0.25%	0.25%
0	5	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	2	1.15	0.25%	0.25%	0.25%	0.25%	0.25%	2.20	0.25%	0.25%	0.25%	0.25%	0.25%
-	3	< 1	0.25%	0.25%	0.25%	0.25%	0.25%	< 1	0.25%	0.25%	0.25%	0.25%	0.25%
.5 n	4	< 1	0.25%	0.25%	0.25%	0.25%	0.25%	< 1	0.25%	0.25%	0.25%	0.25%	0.25%
-	5	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	2	2.20	0.25%	0.25%	0.25%	0.25%	0.25%	4.30	0.25%	0.25%	0.25%	0.25%	0.25%
	3	< 1	0.25%	0.25%	0.25%	0.25%	0.25%	< 1	0.25%	0.25%	0.25%	0.25%	0.25%
E	4	< 1	0.25%	0.25%	0.25%	0.25%	0.25%	< 1	0.25%	0.25%	0.25%	0.25%	0.25%
۳ ۳	5	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
E	6	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	2	3.60	0.25%	0.25%	0.25%	0.25%	0.25%	7.10	0.25%	0.25%	0.25%	0.25%	0.25%
	3	< 1	0.25%	0.25%	0.25%	0.25%	0.25%	1.50	0.25%	0.25%	0.25%	0.25%	0.25%
2	4	< 1	0.25%	0.25%	0.25%	0.25%	0.25%	< 1	0.25%	0.25%	0.25%	0.25%	0.25%
	5	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	2	5.70	0.25%	0.25%	0.25%	0.25%	0.25%	11.27	0.25%	0.25%	0.25%	0.25%	0.25%
	3	1.22	0.25%	0.25%	0.25%	0.25%	0.25%	2.35	0.25%	0.25%	0.25%	0.25%	0.25%
E ®	4	< 1	0.25%	0.25%	0.25%	0.25%	0.25%	< 1	0.25%	0.25%	0.25%	0.25%	0.25%
	5	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	2	7.10	0.25%	0.25%	0.25%	0.25%	0.25%	14.10	0.25%	0.25%	0.25%	0.25%	0.25%
- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	3	1.50	0.25%	0.25%	0.25%	0.25%	0.25%	2.90	0.25%	0.25%	0.25%	0.25%	0.25%
	4	< 1	0.25%	0.25%	0.25%	0.25%	0.25%	< 1	0.25%	0.25%	0.25%	0.25%	0.25%
-	5	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.

Table 2.19 – TPE (Case 1)

Case 2 – TPE % of the Span with Calibration in Rangeability (1:1)

Process Temperature: Ambient Temperature: $\begin{array}{l} 100 \ ^{\mathrm{o}}\mathrm{C} \pm 0 \ ^{\mathrm{o}}\mathrm{C} \ -> \Delta tp = + \ 75^{\mathrm{o}}\mathrm{C} \\ 40 \ ^{\mathrm{o}}\mathrm{C} \pm 0 \ ^{\mathrm{o}}\mathrm{C} \ -> \Delta ta = + \ 15^{\mathrm{o}}\mathrm{C} \end{array}$

				LD30X	(M (2 to 6)				LD30X	(D (2 to 4))	
Capillary	Range			1 Sea	I SR301T					2 Seals S	R301T(equ	ial)	
		Tr (s)	1"	1.1/2"	2"	3"	4"	Tr (s)	1"	1.1/2"	2"	3"	4"
	2	< 1	3.50%	1.00%	1.00%	0.25%	0.25%	< 1	2.00%	0.50%	0.50%	0.25%	0.25%
_	3	< 1	1.00%	0.25%	0.25%	0.25%	0.25%	< 1	0.50%	0.25%	0.25%	0.25%	0.25%
.2 Γ	4	< 1	0.25%	0.25%	0.25%	0.25%	0.25%	< 1	0.25%	0.25%	0.25%	0.25%	0.25%
0	5	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	2	< 1	5.00%	1.50%	1.00%	0.50%	0.25%	1.70	3.00%	1.00%	0.50%	0.25%	0.25%
_	3	< 1	1.00%	0.25%	0.25%	0.25%	0.25%	< 1	1.00%	0.25%	0.25%	0.25%	0.25%
.5 n	4	< 1	0.25%	0.25%	0.25%	0.25%	0.25%	< 1	0.25%	0.25%	0.25%	0.25%	0.25%
~	5	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	2	1.70	7.00%	1.50%	1.50%	0.50%	0.25%	3.28	4.00%	1.00%	1.00%	0.25%	0.25%
	3	< 1	1.50%	0.50%	0.50%	0.25%	0.25%	< 1	1.00%	0.25%	0.25%	0.25%	0.25%
E	4	< 1	0.25%	0.25%	0.25%	0.25%	0.25%	< 1	0.25%	0.25%	0.25%	0.25%	0.25%
۳ ۳ ۳	5	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
3	6	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	2	2.75	N.A.	1.50%	1.50%	0.50%	0.25%	5.40	N.A.	1.50%	1.00%	0.50%	0.25%
	3	< 1	N.A.	0.50%	0.50%	0.25%	0.25%	1.16	N.A.	0.25%	0.25%	0.25%	0.25%
2	4	< 1	N.A.	0.25%	0.25%	0.25%	0.25%	< 1	N.A.	0.25%	0.25%	0.25%	0.25%
	5	< 1	N.A.	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	N.A.	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	2	4.35	N.A.	3.00%	2.50%	1.00%	0.25%	8.57	N.A.	2.00%	1.50%	0.50%	0.50%
	3	< 1	N.A.	1.00%	0.50%	0.25%	0.25%	1.80	N.A.	0.50%	0.50%	0.25%	0.25%
8	4	< 1	N.A.	0.25%	0.25%	0.25%	0.25%	< 1	N.A.	0.25%	0.25%	0.25%	0.25%
	5	< 1	N.A.	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	N.A.	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	2	5.40	N.A.	3.50%	2.50%	1.00%	0.50%	10.68	N.A.	2.00%	1.50%	0.50%	0.25%
	3	1.16	N.A.	1.00%	0.50%	0.25%	0.25%	2.22	N.A.	0.50%	0.50%	0.25%	0.25%
	4	< 1	N.A.	0.25%	0.25%	0.25%	0.25%	< 1	N.A.	0.25%	0.25%	0.25%	0.25%
	5	< 1	N.A.	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	N.A.	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.

Table 2.20 – TPE (Case 2)

Case 3 – TPE % of the Span with Calibration in Rangeability (1:1)

Process Temperature: Ambient Temperature: $\begin{array}{l} 170 \ ^{\mathrm{o}}\mathrm{C} \pm 0 \ ^{\mathrm{o}}\mathrm{C} \ -> \Delta tp = + \ 145^{\mathrm{o}}\mathrm{C} \\ 60 \ ^{\mathrm{o}}\mathrm{C} \pm 0 \ ^{\mathrm{o}}\mathrm{C} \ -> \Delta ta = + \ 35^{\mathrm{o}}\mathrm{C} \end{array}$

	Range	LD30XM (2 to 6)							LD30XD (2 to 4)						
Capillary		1 Seal SR301T							2 Seals SR301T(equal)						
		Tr (s)	1"	1.1/2"	2"	3"	4"	Tr (s)	1"	1.1/2"	2"	3"	4"		
0.5 m	2	< 1	N.A.	2.00%	2.00%	0.50%	0.50%	< 1	N.A.	1.50%	1.00%	0.50%	0.50%		
	3	< 1	N.A.	0.50%	0.50%	0.25%	0.25%	< 1	N.A.	0.50%	0.50%	0.25%	0.25%		
	4	< 1	N.A.	0.25%	0.25%	0.25%	0.25%	< 1	N.A.	0.25%	0.25%	0.25%	0.25%		
	5	< 1	N.A.	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.		
	6	< 1	N.A.	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.		
	2	< 1	N.A.	2.50%	2.00%	0.50%	0.50%	1.29	N.A.	1.50%	1.50%	0.50%	0.25%		
-	3	< 1	N.A.	1.00%	0.50%	0.25%	0.25%	< 1	N.A.	0.50%	0.50%	0.25%	0.25%		
.5 n	4	< 1	N.A.	0.25%	0.25%	0.25%	0.25%	< 1	N.A.	0.25%	0.25%	0.25%	0.25%		
-	5	< 1	N.A.	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.		
	6	< 1	N.A.	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.		
3 m	2	1.30	N.A.	3.50%	3.00%	0.50%	0.50%	2.49	N.A.	2.00%	2.00%	0.50%	0.50%		
	3	< 1	N.A.	1.00%	1.00%	0.25%	0.25%	< 1	N.A.	0.50%	0.50%	0.25%	0.25%		
	4	< 1	N.A.	0.25%	0.25%	0.25%	0.25%	< 1	N.A.	0.25%	0.25%	0.25%	0.25%		
	5	< 1	N.A.	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.		
	6	< 1	N.A.	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.		
	2	2.00	N.A.	N.A.	4.00%	1.00%	0.50%	4.08	N.A.	N.A.	2.00%	1.00%	0.50%		
	3	< 1	N.A.	N.A.	1.00%	0.50%	0.25%	<1	N.A.	N.A.	0.50%	0.25%	0.25%		
5 m	4	< 1	N.A.	N.A.	0.25%	0.25%	0.25%	< 1	N.A.	N.A.	0.25%	0.25%	0.25%		
	5	< 1	N.A.	N.A.	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.		
	6	< 1	N.A.	N.A.	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.		
	2	3.28	N.A.	N.A.	N.A.	1.50%	0.50%	6.45	N.A.	N.A.	N.A.	1.00%	0.50%		
	3	< 1	N.A.	N.A.	N.A.	0.50%	0.25%	1.37	N.A.	N.A.	N.A.	0.25%	0.25%		
8 m	4	< 1	N.A.	N.A.	N.A.	0.25%	0.25%	< 1	N.A.	N.A.	N.A.	0.25%	0.25%		
	5	< 1	N.A.	N.A.	N.A.	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.		
	6	< 1	N.A.	N.A.	N.A.	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.		
_	2	4.08	N.A.	N.A.	N.A.	2.00%	0.50%	8.16	N.A.	N.A.	N.A.	1.00%	0.50%		
	3	< 1	N.A.	N.A.	N.A.	0.50%	0.50%	1.70	N.A.	N.A.	N.A.	0.25%	0.25%		
10 u	4	< 1	N.A.	N.A.	N.A.	0.25%	0.25%	< 1	N.A.	N.A.	N.A.	0.25%	0.25%		
τ-	5	< 1	N.A.	N.A.	N.A.	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.		
	6	< 1	N.A.	N.A.	N.A.	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.		

Table 2.21 – TPE (Case 3)

Case 4 – TPE % of the Span with Calibration in Rangeability (10:1)

Process Temperature: Ambient Temperature: 40 °C \pm 0 °C $\rightarrow \Delta tp = +$ 15°C 25 °C \pm 0 °C $\rightarrow \Delta ta = 0$ °C

				LD30X	M (2 to 6)		LD30XD (2 to 4)						
Capillary	Range			1 Seal	SR301T		2 Seals SR301T(equal)						
		Tr (s)	1"	1.1/2"	2"	3"	4"	Tr (s)	1"	1.1/2"	2"	3"	4"
0.5 m	2	< 1	2.50%	1.00%	1.00%	0.50%	0.50%	< 1	1.50%	0.50%	0.50%	0.50%	0.25%
	3	< 1	0.50%	0.25%	0.25%	0.25%	0.25%	< 1	0.50%	0.25%	0.25%	0.25%	0.25%
	4	< 1	0.25%	0.25%	0.25%	0.25%	0.25%	< 1	0.25%	0.25%	0.25%	0.25%	0.25%
	5	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	2	1.15	2.50%	1.00%	1.00%	0.50%	0.50%	2.20	1.50%	0.50%	0.50%	0.50%	0.25%
-	3	< 1	0.50%	0.25%	0.25%	0.25%	0.25%	< 1	0.50%	0.25%	0.25%	0.25%	0.25%
5.	4	<1	0.25%	0.25%	0.25%	0.25%	0.25%	< 1	0.25%	0.25%	0.25%	0.25%	0.25%
-	5	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	<1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
3 m	2	2.20	2.50%	1.00%	1.00%	0.50%	0.50%	4.30	1.50%	0.50%	0.50%	0.50%	0.25%
	3	< 1	0.50%	0.25%	0.25%	0.25%	0.25%	< 1	0.50%	0.25%	0.25%	0.25%	0.25%
	4	<1	0.25%	0.25%	0.25%	0.25%	0.25%	< 1	0.25%	0.25%	0.25%	0.25%	0.25%
	5	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	<1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	2	3.60	2.50%	1.00%	1.00%	0.50%	0.50%	7.10	1.50%	0.50%	0.50%	0.50%	0.25%
	3	< 1	0.50%	0.25%	0.25%	0.25%	0.25%	1.50	0.50%	0.25%	0.25%	0.25%	0.25%
2 J	4	<1	0.25%	0.25%	0.25%	0.25%	0.25%	< 1	0.25%	0.25%	0.25%	0.25%	0.25%
	5	<1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	<1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	2	5.70	2.50%	1.00%	1.00%	0.50%	0.50%	11.27	1.50%	0.50%	0.50%	0.50%	0.25%
	3	1.22	0.50%	0.25%	0.25%	0.25%	0.25%	2.35	0.50%	0.25%	0.25%	0.25%	0.25%
8 8	4	< 1	0.25%	0.25%	0.25%	0.25%	0.25%	< 1	0.25%	0.25%	0.25%	0.25%	0.25%
	5	<1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	2	7.10	2.50%	1.00%	1.00%	0.50%	0.50%	14.10	1.50%	0.50%	0.50%	0.50%	0.25%
_	3	1.50	0.50%	0.25%	0.25%	0.25%	0.25%	2.90	0.50%	0.25%	0.25%	0.25%	0.25%
u 0	4	< 1	0.25%	0.25%	0.25%	0.25%	0.25%	< 1	0.25%	0.25%	0.25%	0.25%	0.25%
-	5	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.

Table 2.22 – TPE (Case 4)

Case 5 – TPE % of the Span with Calibration in Rangeability (10:1)

Process Temperature: Ambient Temperature: $\begin{array}{l} 100 \ ^{\mathrm{o}}\mathrm{C} \pm 0 \ ^{\mathrm{o}}\mathrm{C} \ -> \Delta tp = + \ 75^{\mathrm{o}}\mathrm{C} \\ 40 \ ^{\mathrm{o}}\mathrm{C} \pm 0 \ ^{\mathrm{o}}\mathrm{C} \ -> \Delta ta = + \ 15^{\mathrm{o}}\mathrm{C} \end{array}$

	Range	LD30XM (2 to 6) 1 Seal SR301T							LD30XD (2 to 4) 2 Seals SR301T(equal)						
Capillary															
		Tr (s)	1"	1.1/2"	2"	3"	4"	Tr (s)	1"	1.1/2"	2"	3"	4"		
	2	< 1	N.A.	N.A.	N.A.	3.00%	2.00%	< 1	N.A.	N.A.	N.A.	2.00%	1.50%		
0.5 m	3	< 1	N.A.	2.00%	1.50%	1.00%	0.50%	< 1	N.A.	1.50%	1.00%	0.50%	0.50%		
	4	< 1	1.00%	0.50%	0.50%	0.25%	0.25%	< 1	0.50%	0.25%	0.25%	0.25%	0.25%		
	5	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.		
	6	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.		
	2	< 1	N.A.	N.A.	N.A.	3.50%	2.50%	1.70	N.A.	N.A.	N.A.	2.00%	1.50%		
_	3	< 1	N.A.	2.50%	2.00%	1.00%	0.50%	< 1	N.A.	1.50%	1.00%	0.50%	0.50%		
.5 n	4	< 1	1.00%	0.50%	0.50%	0.25%	0.25%	< 1	1.00%	0.50%	0.25%	0.25%	0.25%		
-	5	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.		
	6	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.		
E c	2	1.70	N.A.	N.A.	N.A.	4.00%	2.50%	3.28	N.A.	N.A.	N.A.	2.50%	1.50%		
	3	< 1	N.A.	3.00%	2.50%	1.00%	1.00%	< 1	N.A.	2.00%	1.50%	0.50%	0.50%		
	4	< 1	1.50%	0.50%	0.50%	0.25%	0.25%	< 1	1.00%	0.50%	0.50%	0.25%	0.25%		
	5	< 1	0.50%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.		
	6	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.		
	2	2.75	N.A.	N.A.	N.A.	5.00%	3.00%	5.40	N.A.	N.A.	N.A.	N.A.	1.50%		
	3	<1	N.A.	4.00%	3.50%	1.00%	1.00%	1.16	N.A.	2.50%	2.00%	1.00%	0.50%		
2 3	4	< 1	N.A.	0.50%	0.50%	0.25%	0.25%	< 1	N.A.	0.50%	0.50%	0.25%	0.25%		
	5	< 1	N.A.	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.		
	6	<1	N.A.	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.		
	2	4.35	N.A.	N.A.	N.A.	6.00%	3.00%	8.57	N.A.	N.A.	N.A.	N.A.	2.00%		
8 8	3	< 1	N.A.	6.00%	4.50%	1.50%	1.00%	1.80	N.A.	3.50%	2.50%	1.00%	0.50%		
	4	< 1	N.A.	1.00%	0.50%	0.25%	0.25%	< 1	N.A.	0.50%	0.50%	0.25%	0.25%		
	5	< 1	N.A.	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.		
	6	< 1	N.A.	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.		
	2	5.40	N.A.	N.A.	N.A.	7.00%	3.50%	10.68	N.A.	N.A.	N.A.	N.A.	2.00%		
_	3	1.16	N.A.	7.00%	5.00%	1.50%	1.00%	2.22	N.A.	4.00%	3.00%	1.00%	0.50%		
10 1	4	< 1	N.A.	1.00%	1.00%	0.25%	0.25%	< 1	N.A.	0.50%	0.50%	0.25%	0.25%		
т-	5	< 1	N.A.	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.		
	6	< 1	N.A.	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.		

Table 2.23 – TPE (Case 5)
Case 6 – TPE % of the Span with Calibration in Rangeability (10:1)

Process Temperature: Ambient Temperature: $\begin{array}{l} 170 \ ^{\mathrm{o}}\mathrm{C} \pm 0 \ ^{\mathrm{o}}\mathrm{C} \ -> \Delta tp = + \ 145^{\mathrm{o}}\mathrm{C} \\ 60 \ ^{\mathrm{o}}\mathrm{C} \pm 0 \ ^{\mathrm{o}}\mathrm{C} \ -> \Delta ta = + \ 35^{\mathrm{o}}\mathrm{C} \end{array}$

		LD30XM (2 to 6)					LD30XD (2 to 4)						
Capillary	Range		1 Seal SR301T							2 Seals S	R301T(e	qual)	
		Tr (s)	1"	1.1/2"	2"	3"	4"	Tr (s)	1"	1.1/2"	2"	3"	4"
	2	< 1	N.A.	N.A.	N.A.	N.A.	4.00%	< 1	N.A.	N.A.	N.A.	4.00%	2.50%
-	3	< 1	N.A.	4.00%	3.00%	1.50%	1.00%	< 1	N.A.	2.50%	2.00%	1.00%	1.00%
.5 n	4	< 1	N.A.	1.00%	1.00%	0.50%	0.50%	< 1	N.A.	1.00%	1.00%	0.50%	0.50%
0	5	< 1	N.A.	0.50%	0.50%	0.50%	0.50%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	N.A.	0.50%	0.50%	0.50%	0.50%		N.A.	N.A.	N.A.	N.A.	N.A.
	2	< 1	N.A.	N.A.	N.A.	N.A.	4.50%	1.29	N.A.	N.A.	N.A.	4.50%	2.50%
_	3	< 1	N.A.	5.00%	4.00%	1.50%	1.00%	< 1	N.A.	3.00%	2.50%	1.00%	1.00%
5 n	4	< 1	N.A.	1.00%	1.00%	1.00%	0.50%	< 1	N.A.	1.00%	1.00%	0.50%	0.50%
-	5	< 1	N.A.	0.50%	0.50%	0.50%	0.50%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	N.A.	0.50%	0.50%	0.50%	0.50%		N.A.	N.A.	N.A.	N.A.	N.A.
	2	1.30	N.A.	N.A.	N.A.	N.A.	5.00%	2.49	N.A.	N.A.	N.A.	5.00%	3.00%
	3	< 1	N.A.	7.00%	5.50%	2.00%	1.00%	< 1	N.A.	4.00%	3.00%	1.50%	1.00%
33	4	< 1	N.A.	1.00%	1.00%	1.00%	0.50%	< 1	N.A.	1.00%	1.00%	0.50%	0.50%
	5	< 1	N.A.	0.50%	0.50%	0.50%	0.50%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	N.A.	0.50%	0.50%	0.50%	0.50%		N.A.	N.A.	N.A.	N.A.	N.A.
	2	2.00	N.A.	N.A.	N.A.	N.A.	5.50%	4.08	N.A.	N.A.	N.A.	6.00%	3.00%
E	3	< 1	N.A.	N.A.	7.00%	2.50%	1.50%	< 1	N.A.	N.A.	5.00%	1.50%	1.00%
	4	< 1	N.A.	N.A.	1.00%	1.00%	0.50%	<1	N.A.	N.A.	1.00%	0.50%	0.50%
	5	< 1	N.A.	N.A.	0.50%	0.50%	0.50%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	N.A.	N.A.	0.50%	0.50%	0.50%		N.A.	N.A.	N.A.	N.A.	N.A.
	2	3.28	N.A.	N.A.	N.A.	N.A.	6.00%	6.45	N.A.	N.A.	N.A.	8.00%	3.50%
	3	< 1	N.A.	N.A.	N.A.	3.00%	1.50%	1.37	N.A.	N.A.	N.A.	2.00%	1.00%
8 M	4	<1	N.A.	N.A.	N.A.	1.00%	0.50%	<1	N.A.	N.A.	N.A.	0.50%	0.50%
	5	<1	N.A.	N.A.	N.A.	0.50%	0.50%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	N.A.	N.A.	N.A.	0.50%	0.50%		N.A.	N.A.	N.A.	N.A.	N.A.
	2	4.08	N.A.	N.A.	N.A.	N.A.	7.00%	8.16	N.A.	N.A.	N.A.	N.A.	4.00%
	3	< 1	N.A.	N.A.	N.A.	3.50%	1.50%	1.70	N.A.	N.A.	N.A.	2.00%	1.00%
0 1	4	< 1	N.A.	N.A.	N.A.	1.00%	0.50%	< 1	N.A.	N.A.	N.A.	0.50%	0.50%
	5	< 1	N.A.	N.A.	N.A.	0.50%	0.50%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	N.A.	N.A.	N.A.	0.50%	0.50%		N.A.	N.A.	N.A.	N.A.	N.A.

Table 2.24 – TPE (Case 6)

OPERATION

Operation of the Remote Seal Sensor

In the remote seal transmitter, the remote insulator diaphragm plus transmission capillary set is connected to the transmitter chamber.

The internal spaces of the capillary pipe diaphragm and the sensor chamber are filled with the application proper fluid, according to the pressure and the of the process operation temperature.

The process pressure displaces the insulator diaphragm of the seal causing the filling fluid to transmit through the capillary the pressure to the sensor, generating a difference of capacitance between the sensor diaphragm and each plate on the capacitive cell. This differential capacitance is electrically converted into a signal of 4 to 20 mA transmitted by the two-wire system.

Operation Start Up

To start operating the remote seal transmitter see the Transmitter Operation and Maintenance Instructions Manual.

The transmitter is supplied in compliance with the data list and calibrated according to the range requested by the client.

Should you need to change the range (see the Transmitter Operation Manual) make new calculations and adjust the transmitter in accordance with these calculations.

The output signal adjustment on zero, in accordance with the "Test and Output Signal Adjustment" item is available on any transmitter, except to the absolute pressure transmitter.

Calibration

Output Signal Test and Setting

While testing and adjusting the transmitter, the ambient temperature should not change.

It is possible to test and to adjust the output signal without disassembling the remote seal for a pressure value (Px) known, if this remains constant.

Adjust the corresponding pressure at the beginning of the range for value (Pi), and similarly adjust the pressure on the end of the range (Ps). See Figures 3.1 or to 3.2 according to the type of curve (ascendant or descendant).

To determine the "lx" current value when the current curve in terms of the ascendant (Figure 3.1) or descendant pressure (Figure 3.2), use the equation 3.1 below.

$$Ix = 4 + 16 \cdot \frac{Px - Pi}{Ps - Pi} \tag{3.1}$$

Figure 3.1 – Ascendant Curve of the Ix Output Signal in Terms of the Pressure

Figure 3. 2 - Descendant Curve of the Ix Output Signal in Terms of the Pressure (Reverse Mode)

If the seal needs a final adjustment, bring it to a laboratory and do the following:

- Put the pressure generator with adapter to the leaking test, in the side (H) of the seal and keep the low side (L) in the same height as the high side, leaving it opens to the atmosphere. If the beginning of the range is below the atmospheric pressure, simulate the depression setting an equivalent pressure value in the low side of the seal (this requires special equipments for vacuum calibration). In this case the high side will be submitted to the atmospheric pressure.
- · Always maintain the two seals on the same height.
- Compensate the hydrostatic pressure of the capillary filling fluid in accordance with the seal assembling. See the calculation of the Pf pressure according to the "Influence of Filling Fluids on the Capillaries" item.

Range Beginning Change

This change is possible only for the transmitters installed on field when there is an input signal that corresponds to the range start with due accuracy. Otherwise, disassemble the transmitter, remove it to the laboratory and make the change in accordance with the "Span Change" item.

Make the adjustments in accordance with the transmitter operation manual.

Span Change on Differential and Flow Pressure Transmitters

In general, this work can be done only at the laboratory and with the two seals on the same height.

- Apply on the (H) side the pressure you want to calibrate.
- Make the adjustments according to the transmitter operation manual.

Level Transmitter Span Change

Proceed as for differential and flow transmitters. The span is given in Table 3.1.

OUTPUT	ZERO	SPAN	
Ascendant	Рі = Ні . бр	Ps = Hs . δp	
Descendant	Рі = Hs . δр	Ps = Hi . δp	

Table 3.1 – Ascendant and Descendant Curves Span

Where:

Hs = Maximum level measured

Hi = Minimum level measured

 δp = Density of the process fluid

Capillaries Filling Fluid Effect

The effect of the hydrostatic pressure of the capillary filling fluid must be compensated during measuring (see item Calibration).

The hydrostatic pressure is given by:

Pf = Hv . δe

(3.2)

Where:

 $\begin{array}{l} \mbox{Pf} = \mbox{Hydrostatic Pressure} \\ \mbox{Hv} = \mbox{Level Difference between the two seals} \\ \begin{aligned} \delta e = \mbox{Density of the Filling Fluid (see Table 2.6)} \end{array}$

The Hv distance between the two seals is limited by the capillary length and the maximum H1 difference allowed between the transmitter and the seal. See the "Mounting of Transmitter with Remote Seal" – Chapter 1.

MAINTENANCE

Before working with transmitter verifies the characteristics of the fill fluid in the piping and observes all safety standards.

Remote Seal Cleaning

The interval between the cleaning of the seals depends on the service conditions and the chemical and physical characteristics of the materials. This period of time depends on the concentration of dirt incrustations in the seal and in the tap that connects the seal to the main piping or tank.

When it is necessary to clean the seal and this piping, be careful not to damage it, because it is very delicate. If there are incrustations it can cause damages when disassembling the diaphragm, such as hardened bitumen between the diaphragm and the flange of the tank. To prevent this, this incrustation must be eliminated through the heating of this section of the piping or by using solvent before disassembling. Use a paintbrush to remove it.

Disassembling and Packing the Remote Seal Transmitter

Instructions:

- a) Disable the transmitter;
- b) Switch off the power supply;
- c) Remove the counterflange seal;
- d) Clean the seal carefully because the diaphragm is very delicate;
- e) Set the protection cover over the diaphragm and fix it with adhesive tape;
- f) Release the transmitter;
- g) Roll the capillary without twisting it, leaving a 150mm or greater radius;
- h) Do not loose the sealed bolts;

i) The transmitter package must protect it from mechanical shocks and must be like the original (See Figure 4.1) when returning materials.

Figure 4.1- Remote Seal Package

Component Replacement

The seal, the capillary and the cell form an only set in which is sealed the fill fluid. For eventual replacements the set must be considered.

Return of Materials

If it becomes necessary to return the transmitter and/or configurator to Smar, simply contact our office, informing the defective instrument's serial number, and return it to our factory. In order to speed up analysis and solution of the problem, the defective item should be returned with the Service Request Form (SRF – Appendix A) properly filled with a description of the failure observed and with as much details as possible. Other information concerning to the instrument operation, such as service and process conditions, is also helpful.

Remote Seal Spare Parts

SPARE PARTS: LD300S / SR301S (SANITARY)									
				RINGS					
	CONNECTIO	NS	BUNA N	VITON	TEFLON	ADAPTOR	TRI-CLAMP		
1"	WITH EXTENSION	DN-25	400-0460	400-0461	400-0462	400-0496	N.D.		
WITHOUT	тс	400-0470	400-0471	400-0472	400-0500	400-0491			
	WITHOUT	TC [HP]	100-0170	100-0071	100-0172	400-0300	400-0492		
1.1/2"	EXTENSION	SMS	400-0467	400-0468	400-0469	400-0499	N.D.		
		DN40	400-0464	400-0465	400-0466	400-0498	N.D.		
	WITH EXTENSION	DN40	201-0125	201-130	400-0463	400-0497	N.D.		
		TC	400-0482	400-0483	400-0484	201-0150	201-0155		
		TC [HP]	400-0402	400-0405	400-0404	201-0130	400-0493		
	WITHOUT	SMS	400-0473	400-0474	400-0475	201-0145	N.D.		
	EXTENSION	RJT	400-0476	400-0477	400-0478	201-0140	N.D.		
		IDF	400-0479	400-0480	400-0481	201-0135	N.D.		
2"		DN50	400-0876	400-0877	400-0878	400-0872	N.D.		
2	WITH EXTENSION	тс		201-0130		400 0262	201-0155		
		TC [HP]	201-0125			400-02.02	400-0493		
		SMS			400-0463	400-0261	N.D.		
		RJT				400-0260	N.D.		
		IDF				400-0259	N.D.		
		DN50				400-0873	N.D.		
		тс		400-0489	400-0490	400-0501	400-0494		
	WITHOUT EXTENSION	TC [HP]	[HP]		100-0170	400-0301	400-0495		
		DN80	400-0879	400-0880	400-0881	400-0874	N.D.		
		TC				400 0326	400-0494		
3"		TC [HP]				400-0326	400-0495		
	WITH	SMS	400 0495	400 0496	400 0497	400-0329	N.D.		
	EXTENSION	RJT	400-0400	400-0400	400-0487	400-0328	N.D.		
		IDF				400-0327	N.D.		
		DN80				400-0875	N.D.		

Table 4.1 – Spare Parts LD300S / SR301S

Figure 4.2 – Exploded View of LD300S with Extension

Figure 4.3 – Exploded View of LD300S without Extension

Figure 4.4 – Exploded View of SR301S with Extension

Figure 4.5 – Exploded View of SR301S without Extension

Maintenance

SPARE PARTS: LD300L / SR301T / SR301P							
GN	00010	NODM		GASKET		DRAIN VALVE	
ØN	GROUP	NORM	TEFLON	COPPER	GRAFOIL	STAINLESS STEEL 316L	
1"	ALL		400-0425	400-0426	400-0427		
1.1/2"	ALL	16.5	400-0428	400-0429	400-0430		
2"	ALL	ANSI-B1	400-0431	400-0432	400-0433		
3"	ALL		400-0434	400-0435	400-0436		
4"	ALL		400-0437	400-0438	400-0439	400 0702	
DN25	ALL	ы	400-0440	400-0441	400-0442	400-0792	
DN40	ALL	/25(400-0443	400-0444	400-0445		
DN50	ALL	92-1	400-0446	400-0447	400-0448		
DN80	ALL	N 10	400-0449	400-0450	400-0451		
DN100	ALL	Εŀ	400-0452	400-0453	400-0454		

Table 4.2 – LD300L / SR301T / SR301P Spare Parts

Figure 4.6 – Exploded View - Mounting with Gasket and Drain Valve

RTJ SPARE PARTS: LD300L (without Extension) / SR301T / SR301E							
ØN	GPOUP	NORM	PING	METALLIC RING	DRAIN VALVE		
ØN	GROOF	NORM	KING	STAINLESS STEEL 316L	STAINLESS STEEL 316L		
	150		R15	400-0887			
	300		R16	400-0888			
1"	600		R16	400-0888			
	1500		R16	400-0888	-		
	2500		R18	400-0889			
	150		R19	400-0890			
	300 600		R20	400-0891			
1.1/2"			R20	400-0891			
	1500		R20	400-0891	-		
	2500	ANSI B 16.20 RTJ	R23	400-0893	400.0700		
	150		R22	400-0892	400-0792		
	300		R23	400-0893			
2"	600		R23	400-0893			
	1500		R24	400-0894			
	2500		R26	400-0895			
	150		R29	400-0896			
3"	300 600		R31	400-0897			
		600		400-0897			
	150		R36	400-0900			
4"	300		R37	400-0901			
	600		R37	400-0901			

Table 4.3 – LD300L (without) / SR301T / SR301E Spare Parts

Figure 4.7 – Exploded View of LD300L (without extension) SR301T / SR301E

SR301R SPARE PARTS						
NPT THREAD	SEA	DRAIN VALVE				
	TEFLON	COPPER	GRAFOIL	STAINLESS STEEL 316L		
1/4"						
3/8"						
1/2"	201 0120	400 0459	400.0450	400.0702		
3/4"	201-0120	400-0458	400-0459	400-0792		
1"						
1.1/2"						

Table 4.4 – SR301R Spare Parts

	INSULATOR KIT SPARE PARTS: LD300L / SR301T / SR301E					
GN		NODM	MODELS WITHOUT EXTENSION	MODELS WITH EXTENSION		
ØN	GROUP	NORIVI	LD300L / SR301T	LD300L / SR301E		
	150		400-0861-11X01	400-0861-11X11		
1"	300		400-0861-12X01	400-0861-12X11		
	600		400-0861-13X01	400-0861-13X11		
	150		400-0861-21X01	400-0861-21X11		
1.1/2"	300		400-0861-22X01	400-0861-22X11		
	600		400-0861-23X01	400-0861-23X11		
	150	16.5	400-0861-31X01	400-0861-31X11		
2"	300	B	400-0861-32X01	400-0861-32X11		
	600	ANS	400-0861-33X01	400-0861-33X11		
	150		400-0861-41X01	400-0861-41X11		
3"	300		400-0861-42X01	400-0861-42X11		
	600		400-0861-43X01	400-0861-43X11		
	150		400-0861-51X01	400-0861-51X11		
4"	300		400-0861-52X01	400-0861-52X11		
	600		400-0861-53X01	400-0861-53X11		
DN25	PN10/40		400-0861-64X01	400-0861-64X11		
DN40	PN10/40	12-1	400-0861-74X01	400-0861-74X11		
DN50	PN10/40	1109	400-0861-84X01	400-0861-84X11		
DN80	PN10/40		400-0861-94X01	400-0861-94X11		
DN100	PN16		400-0861-A8X01	400-0861-A8X11		
BITIO	PN40		400-0861-A4X01	400-0861-A4X11		
40A	20K		400-0861-B6X01	400-0861-B6X11		
50A	10K	2	400-0861-C5X01	400-0861-C5X11		
00/1	40K	220	400-0861-C7X01	400-0861-C7X11		
804	10K	IS B	400-0861-D5X01	400-0861-D5X11		
007	20K	7	400-0861-D6X01	400-0861-D6X11		
100A	10K		400-0861-E5X01	400-0861-E5X11		

OBS.: X – Option for Flange Face Type. Where: 0 – RF Flange Face (RF Face Flange) / 1 – FF Flange Face (Flat Face). This Kit is composed by: Nonconductive Sealing Gasket, Isolating Bolt Bush, Nonconductive Washer and Compression Washer.

Figure 4.9 – Electric Insulator Kit

	INSULATOR KIT SPARE PARTS: SR301P / SR301Q						
ØN		NOPM	MODEL WITHOUT EXTENSION	MODEL WITH EXTENSION			
	GROOP	NORW	SR301P	SR301Q			
1.1/2"	ALL	S	400-1068-101	400-1068-111			
2"	ALL	3 16	400-1068-201	400-1068-211			
3"	ALL		400-1068-301	400-1068-311			
4"	ALL	A	400-1068-401	400-1068-411			
DN40	ALL	2-1	400-1068-501	400-1068-511			
DN50	ALL	109	400-1068-601	400-1068-611			
DN80	ALL		400-1068-701	400-1068-711			
DN100	ALL		400-1068-801	400-1068-811			
40A	20K		400-1068-901	400-1068-911			
504	10K	5	400-1068-A01	400-1068-A11			
30A	40K	220	400-1068-A01	400-1068-A11			
804	10K	S B S	400-1068-B01	400-1068-B11			
004	20K	- -	400-1068-B01	400-1068-B11			
100A	10K		400-1068-C01	400-1068-C11			

OBS.: This kit is composed by two nonconductive sealing gaskets.

Figure 4.10 – SR301P and SR301Q Electric Insulator Kit

EXAMPLES

NOTE

For the examples on this Chapter, consider the calibrated seal at temperature of 25°C.

Example 1

Considering a Two-Seal Transmitter.

A – TRANSMITTER DATA	RESPONSE
1. Type of Transmitter (Absolute, Gauge, Differential)	Differential
2. Range Superior Value / (V.sup.) (mmH2O @ 4 °C)	2400
3. Range Inferior Value / (V. inf.) (mmH2O @ 4 °C)	-1000
4. Transmitter Calibration (mmH2O @ 4 °C)	3400
5. Transmitter Range (2,3,4,5)	2
6. Diaphragm Material/Fill Oil	316 SST/Sillicone
7. Maximum Ambient Temperature T Max. (°C)	60
8. Minimum Ambient Temperature T Min. (°C)	-15
9. Static Pressure Variation (Bar)	3
10. Pressure Transmitter Error to T Max. (Calibration percent)	0.175
11. Pressure Transmitter Error to T Min. (Calibration percent)	0.195
12. Transmitter Accuracy (Transmitter Calibration percent)	0.075
13. Stability/Time (Transmitter Calibration percent / months)	0.225 / 60
14. Transmitter Response Time (seconds)	0.1

Table 5.1 – Transmitter Data (Example 1)

B - SEAL/LEVEL DATA	RESPONSE
1. Type of Connection (One Seal, Two Seals, One Level, Level/Seal)	Two Seals
2. Capillary Filling Fluid (Table 2.4)	Dc 200
3. Geometric Symmetry (Symmetric, Assymetric)	Assymetric
4. Thermic Symmetry (Symmetric, Assymetric)	Assymetric
5. Diaphragm Material (Steel, Hasteloy, Monel, Titanium, Tantalum and other)	Steel
6. Diaphragm Thickness	0.05 mm
B.1 – H Side	
1. H Side Model (SR301T, SR301E, SR301R, SR301S, SR301P, SR301Q, LD30XL, LD30XS)	SR301E
2. Side H Diameter Seal (N Inch, DN (mm))	3 Pol.
3. H Side Diaphragm Family (Table 2.5)	7
4. Diaphragm Reservoir Volume – Vrdf (cm3) (Table 2.6)	105.6E-2
5. H Side Capillary Length (meters)	2.5
6. H Side Extension Length (meters)	0.10
B.2 – L Side	
1. L Side Model (SR301T, SR301E, SR301R, SR301S, SR301P, SR301Q, LD30XL, LD30XS)	SR301E
2. Side L Diameter Seal (N Inch, DN (mm))	3 Pol.
3. L Side Diaphragm Family (Table 2.5)	7
4. Diaphragm Reservoir Volume – Vrdf (cm3) (Table 2.6)	105.6E-2
5. L Side Capillary Length (meters, N.A Non Applicable)	4.5
6. L Side Extension Length (meters)	0.10

Table 5.2 – Level/Seal Data (Example 1)

Table 5.3 – Assembly Scheme (Example 1)

D – PROCESS DATA	RESPONSE
D.1 – H Side	
1. T seal max H – Maximum Temperature in the H Side Seal (°C)	70
2. T seal min H – Minimum Temperature in the H Side Seal (°C)	60
3. T cap max H – Maximum Temperature in the H Side Capillary (°C)	60
4. T cap min H – Minimum Temperature in the H Side Capillary (°C)	-15
5. T body max H – Maximum Temperature in the H Side Body (°C)	60
6. T body min H – Minimum Temperature in the H Side Body (°C)	-15
D.2 – L Side	· · · · · · · · · · · · · · · · · · ·
1. T seal max L – Maximum Temperature in the Side Seal (°C)	120
2. T seal min L – Minimum Temperature in the L Side Seal (°C)	80
3. T cap max L – Maximum Temperature in the L Side Capillary (°C)	35
4. T cap min L – Minimum Temperature in the L Side Capillary (°C)	-5
5. T body max L – Maximum Temperature in the L Side Body (°C)	60
6. T body min L – Minimum Temperature in the L Side Body (°C)	-15
D.3 – Pressure	
1. Maximum Process Pressure (bar abs.)	5
2. Minimum Process Pressure (bar abs.)	2

Table 5.4 – Process Data (Example 1)

E – USER EXPECTANCY	RESPONSE
1. Global Error Requested by User (% Transmitter Calibration)	0.5%
2. Response Time Requested by the Mesh Control (seconds)	10

Table 5.5 – User Expectancy (Example 1)

Error Calculation by Temperature

Have:

1º – "Upper Variation of Temperature"

Seal H Side

$$\Delta T_{seal} = (70 - 25) = 45 \,^{\circ}C$$
$$\Delta T_{cap} = (60 - 25) = 35^{\circ}C$$
$$\Delta T_{body} = (60 - 25) = 35 \,^{\circ}C$$

Using the formulas on Chapter 2, item 2 we have:

$$\Delta V_{rdf} = 0.0508 \ cm^3$$
$$\Delta V_{ext} = 0.0049 \ cm^3$$
$$\Delta V_{cap} = 0.0843 \ cm^3$$
$$\Delta V_{body} = 0.0432 \ cm^3$$
$$V_{total} = \Delta V_{total} = 0.1823 \ cm^3$$

Entering this value in Figure 2.6, we have:

$$E_{H} = +25.9080 \, mmH_{2}O$$

	NOTE		_
If the diaphragm is equal to 0.1mm, enter mmH_2O .	with this value	e V _{total} on Figure 2	2.8 $E_{H} = + 71.8080$

Seal L Side

$$\Delta T_{seal} = (120 - 25) = 95 \,^{\circ}C$$
$$\Delta T_{cap} = (35 - 25) = 10^{\circ}C$$
$$\Delta T_{body} = (60 - 25) = 35 \,^{\circ}C$$

Using the formulas on Chapter 2, item 2 have:

$$\Delta V_{rdf} = 0.1073 \ cm^3$$
$$\Delta V_{ext} = 0.0104 \ cm^3$$
$$\Delta V_{cap} = 0.0433 \ cm^3$$
$$\Delta V_{body} = 0.0432 \ cm^3$$
$$V_{total} = \Delta V_{total} = 0.2042 \ cm^3$$

Enter this value on Figure 2.6, have:

Error = Error (Graphic). Fm

 $E_L = +28.9000 \, mmH_2O$

NOTE If the diaphragm is equal to 0.1mm enter this value V_{total} on Figure 2.8, $E_L = + 80.2060 \text{ mmH}_2\text{O}$.

2º – "Temperature Lower Variation"

Seal H Side

$$\Delta T_{seal} = (60 - 25) = 35 \,^{\circ}C$$
$$\Delta T_{cap} = (-15 - 25) = -40 \,^{\circ}C$$
$$\Delta T_{body} = (-15 - 25) = -40 \,^{\circ}C$$

Using the formulas on Chapter 2, item 2 we have:

$$\begin{split} \Delta V_{rdf} &= 0.0395 \ cm^3 \\ \Delta V_{ext} &= 0.0038 \ cm^3 \\ \Delta V_{cap} &= -0.0963 \ cm^3 \\ \Delta V_{body} &= -0.0494 \ cm^3 \\ V_{total} &= \Delta V_{total} = -0.1024 \ cm^3 \end{split}$$

Enter this value in the Figure 2.6, we have:

Error = Error (Graphic). Fm

$$E_{H} = -14.4160 \, mmH_{2}O$$

Enter this value in the Figure 2.8 it is not possible to find the Value for negative Error because there is a contraction in the diaphragm.

ATTENTION

The logarithmic graphs do not indicate negative errors. To resolve this problem and considering that the error is symmetrical, the V_{total} must be calculated, inverting the signals of the seal volume variation, of the extension and capillary and to add the negative signal to error: From Equations 2.8 and 2.9:

$$V_{Total} = \Delta V_{rdf} + \Delta V_{ext} + \Delta V_{cap} + \Delta V_{body}$$
$$V_{total} = (-0.0395) + (-0.0038) + (+0.0963) + (+0.0494) = 0.1024 \text{ cm}^3$$

To enter this value in the Figure 2.6, obtain the Symmetric Error $E_{H} = +14.4160 \text{ } mmH_{2}O$

Inverting the signal: $E_H = -14.4160 \ mmH_2O$

If the lamina equal 0.1mm enter with this value V_{total} in the Figure 2.8

 $E_{H} = +39.8820 \, mmH_{2}O$.

Inverting the signal: $E_H = -39.8820 \ mmH_2O$

Seal L Side

$$\Delta T_{seal} = (80 - 25) = 55 \,^{\circ}C$$
$$\Delta T_{cap} = (-5 - 25) = -30^{\circ}C$$
$$\Delta T_{body} = (-15 - 25) = -40 \,^{\circ}C$$

Using the formulas from Chapter 2, item 2:

$$\Delta V_{rdf} = 0.0620 \ cm^3$$
$$\Delta V_{ext} = 0.0060 \ cm^3$$
$$\Delta V_{cap} = -0.1300 \ cm^3$$
$$\Delta V_{body} = -0.0494 \ cm^3$$
$$V_{total} = \Delta V_{total} = -0.1113 \ cm^3$$

Enter this value on Figure 2.6, have:

 $E_L = -15.7080 \ mmH_2O$

Entering this value on Figure 2.8 it is not possible to find the Value for negative Error because there is a contraction in the diaphragm.

ATTENTION

The logarithmic graphs do not show negative errors. To solve this problem and considering that the error is symmetrical, the V_{total} must be calculated, by inverting the seal volume, the extension and the capillary variation signals and by adding the negative signal to the error, namely From Equations 2.8 and 2.9:

 $V_{Total} = \Delta V_{rdf} + \Delta V_{ext} + \Delta V_{cap} + \Delta V_{body}$

$$V_{total} = (-0.062) + (-0.0060) + (+0.1300) + (+0.0494) = 0.1113 cm^{3}$$

By entering this value on Figure 2.6, one has the Symmetric Error $E_L = +15.7080 \text{ } mmH_2O$

Inverting the signal: $E_L = -15.7080 \ mmH_2O$

If the diaphragm is equal to 0.1mm, enter with this value V_{total} on Figure 2.8 $E_L = +43.3840 \ mmH_2O$

Inverting the signal: $E_L = -43.3840 \ mmH_2O$

Calculation of Seal/Level Error

To calculate the Seals Error, verify the cases of symmetry. In this case, there is a Geometric Asymmetry and a Thermal Asymmetry, and therefore the Equation 2.13 on Chapter 2 must be used.

$$Es = \sqrt{(E_H)^2 + (E_L)^2}$$

1º – "Upper Temperature Variation"

$$Es1 = \sqrt{(25.9080)^2 + (28.9000)^2}$$

 $Es1 = 38.8128 \text{ mmH}_2\text{O}$

2º – "Lower Temperature Variation"

$$Es2 = \sqrt{\left(-14.4160\right)^2 + \left(-15.7080\right)^2}$$

 $Es2 = 21.3205 \text{ mmH}_2\text{O}$

Calculation of the Transmitter Accuracy with Seal/Level

NOTE The transmitter accuracy is not significantly altered by the addition of seal/level. However, the measuring error resulting from the combination suffers significant increase due to physical and geometric parameters, in terms of temperature variation.

 $Accuracy = \frac{0.075}{100} \cdot 3400 = 2.55 \text{ mmH}_2\text{O} \qquad (\text{See Transmitter's Manual})$

Calculation of the Global Error of Transmitter Assembling with Seals/Level

From Equation 2.14 the global error of the remote seal must be calculated:

$$E_{T_{pT}\max} = \frac{0.175}{100} \cdot 3400 = 5.9500 \ mmH_2O$$

$$E_{T_{pT}\min} = \frac{0.195}{100} \cdot 3400 = 6.6300 \ mmH_2O$$

$$E_{globalpTMax} = \sqrt{E_s^2 + E_T^2} = \sqrt{38.8128^2 + 5.9500^2}$$

$$E_{globalpTMax} = 39.2662 \, mm H_2 O$$

 $E_{globalpTMax} = 1.155\%$ of the calibrated Span

 $E_{globalpTMin} = \sqrt{E_s^2 + E_T^2} = \sqrt{21.3205^2 + 6.6300^2}$ $E_{globalpTMin} = 22.3276 \, mmH_2O$

 $E_{globalpTMin} = 0.657\%$ of the calibrated Span

The larger global error is:

$$E_{global} = 39.2662 \, mm H_2 O$$

 $E_{global} = 1.155\%$ of the calibrated Span

Calculation of the Response Time

The response time is obtained through the Equation 2.14: $TR_s = TR_{listed} \cdot L$

Considering that the transmitter is range 2 type, the filling fluid is DC200/20.

However, the temperature to be used is closer to the Maximum value, because the temperature will not necessarily be kept on the maximum. So:

Maximum Temperature on the H Side Capillary = 60°C.

Maximum Temperature on the L Side Capillary, 35°C, from the Table 2.9:

 $TR_{listed} H = 0.455 \ s/m$ $TR_{listed} L = 0.698 \ s/m$

Thus:

 $TR H = 0.455 \times 2.5 = 1.1375 \ s$ $TR L = 0.698 \times 4.5 = 3.1410 \ s$

NOTE

Note that the response time between the sides is longer than 0.5 second and therefore this type of assembling is not recommended. It is advisable to reduce this difference.

 $TR_s = TR H + TR L = 4.2785 \text{ sec}$

This response time refers only to the remote seal. To calculate the response time of the remote seal and transmitter set, add the time of both:

 $TR = TR_s + TR_T = 4.2785 + 0.1 = 4.3785$ sec

Checking the Capillary Length

To evaluate the maximum length of the capillary, three conditions on Chapter 2 must be met.

1º - Check if the dilated or contracted volume related to the initial volume of the seal diaphragm is in the Lower and Upper Limits (VCmin and VCmax) according to Equation 2.12.

$$VC_{\min} \leq V_{total} \leq VC_{\max}$$

Maximum Limit of the Transmitter: URL = 50Kpa = 5098.58 mmH₂O.

Thus, the process pressure conditioned to the transmitter URL will be:

$$%VC_{\min} = \frac{MVP}{URL} \times 100$$

MVP=2400 mmH₂O (MVP: The larger value between the V.sup and V.inf)

$$%VC_{\min} = \frac{2400}{5098.58} \times 100 = 47.1 \%$$

Table 2.18 shows the VC_{mim} value. Considering that the assembling was performed with a range 2 transmitter, the value relative to $\% VC_{min}$ is obtained by the linear interpolation between 50% and 40%, whereby:

$$VC_{\min} = 2.76 \cdot (10^{-2} \times cm^3)$$

VC_{max} is obtained on Table 2.10. Considering the # 0.05 mm Inox Steel diaphragm material, the family 7 diaphragm and the process ^oC temperature, one has:

Maximum Temperature in the H Side Seal, 70°C.

Maximum Temperature in the L Side Seal, 120°C, on table 2.10, means:

$$VC_{\max}H = 93.7 \cdot (10^{-2} x \ cm^3)$$
$$VC_{\max}L = 85.9 \cdot (10^{-2} x \ cm^3)$$

From the calculation:

 $V_{total}H1c = 0.1823 \ cm^3$ ("Upper Temperature Variation") $V_{total}L1c = 0.2042 \ cm^3$ ("Upper Temperature Variation")

$$\begin{split} \left|V_{total}H2c\right| &= \left|-0.1024\right| = 0.1024 \ cm^3 \ (\text{``Lower Temperature Variation''}) \\ \left|V_{total}L2c\right| &= \left|-0.1113\right| = 0.1113 \ cm^3 \ (\text{``Lower Temperature Variation''}) \end{split}$$

All the values are in their lower and upper limits according to equation 2.12, which makes the first condition acceptable.

2º - Check if the response time is compatible with the process variables, and if there is enough time for the pressure transmitted guarantees the application control limits.

Requested Client Time = 10 s Calculated Time = 4.3785 s

Therefore, as a conclusion, the lengths satisfy the second condition.

3º - Check if the global assembling error is within client expectations.

Have:

Global Error Expected by User: 0.5% of the calibrated span Global Assembling Error: 1.155% of the calibrated span

Thus, the Percent Error is greater than expected, so one concludes that the lengths do not meet the third condition.

Conclusion about the Capillary Length

As the third condition is not favorable, the remote seal assembled do not meet the application and user expectations.

It is worth remembering that the last condition do not depend only on the capillary length, hence it is possible to improve it and to make the application feasible using Table 2.2 of the Chapter 2.

Example 2

Combining Geometric Symmetry with Thermal Symmetry to minimize the Error.

A – TRANSMITTER DATA	RESPONSE
1. Type of Transmitter (Absolute, Gauge, Differential)	Differential
2. Range Superior Value (V.sup.) (mmH2O @ 4 °C)	2400
3. Range Inferior Value (V. inf.) (mmH2O @ 4 °C)	-1000
4. Transmitter Calibration (Span) (mmH2O @ 4 °C)	3400
5. Transmitter Range (2,3,4,5)	2
6. Diaphragm Material/Fill Oil	316 SST/Sillicone
7. Maximum Ambient Temperature T Max. (°C)	30
8. Minimum Ambient Temperature T Min. (°C)	-5
9. Static Pressure Variation (Bar)	3
10. Pressure Transmitter Error to T Max. (Calibration percent)	0.078
11. Pressure Transmitter Error to T Min. (Calibration percent)	0.154
12. Transmitter Accuracy (Transmitter Calibration percent)	0.075
13. Stability/Time (Transmitter Calibration percent / months)	0.225 / 60
14. Transmitter Response Time (seconds)	0.1

Table 5.6 – Transmitter Data (Example2)

B – SEAL/LEVEL DATA	RESPONSE
1. Type of Connection (One Seal, Two Seals, One Level, Level/Seal)	Two Seals
2. Capillary Filling Fluid (Table 2.4)	Dc 200
3. Geometric Symmetry (Symmetric, Assymetric)	Symmetric
4. Thermic Symmetry (Symmetric, Assymetric)	Symmetric
5. Diaphragm Material (Steel, Hasteloy, Monel, Titanium, Tantalum and other)	Steel
6. Diaphragm Thickness	0.05 mm
B.1 – H Side	
1. H Side Model (SR301T, SR301E, SR301R, SR301S, SR301P, SR301Q, LD30XL, LD30XS)	SR301E
2. Side H Diameter Seal (N Inch, DN (mm))	3 Inch
3. H Side Diaphragm Family (Table 2.5)	7
4. Diaphragm Reservoir Volume – Vrdf (cm3) (Table 2.6)	105.6E-2
5. H Side Capillary Length (meters)	4.5
6. H Side Extension Length (meters)	0.10
B.2 – L Side	
1. L Side Model (SR301T, SR301E, SR301R, SR301S, SR301P, SR301Q, LD30XL, LD30XS)	SR301E
2. Side L Diameter Seal (N Inch, DN (mm))	3 Inch
3. L Side Diaphragm Family (Table 2.5)	7
4. Diaphragm Reservoir Volume – Vrdf (cm3) (Table 2.6)	105.6E-2
5. L Side Capillary Length (meters, N.A. – non applicable)	4.5
6. L Side Extension Length (meters)	0.10

Table 5.7 – Level/Seal Data (Example 2)

Table 5.8 – Assembly Scheme (Example 2)

D – PROCESS DATA	RESPONSE
D.1 – H Side	
1. T seal max H – Maximum Temperature in the H Side Seal (°C)	90
2. T seal min H – Minimum Temperature in the H Side Seal (°C)	80
3. T cap max H – Maximum Temperature in the H Side Capillary (°C)	30
4. T cap min H – Minimum Temperature in the H Side Capillary (°C)	-5
5. T body max H – Maximum Temperature in the H Side Body (°C)	30
6. T body min H – Minimum Temperature in the H Side Body (°C)	-5
D.2 – L Side	
1. T seal max L – Maximum Temperature in the L Side Seal (°C)	90
2. T seal min L – Minimum Temperature in the L Side Seal (°C)	80
3. T cap max L – Maximum Temperature in the L Side Capillary (°C)	30
4. T cap min L – Minimum Temperature in the L Side Capillary (°C)	-5
5. T body max L – Maximum Temperature in the L Side Body (°C)	30
6. T body min L – Minimum Temperature in the L Side Body (°C)	-5
D.3 – Pressure	
1. Maximum Process Pressure (bar abs.)	5
2. Minimum Process Pressure (bar abs.)	2

Table 5.9 – Process Data (Example 2)

E – USER EXPECTANCY	RESPONSE
1. Global Error Requested by User (% Transmitter Calibration)	0.5%
2. Response Time Requested by the Mesh Control (seconds)	10

Table 5.10 – User Expectancy (Example 2)

Error Calculation by Temperature

Have:

1º – "Upper Variation of Temperature"

Seal L and H Side

$$\Delta T_{seal} = (90 - 25) = 65 \,^{\circ}C$$
$$\Delta T_{cap} = (30 - 25) = 5^{\circ}C$$
$$\Delta T_{body} = (30 - 25) = 5 \,^{\circ}C$$
$$E_{H} = E_{L} = +15.2864 \, mmH_{2}O$$

2º – "Temperature Lower Variation"

Seal L and H Side

$$\Delta T_{seal} = (80 - 25) = 55 \,^{\circ}C$$
$$\Delta T_{cap} = (-5 - 25) = -30 \,^{\circ}C$$
$$\Delta T_{body} = (-5 - 25) = -30 \,^{\circ}C$$
$$E_{H} = E_{L} = -13.9468 \, mmH_{2}O$$

Calculation of Seal/Level Error

To calculate the Seals Error, verify the cases of symmetry. In this case, there is a Geometric Asymmetry and a Thermal Symmetry, and therefore the Equation 2.12 on Chapter 2 must be used.

$$Es = \sqrt{\left(E_H\right)^2 + \left(E_L\right)^2} \times \left(\frac{1}{\sqrt{6}}\right)$$

1º – "Upper Temperature Variation"

$$Es1 = \sqrt{(15.2864)^2 + (15.2864)^2} \times \left(\frac{1}{\sqrt{6}}\right)$$

 $Es1 = 8.8260 \text{ mmH}_2\text{O}$

2º – "Lower Temperature Variation"

$$Es2 = \sqrt{(-13.9468)^2 + (-13.9468)^2} \times \left(\frac{1}{\sqrt{6}}\right)$$

 $Es2 = 8.0520 \text{ mmH}_2\text{O}$

Calculation of the Transmitter Accuracy with Seal/Level

NOTE The transmitter accuracy is not significantly altered by the addition of seal/level. However, the measuring error resulting from the combination suffers significant increase due to physical and geometric parameters, in terms of temperature variation.

$$Accuracy = \frac{0.075}{100} \cdot 3400 = 2.55 \text{ mmH}_2\text{O}$$

(See Transmitter's Manual)

Calculation of the Global Error of Transmitter Assembling with Seals/Level

From Equation 2.14 the global error of the remote seal must be calculated:

$$E_{TpT \max} = \frac{0.078}{100} \cdot 3400 = 2.6520 \ mmH_2O$$
$$E_{TpT \min} = \frac{0.154}{100} \cdot 3400 = 5.2360 \ mmH_2O$$

$$E_{globalpTMax} = \sqrt{E_s^2 + E_T^2} = \sqrt{8.8260^2 + 2.6520^2}$$

 $E_{globalpTMax} = 9.216 mm H_2 O$

100

 $E_{globalpTMax} = 0.271\%$ of the calibrated Span

$$E_{globalpTMin} = \sqrt{E_s^2 + E_T^2} = \sqrt{8.0520^2 + 5.2360^2}$$
$$E_{globalpTMin} = 9.605 \, mmH_2O$$

 $E_{globalpTMin} = 0.283\%~~{\rm of~the~calibrated~Span}$

The larger global error is:

$$E_{global} = 9.605 \, mmH_2O$$

 $E_{global} = 0.283\%$ of the calibrated Span

Calculation of the Response Time

The response time is obtained through the Equation 2.14: $TR_s = TR_{listed} \cdot L$

Considering that the transmitter is range 2 type, the filling fluid is DC200/20.

However, the temperature to be used is closer to the Maximum value, because the temperature will not necessarily be kept on the maximum. So:

Maximum Temperature on the H Side Capillary, 30 °C.

Maximum Temperature on the L Side Capillary, 30°C, from the Table 2.9:

$$TR_{listed} H = TR_{listed} L = 0.698 \ s/m$$

Thus:

$$TRH = TRL = 0.698 \times 4.5 = 3.1410 \ s$$

NOTE

Note that the response time between the sides is smaller than 0.5 second and therefore this type of assembling is recommended.

$$TR_s = TRH + TRL = 6.2820$$
 sec

This response time refers only to the remote seal. To calculate the response time of the remote seal and transmitter set, add the time of both:

$$TR = TR_s + TR_T = 6.2820 + 0.1000 = 6.3820$$
 sec

Checking the Capillary Length

To evaluate the maximum length of the capillary, three conditions on Chapter 2 must be met.

1º - Check if the dilated or contracted volume related to the initial volume of the seal diaphragm is in the Lower and Upper Limits (VCmin and VCmax) according to Equation 2.12.

$$VC_{\min} \leq V_{total} \leq VC_{\max}$$

Maximum Limit of the Transmitter: URL = 50Kpa = 5098.58 mmH₂O

Thus, the process pressure conditioned to the transmitter URL will be:

$$%VC_{\min} = \frac{MVP}{URL} \times 100$$

MVP=2400 mmH₂O (MVP: The larger value between the |V.sup| and |V.inf|)

$$%VC_{\min} = \frac{2400}{5098.58} \times 100 = 47.1\%$$

Table 2.18 shows the VC_{mim} value. Considering that the assembling was performed with a range 2 transmitter, the value relative to $\% VC_{min}$ is obtained by the linear interpolation between 50% and 40%, whereby:

$$VC_{\min} = 2.76 \cdot (10^{-2} x \ cm^3)$$

 VC_{max} is obtained on Table 2.10. Considering the # 0.05 mm Steel diaphragm material, the family 7 diaphragm and the process ^oC temperature, one has:

Maximum Temperature in the H Side Seal, 90 °C.

Maximum Temperature in the L Side Seal, 90°C, on table 2.10, means:

 $VC_{\text{max}}H = VC_{\text{max}}L = 85.9 \cdot (10^{-2} \text{ s cm}^3)$

From the calculation:

$$V_{total}H1c = V_{total}L1c = 0.108 \ cm^3$$
 ("Upper Temperature Variation")

$$V_{total}H2c = |V_{total}L2c| = |-0.099| = 0.099 \ cm^3$$
 ("Lower Temperature Variation")

All the values are in their lower and upper limits according to equation 2.12, which makes the first condition acceptable.

2^o - Check if the response time is compatible with the process variables, and if there is enough time for the pressure transmitted guarantees the application control limits.

Requested Client Time = 10 s Calculated Time = 6.3820 s

Therefore, as a conclusion, the lengths satisfy the second condition.

3º - Check if the global assembling error is within client expectations.

Have:

Global Error Expected by User: 0.5% of the calibrated span Global Assembling Error: 0.283% of the calibrated span

Thus, the Percent Error is smaller than expected, so one concludes that the assembling meets the third condition.

Conclusion about the Capillary Length

As all the condition is favorable, the remote seal assembled do meet the application and user expectations.

TYPE OF SEAL AND ORDERING CODE

"T" Type Flanged Remote Seal - SR301T

Description

The **SR301T** is a flanged seal with welded diaphragm. It can be supplied with an optional flush connection and housing. The flush connection removes deposits of the diaphragm without disconnecting the seal. If installed correctly, the seal flange does not get wet in contact with the process fluid during normal operation. However, the diaphragm and housing are wetted.

Bolts and nuts are not supplied with the seal.

For Dimensions Models and Pressure Limits see respectively the pages 6.24 (for integral flange), 6.25, 6.26 (for slip-on flange) and 6.29 for Dimensions and page 6.17 for Pressure Limits.

MODEL SR301T	"T" TYF	PE FLAN	IGED RE	EMOTE S	SEAL								
	со	DE	Proces	s Conne	ction, R	ange an	d Standard		со	DE	Proce	ess Co	nnection, Range and Standard
	1 1 1	1 2 3	1" 150 # 1" 300 # 1" 600 #	# ANSI E # ANSI E # ANSI E	3-16.5 (1 3-16.5 (1 3-16.5 (1	1) 1) 1)			6 7 7	9 B D	DN 25 DN 40 DN 40	5 PN25 0 PN10 0 PN63	50 DIN 2501 (11) 0/40 DIN EN1092-1 (11) 8/100 DIN EN1092-1 (11)
	1 1	4 5	1" 1500 1" 2500) # ANSI) # ANSI	B-16.5 (4 B-16.5 (1	4) (11) 11)			7 7	8 9	DN 40 DN 40	0 PN16 0 PN25	60 DIN 2501 (11) 50 DIN 2501 (11)
	2	1	1 1/2" 1	50 # AN	SI B-16.5	5 (11) 5 (11)			8 8	B	DN 50	0 PN10 0 PN63)/40 DIN EN1092-1 (3) 3 DIN EN1092-1 (11)
	2	3	1 1/2" 6	600 # AN	SI B-16.5	5 (11)			8	7	DN 50	0 PN10	00 DIN EN1092-1 (11)
	2	4	1 1/2" 1	500 # A	NSI B-16	.5 (4) (11	1)		8	8	DN 50	0 PN16	60 DIN 2501 (11)
1	3	1	2" 150 #	# ANSI E	3-16.5	.5 (11)			9	в	DN 80	0 PN10)/40 DIN EN1092-1 (3)
	3	2	2" 300 #	# ANSI E	8-16.5				9	6	DN 80	0 PN63	B DIN EN1092-1 (11)
1	3	4	2" 1500	# ANSI	B-16.5 (4	4) (11)			9	8	DN 80	0 PN16	60 DIN 2501 (11)
1	3	5	2" 2500) # ANSI	B-16.5 (11)			A	A	DN 10	00 PN1	10/16 DIN EN1092-1
	4	2	3 150 1	# ANSI E # ANSI E	8-16.5 8-16.5				ĉ	G	JIS 40	00 PN2 0A 20k	(11)
	4	3	3" 600 #	# ANSI E	3-16.5				D	F	JIS 50	0A 10k	(11)
i	5	1	4" 150 4	# ANSI E # ANSI E	8-16.5 8-16.5				E	F	JIS 50	0A 40k 0A 10k	(11) ((11)
i	5	3	4" 600 #	# ANSI E	8-16.5	000 4 44	•		E	G	JIS 80	0A 20k	((11)
i	6	D	DN 25 P DN 25 P	2N10/40 2N63/100	DIN EN1	1092-1 (1	1) 11)		F	F	JIS 10	00A 10	K (11)
i	6	8	DN 25 F	N160 D	IN 2501 (11)							
i	Ì	i	CODE 1	Capilla 500	ry Lengt mm	h		- 1	8	6000	mm		
i	i	i	2	1000	nm				9	8000	mm		
i		i	3 4	2000	nm nm				B A	9000	mm mm		
į	i.	i	5	3000	nm				-	10000			
ļ			6 7	4000	nm mm								
į	i.	i	<u> </u>	CODE	Diaphra	agm Mat	erial						
ļ		- i	i	l	316L Sta	ainless St	eel			ВС	Tantal	um with	n Teflon Lining
ļ		į	į	M	Monel 4	400				L	316L S	Stainles	s Steel with Halar Lining (10)
		ļ	į.	T	Tantalu	m				C	Hastell	loy with	n Teflon Lining
			i.	A	316L St	tainless \$	Steel with Tefl	on Lini	ng	U	304L 3	551	
	-		÷		CODE	Fill Flui	id						
					S D	DC 200	- silicone oil						
					F	Fluorolu	ube MO-10 (1)					
				-	T N	Sylther	m 800						
				-	G	Glycerin	n + Water (7)						
		1		1	в	Fomblin	n 06/06						
:					н	Halocar	bon 4.2						
		1		Ì		CODE	Lower Hous	sing					
				1		0	316 Stainles	er Hou s Steel	sing (2))		4	304L Stainless Steel (7)
				į		2	Hastelloy C2	276				M	Monel
1	ł			i		3	CODE Gas	x (UNS sket M	o 32750 aterial	J) (7)		I	l
			-	į		ł	0 With	nout Ga	asket				
1			-	į			T Tefle	on (Ptfe	e) wihle G	Grafoil			
			ł	į		-	C Cop	per		naioii)			
:			ł	į		-	316	L Stain	less		-*		
1			ł	ł					Specia	al Option	s ns – Sn	ecifv	
									.,		P	,	
SR301T	4	2	3	H	S	1	Т /	*		•	🗭 тү	PICAL	MODEL NUMBER
* Leave it	blank if t	here are	not optio	onal item	s.			_					

A0 - 304 Stanless Steel A1 - 365 Stanless Steel A2 - 304 Stanless Steel (With PVC Lining A2 - 304 Stanless Steel (With PVC Lining F1 - 516. Stanless Steel (Integral Flange) F1 - 5276 Hasteling (Integral Flange) (7) F2 - 304. Stanless Steel (Unegral Flange) (7) F3 - 504. Stanless Steel (Silp-on Flange) F2 - 504. Stanless Steel (Silp-on Flange) F3 - 506 Stanless Steel (Silp-on Flange) F6 - 304 Stanless Steel (Silp-on Flange) F7 - 316 Stanless Steel (Silp-on Flange) F8 - 304 Stanless Steel (Silp-on Flange) F8 - 304 Stanless Steel (Silp-on Flange) F8 - 304 Stanless Steel (Silp-on Flange) F8 - 400 Stanless Steel (Silp-on Flange) F8 - 400 Stanless Steel (Silp-on Flange) F8 - 500 Stanless Steel (Silp-on Flange) F8 - 500 Stanless Steel (Silp-on Flange) F8 - 500 Stanless Steel (Silp-on Flange) F8 - 400 Stanles F8 - 500 Stanless Steel Steel Steel (Silp On Steel (Silp-on Flange) F9 - 500 Stanless Steel Steel (Silp On Steel (Silp-on Steel (Silp On Steel (Silp On St
Shield Material A1 - 316 Stainless Steel With PVC Lining A2 - 304 Stainless Steel With PVC Lining Material / Flange Type F0 - 316L Stainless Steel With PVC Lining Material / Flange Type F2 - 304L Stainless Steel (With PVC Lining Material / Flange Type F2 - 304L Stainless Steel (With PVC Lining Material / Flange Type F2 - 304L Stainless Steel (Silp-on Flange) F3 - Coated Carbon Steel (Silp-on Flange) F3 - Coated Carbon Steel (Silp-on Flange) F3 - Coated Carbon Steel (Silp-on Flange) F3 - Coated Carbon Steel (Silp-on Flange) F4 - Coate Carbon Steel (Silp-on Flange) F3 - Coated Carbon Steel (Silp-on Flange) F5 - Coated Carbon Steel (Silp-on Flange) F3 - Coated Carbon Steel (Silp-on Flange) F5 - Coated Carbon Steel (Silp-on Flange) F3 - Coated Carbon Steel (Silp-on Flange) G2 - With Two Fland Steel (Silp-on Flange) F3 - Coated Carbon Steel (Silp-on Flange) F5 - Coated Carbon Steel (Silp-on Flange) F3 - Coated Carbon Steel (Silp-on Flange) G3 - With Two Fland Steel (Silp-on Flange) F3 - Coated Carbon Steel (Silp-on Flange) G4 - Without Flush Connections GV: NPT (I Supplied with Housing) G3 - With Two Flange The Steel (Silp - Garbon Steel (Silp - Ga
A2 - 304 Stainless Steel With PVC Lining A3 - 356 Stainless Steel With PVC Lining F0 - 316, Stainless Steel (Integraf Flange) F1 - C276 Hasteliou (Integraf Flange) (7) F2 - 304, Stainless Steel (Integraf Flange) (7) F3 - Duplex (UNS 31803) (Integraf Flange) (7) F4 - Duplex (UNS 31803) (Integraf Flange) (7) F5 - Coated Carbon Steel (Silp-on Flange) F6 - 304 Stainless Steel (Silp-on Flange) F7 - 316 Stainless Steel (Silp-on Flange) F6 - 304 Stainless Steel (Silp-on Flange) F7 - 316 Stainless Steel (Silp-on Flange) F6 - 304 Stainless Steel (Silp-on Flange) F7 - 316 Stainless Steel (Silp-on Flange) F7 - 316 Stainless Steel (Silp-on Flange) F7 - 316 Stainless Steel (Silp-on Flange) F6 - 304 Stainless Steel (Silp-on Flange) F6 - 304 Stainless Steel (Silp-on Flange) F6 - 304 Stainless Steel (Silp-on Flange) F7 - 516 Stainless Steel (Silp-on Flange) F7 - 516 Stainless Steel (Silp-on Flange) F8 - 517 - 700 Stainless Steel (Silp-on Flange) F8 - 518 - 517 - 700 Stainless Steel (Silp-on Flange) F8 - 517 - 700 Stainless Steel (Silp-on Flange) F8 - 517 - 700 Stainless Steel (Silp-on Flange) F8 - 517 - 700 Stainless Steel (Silp-on Flange)
Po 316. Statutes Steel (integraf Flange) FF - 2076 Hastavies Steel (integraf Flange) FF - 2041. Statutes Steel (integraf Flange) FF - Super Disels (UNS 6270) FF - Super Disels (UNS 6270) FF - Super Disels (UNS 6270) FF - Displex (UNS 51803) (Unseq) (Integraf Flange) (7) FF - Super Disels (Silp-or Flange) FF - 304 Stanless Steel (Silp-or Flange) FF - 304 Stanless Steel (Silp-or Flange) FF - 304 Stanless Steel (Silp-or Flange) Connection G1 G2 - With Two Flash Connections of X ⁺ NPT at 180° G4 - With two Chash Connections of X ⁺ NPT at 180° G4 - With Two Flash Connections of X ⁺ NPT at 180° G4 - With Two Flash Connections of X ⁺ NPT at 180° G4 - With Two Flash Connections of X ⁺ NPT at 180° H4 - Reade Face (ANSI, DIN, JIS) H4 - Stanger Organe (ANSI) (T) H4 - Stanger Organe (ANSI) (T) H5 - Small Correce (ANSI) (T) H4 - Large Organe Cleaning (Dyxgen or Chlorine Service) (9) F5 - Mounting according IAVCE Stan
F1 - C276 Hasteloy (Integral Flange) 77 Pasterial / Flange Type F2 - 304L Statuless Steel (Migran Flange) (7) F3 - Super Duplex (UNS 32750) (Integral Flange) (7) F4 - Duplex (UNS 31803) (Integral Flange) (7) F5 - Coated Carbon Steel (Silp-on Flange) F6 - 304 Statuless Steel (Silp-on Flange) F7 - 316 Statuless Steel (Silp-on Flange) G0 - With Flush Connections of X* NPT at 180° Connection G3 - With Two Connections of X* NPT at 90° G3 - With Two Connections of X* NPT at 90° G3 - With Two Connections of X* NPT at 90° G3 - With Two Connections of X* NPT at 90° G3 - With Two Connections of X* NPT at 90° G3 - With Two Connections of X* NPT at 90° G4 - Witkout Flash Connection H1 - Flat Face (NAS), DIN, JIS) H1 - Flat Face (NAS), DIN, JIS) H2 - Flat Face With Sealing Channel - RTJ (ANSI B 16.20) (5) H3 - Flat Face With Sealing Channel - RTJ (ANSI B 16.20) (5) H3 - Flat Face With Sealing Channel - RTJ (ANSI B 16.20) (5) H4 - Groove Type Face (DIN) (7) H5 - Small Groove (ANSI) (7) H4 - Groove Type Face (DIN) (7) H5 - Small Groove (ANSI) (7) H6 - Small Groove (ANSI) (7) H5 - Depresase Cleaning (Oxygen or Choi
F2 30-Use Duplex (UNS 32700) (Integral Flange) (7) F3 Super Duplex (UNS 31030) (Integral Flange) (7) F4 Duplex (UNS 31030) (Integral Flange) (7) F5 Coated Carbon Statel (Sip-on Flange) F6 304 Stainless Steel (Sip-on Flange) F7 316 Stainless Steel (Sip-on Flange) Connection G3 G4 With Two Flush Connections of X* NPT at 90° Connection G3 G3 With Two Connections of X* NPT at 90° Connection G3 G4 With Two Connections of X* NPT at 90° Connection G4 G4 Nithout Flush Connection (X* NPT at 90° G3 With Two Chush Connection (X* NPT at 90° G4 Nithout Fluids Channet – RTJ (ANSI B 16.20) (5) H3 Tongue Type Face (DIN) (7) H4 G7000 (YPE Face (DIN) (7) H5 Small Tongue (ANSI) (7) H4 Large Tongue (ANSI) (7) H5 Moton Available with Monel Diaphragm. (1) Suppied Without Gaset. P1 Degrease Cleaning (Cayge or Choine Service) (9) P5 Mouting acoording NACE Standard <
Material / Flange Type F-3: Super Duplex (UNS 32750) (Integral Hange) (7) F-4: Duplex (UNS 31603) (Integral Flange) F-4: Duplex (UNS 31603) (Integral Flange) F-5: - Coated Carbon Steel (Slip-on Flange) F-7:
Fig. 2 Option (Dr.S.) (Integral Flange) Fig. 2 Option (Dr.S.) (Dr.S.) (Dr.S.) Fig. 2 Option (Dr.S.) Connection Cononection Connection </td
F6 - 30d Stainless Steel (Slip-on Flange) F7 - 316 Stainless Steel (Slip-on Flange) G0 - With Flush Connections of ½" NPT at 180° Connection G1 - With Two Flush Connections of ½" NPT at 180° G2 - With Two Flush Connections of ½" NPT at 90° G3 - With Two Flush Connections of ½" NPT at 180° G4 - Without Flush Connections of ½" NPT at 90° G5 - With Two Flush Connections of ½" NPT at 90° G6 - With Two Flush Connections of ½" NPT at 180° G6 - With Two Flush Connections H0 - Raised Face (ANSI, DIN, JIS) H1 - Flat Face With Sealing Channel – RTJ (ANSI B 16.20) (5) H3 - Tongue Type Face (DIN) (7) H3 - Tongue (ANSI) (7) H4 - Groove Type Face (DIN) (7) H5 - Small Groove (ANSI) (7) H3 - Small Groove (ANSI) (7) H3 - Targe Groove (ANSI) (7) H3 - Targe Groove (ANSI) (7) H3 - Small Groove (ANSI) (7) H3 - Targe Groove (ANSI) (7) H3 - Targe Groove (ANSI) (7) H5 - Tongue (ANSI) (7) H5 - Muth Kit Special Procedures P5 - Mounting according NACE Standard Diaphragm Thickness N1 - 0.1mm (7) Note =Sk8011: <t< td=""></t<>
F7 - 316 Stainless Steel (Silp-on Flange) Convert Fluxt Connection of X* NPT (If Supplied with Housing) G1 - With Two Fluxt Connections of X* NPT at 180° G2 - With Two Connections of X* NPT at 180° G3 - With Two Connections of X* NPT at 180° G3 - With Two Connections of X* NPT at 180° G3 - With Two Connections of X* NPT at 180° G3 - With Two Connections of X* NPT at 180° G3 - With Two Connections of X* NPT at 180° G3 - With Two Connections of X* NPT at 180° G3 - With Two Connections of X* NPT (IN NS) IS 16.20) (5) H3 - Tongue Type Face (DIN) (7) H3 - Small Tongue (ANS) (7) H4 - Grover Type Face (DIN) (7) H5 - Small Tongue (ANS) (7) H6 - Large Grouve (ANS) (7) H6 - Large Grouve (ANS) (7) H7 - Stand Tongue (ANS) (7) H8 - Large Grouve (ANS) (7) H8 - Large Grouve (ANS) (7) H9 - Degrease Cleaning (0xygen or Chlorine Service) (9) P5 - Mounting according NACE Standard Diaphragm Thickness Not = Statistical P110/40 (With Dimension PN40), however, the DIN Standard Divides It in PN10/16 and PN25/40. (1) Fluorolube Filling Fluid is not available with Maised Face (H0) and Flat Face (H1), with Gasket T (Teflon) material and limited only for models ANSI un
G0 With Fluish Connection of X ^a NP1 (If Supplied with Housing) Connection G1 With Two Flush Connections of X ^a NP1 at 180° G2 With Two Connections of X ^a NP1 at 180° G2 G3 With Two Connections of X ^a NP1 at 180° G3 G4 House Connections of X ^a NP1 at 180° G3 G4 Without Fluish Connections of X ^a NP1 at 180° G4 G4 Without Fluish Connections of X ^a NP1 at 180° G4 G4 Without Fluish Connection G4 G4 Hitoro Properace (DNI) (D) G4 Hard Scove (ANSI) (T) H4 Grover Vitor Prope Face (DNI) (T) H5 Small Tongue (ANSI) (T) H5 Small Tongue (ANSI) (T) H5 Large Groove (ANSI) (T) H5 H6 With Kit Special Procedures P1 Degrease Cleaning (Oxygen or Chlorine Service) (9) P5 Hounting according NACE Standard No Default (12)
Lower Housing G1 - With Two Flush Connections of X ⁺ NPT at 100 G3 - With Two Flush Connections of X ⁺ NPT at 180 ⁺ G3 - With Two Flush Connections of X ⁺ NPT at 180 ⁺ (With Lid) Face (8) H0 - Raised Face (ANSI, DIN, JIS) H1 - Flat Face (ANSI, DIN) H2 - Flat Face (ANSI, DIN) H2 - Flat Face (INI) (7) H4 - Groove Type Face (DIN) (7) H6 - Small Groove (ANSI) (7) H6 - Small Groove (ANSI) (7) H6 - Small Groove (ANSI) (7) H7 - Large Groove (ANSI) (7) H8 - Standardized PN10/40 (With Dimension PN40), however, the DIN Standard Divides It in PN10/16 and PN25/40. H9 ANSI until #600, DIN until 404 and JS until 40K; for models with extension the gasket T (Teflon) material and limited only for models ANSI until #600, DIN until 404 and JS until 40K; for models with extension the gasket T (Teflon) have special forma C7) Item by inquiry. H8 Finshing of the finge faces sealing regions. a - Standard ANSI B 16.5 / MSS-SP6: Smooth finishing 18 H2.0 / MSS-SP6: Smooth Finishing 78 H2 (PN 10 to PN40); 3.2 to 12.5 µm Ra (125 to 550 µ ⁺ AA); b - Standard DIN EX-108 H105, DN50 EX = 16 (3
Connection G3 - With Two Connections of x ² - 14 NPT at 180° (With Lid) G4 - Without Flush Connection H0 - Raised Face (ANSI, DIN, JIS) H1 - Flat Face (ANSI, DIN, JIS) H1 - Flat Face (With Sealing Channel - RTJ (ANSI B 16.20) (5) H3 - Tongue Type Face (DIN) (7) H4 - Groove Type Face (DIN) (7) H5 - Small Tongue (ANSI) (7) H6 - Small Tongue (ANSI) (7) H7 - Large Groove (ANSI) (7) H8 - Large Groove (ANSI) (7) H7 - Large Groove (ANSI) (7) H8 - Large Groove (ANSI) (7) H7 - Large Groove (ANSI) (7) H8 - Large Groove (ANSI) (7) H8 - Large Groove (ANSI) (7) H7 - Large Groove (ANSI) (7) H8 - No H8 - Large Groove (ANSI) (7) H8 - No H8 - M30 - Case H8 - Large Groove (ANSI) (7) H8 - No H8 - M30 - Case H8 - Large Groove (ANSI) (7) H8 - No H8 - M30 - Case H8 - Large Groove (ANSI) (7) H8 - No H8 - M30 - Case H8 - Large Groove (ANSI) (7) H8 - No H8 - M30 - Case H8 - Large Groove (H0) and Flat Face (H1), with Gasket T (Teflon) material and limited only for models ANSI until #600, DIN until P40 and JIS until 40K; for models with extension the gasket T (Teflon) have special format (6) The Insubing of the flange faces sealing regions. a - Standard: ANSI B 16.2 / MSS-SP6: Brooth finishing of the grooved lining: 3.2 to 6.3 µm Ra (125 to 250 µ° AA); Face Small or Large Groove and I and I and Large Groove with smooth finishing not exceeding: 3.2 µm Rt (125 µ° AA); C - Standard DIN EN-1082-1: Groove Finishing '1" (PN 10 to PN40): 3.2 to 12.5 µm Ra (125 to 500 µ° AA); Brooth Finishing '1" (PN 10 to PN40): 3.2 to 12.5 µm Ra (125 to 500
G4 - Without Flush Connection H0 - Raised Face (ANSL IDN, JIS) H1 - Flat Face (ANSL DIN, JIS) H1 - Flat Face (ANSL DIN, JIS) H2 - Flat Face With Sealing Channel – RTJ (ANSI B 16.20) (5) H3 - Tongue Type Face (DIN) (7) H4 - Small Groove (ANSI) (7) H4 - Groove Type Face (DIN) (7) H6 - Small Groove (ANSI) (7) H6 - Small Groove (ANSI) (7) H6 - Small Groove (ANSI) (7) H7 - Large Groove (ANSI) (7) H8 - Large Groove (ANSI) (7) H9 - Degrease Cleaning (Dxygen or Chlorine Service) (9) P5 - Mounting according NACE Standard Diaphragm Thickness N0 - Default (12) N1 - 0. time (7) Noto - SR4011: (1) Fluorolube Filling Fluid is not available with Monel Diaphragm. (2) Supplied Without Gasket. (3) The Baser flast #400 Octask. (6) Only the gasket code available 1 (Stainless 316). (6) The Insulator Kt
 H0 - Raised Face (ANSI, DIN, JIS) H1 - Flat Face (ANSI, DIN, JIS) H2 - Flat Face (ANSI, DIN) H3 - Tongue Type Face (DIN) (7) H5 - Small Grove (ANSI) (7) H6 - Small Grove (ANSI) (7) H7 - Large Grove (ANSI) (7) H7 - Degrease Cleaning (Oxygen or Chlorine Service) (9) P5 - Mounting according NACE Standard Diaphragm Thickness N0 - Default (12) N1 - 0.1mm (7) Note - SR40115 (1) Fluorolube Filling Fluid is not available with Monel Diaphragm. Supplied Without Gasket. The Smar Standardized PN10/40 (With Dimension PN40), however, the DIN Standard Divides It in PN10/16 and PN25/40. Also fits the #900 class. Only the gasket code available I (Stainless 316). (6) The Insulator Kit is applicable with Raised Face (H0) and Flat Face (H1), with Gasket T (Teflon) material and limited only for models ANSI until #60, DIN until P40 and JIS until 40K; for models with extension the gasket T (Teflon) have special formar 0 tem by inquiry. (7) Finishing of the flange faces sealing regions. a - Standard: ANSI B 16.5 / MSS-SP6: Raised or Flat Face With groved lining: 3.2 to 6.3 µm Ra (125 to 250 µ° AA); Face Small or Large Tongue and Small or Large Grove with smooth finishing not exceeding: 3.2 µm Rt (125 µ° AA); b - Standard DIN EN +1092-1: Groved Finishing 781' (PN 10 to PN40): 3.2 to 12.5 µm Ra (125 to 500 µ° AA); Smooth Finishing 781' (PN 10 to PN40): 3.2 to 12.5 µm Ra (125 to 500 µ° AA); Smooth Finishing 782' (PN 83 to PN100). "C' (Ton
 H1 - Fial Face With Selling Channel – RTJ (ANSI B 16.20) (5) H2 - Fial Face With Sealing Channel – RTJ (ANSI B 16.20) (5) H3 - Tongue Type Face (DIN) (7) H3 - Tongue Type Face (DIN) (7) H4 - Groove (ANSI) (7) H5 - Small Tongue (ANSI) (7) H6 - Small Groove (ANSI) (7) H6 - Small Groove (ANSI) (7) H7 - Large Tongue (ANSI) (7) H8 - Large Groove (ANSI) (7) H8 - Large Groove (ANSI) (7) H7 - Large Tongue (ANSI) (7) H8 - Large Groove (ANSI) (7) H9 - Degresse Cleaning (Oxygen or Chlorine Service) (9) P5 - Mounting according NACE Standard Diaphragm Thickness N1 - Default (12) N1 - 0.1mm (7) Note - SR3011: (1) Fluorolube Filling Fluid is not available with Monel Diaphragm. (2) Supplied Without Gasket. (3) Only the gasket code available I (Stainless 316). (6) The Insulator Kit is applicable with Raised Face (H0) and Flat Face (H1), with Gasket T (Teflon) material and limited only for models ANSI until #600. DIN until P40 and JIS until 40K; for models with extension the gasket T (Teflon) have special forms (7) Item by inquiry. (6) Finishing of the flange faces sealing regions. a - Standard: ANSI B 16.5 / MSS-SP6: Raided or Flat Face with grooved lining: 3.2 to 6.3 µm Ra (125 to 500 µ" AA); Face Small or Large Tongue and Small or Large Groove with smooth finishing not exceeding: 3.2 µm Rt (125 µ" AA); b - Standard RTJ ANSI B 16.20 / MSS-SP6: Smooth finishing not exceeding: 1.6 µm Rt (63 µ" AA); c - Standard ID EX0 / MSS-SP6: Smooth finishing not exceeding: 1.6 µm Rt (63 µ" AA); c - Standard ID EX0 / MSS
 Face (8) H3 - Tongue Type Face (DIN) (7) H4 - Groove Type Face (DIN) (7) H5 - Small Tongue (ANSI) (7) H6 - Small Tongue (ANSI) (7) H7 - Large Tongue (ANSI) (7) H8 - Large Groove (ANSI) (7) H9 - Degrease Cleaning (Oxygen or Chlorine Service) (9) P5 - Mounting according NACE Standard Diaphragm Thickness N0 - Default (12) Note - SR3011 (1) Fluorolube Filing Fluid is not available with Monel Diaphragm. (2) Supplied Without Gasket. (3) The Smar Standardized PN10/40 (With Dimension PN40), however, the DIN Standard Divides It in PN10/16 and PN25/40. (4) Also fits the #390 class. (5) Only the gasket code available I (Stainless 316). (6) The Insulator Kit is applicable with Raised Face (H0) and Flat Face (H1), with Gasket T (Teflon) material and limited only for models ANSI until #600. DIN until P40 and JIS until 40K; for models with extension the gasket T (Teflon) have special format (7) them by inquiry. (6) Finishing of the flange faces sealing regions. a - Standard: ANSI B 16.5 / MSS-SP6: Raised or Flat Face with grooved lining: 3.2 to 6.3 µm Ra (125 to 250 µ" AA); Face Small or Large Tongue and Small or Large Groove with smooth finishing not exceeding: 3.2 µm R4 (32 to 125 µ" AA); Grooved Finishing "B1" (PN 10 to PN40): 3.2 to 12.5 µm Ra (125 to 500 µ" AA); Smooth Finishing Te1 (Ceose): 1.6 µm R1 (63 µ" AA);<
Face (8) H4 - Groöve Type Face (DIN) (7) H5 - Small Tongue (ANSI) (7) H6 - Small Groove (ANSI) (7) H7 - Large Tongue (ANSI) (7) H8 - Large Groove (ANSI) (7) H9 - Degrease Cleaning (Oxygen or Chlorine Service) (9) P5 - Mounting according NACE Standard Diaphragm Thickness N0 - Default (12) N1 - 0.1mm (7) Note – SR3011: (1) Fluorolube Filling Fluid is not available with Monel Diaphragm. (2) Supplied Without Gasket. (3) The Smar Standardized PN10/40 (With Dimension PN40), however, the DIN Standard Divides It in PN10/16 and PN25/40. (4) Also fits the #300 class. (5) Only the gasket code available I (Stainless 316). (6) The Insulator Kit sapticable with Raised Face (H0) and Flat Face (H1), with Gasket T (Teflon) have special formation models ANSI until #600, DIN until P40 and JIS until 40K; for models with extension the gasket T (Teflon) have special formation ing of the flange fac
H5 - Small Tongue (ANSI) (7) H6 - Small Groove (ANSI) (7) H7 - Large Tongue (ANSI) (7) H8 - Large Groove (ANSI) (7) H9 - Degrease Cleaning (Oxygen or Chlorine Service) (9) P5 - Mounting according NACE Standard Diaphragm Thickness Note - SR3011: (1) Fluorolube Filling Fluid is not available with Monel Diaphragm. (2) Supplied Without Gasket. (3) The Smar Standardized PN10/40 (With Dimension PN40), however, the DIN Standard Divides It in PN10/16 and PN25/40. (4) Also fits the #300 class. (5) Only the gasket code available I (Stainless 316). (6) The Insulator Kit is applicable with Raised Face (H0) and Flat Face (H1), with Gasket T (Teflon) material and limited only for models ANSI until #600, DIN until P40 and JIS until 40K; for models with extension the gasket T (Teflon) have special former (7) tem by inquiry. (7) Item by inquiry. 16.5 / MSS-SP6: Raised or Flat Face with grooved lining: 3.2 to 6.3 µm Ra (125 to 250 µ" AA); Face Small or Large Tongue and Small or Large Groove with smooth finishing not exceeding: 3.2 µm Rt (125 µ" AA); b 5 Standard Din ZSD1 MSS-SP6: <t< td=""></t<>
 Intersection (ANS) (7) H7 - Large Groove (ANS) (7) H8 - Large Groove (ANS) (7) H8 - Large Groove (ANS) (7) Insulator Kit (6) K0 - Without Kit With Kit Special Procedures P1 - Degrease Cleaning (Oxygen or Chlorine Service) (9) P5 - Mounting according NACE Standard Diaphragm Thickness No - Default (12) Standard Dia 200 (13) Standard Dia 200 (13) Standard Dia 200 (14) Standard Dia 200 (14) Standard Dia 200 (16) Stand
H8 - Large Groove (ANSI) (7) Insulator Kit (6) K0 - Without Kit K1 - With Kit Special Procedures P1 - Degrease Cleaning (Oxygen or Chlorine Service) (9) P5 - Mounting according NACE Standard Diaphragm Thickness N0 - Default (12) N1 - 0.1mm (7) Note - SR301T N0 - Default (12) N1 - 0.1mm (7) Note - SR301T No - Default (12) N1 - 0.1mm (7) Note - SR301T No - Default (12) N1 - 0.1mm (7) Note - SR301T No - Default (12) N1 - 0.1mm (7) Note - SR301T No - Default (12) N1 - 0.1mm (7) Note - SR301T No - Default (12) N1 - 0.1mm (7) Note - SR301T No - Default (12) N1 - 0.1mm (7) Note - SR301T No - Default (12) N1 - 0.1mm (7) Note - SR301T Standard Standard Standard (20) (3) The Smar Standardized PN10/40 (With Dimension PN40), however, the DIN Standard Divides It in PN10/16 and PN25/40. (4) Also fits the #900 class. Sondars. (5) Only the gasket code available I (Stainless 316). The Insulator Kit is applicable with Raised Face (H0) and Flat Face (H1), with Gasket T (Teflon) material and limited only for models ANSI until #600. DIN until P40 and JIS until 40K; for models with extension the gasket T (Teflon) have special formation of the flange faces sealing regions. (7) Item by inquiry. S
Insulator Kit (6) K0 - Without Kit Special Procedures P1 - Degrease Cleaning (Oxygen or Chlorine Service) (9) P5 - Mounting according NACE Standard Diaphragm Thickness N0 - Default (12) N1 - 0.1mm (7) Note - SR3011: (1) Fluorolube Filling Fluid is not available with Monel Diaphragm. (2) Supplied Without Gasket. (3) The Smar Standardized PN10/40 (With Dimension PN40), however, the DIN Standard Divides It in PN10/16 and PN25/40. (4) Also fits the #900 class. (5) Only the gasket code available I (Stainless 316). (6) The Insulator Kit is applicable with Raised Face (H0) and Flat Face (H1), with Gasket T (Teflon) material and limited only for models ANSI until #600, DIN until P40 and JIS until 40K; for models with extension the gasket to Chero) have special forma (7) Item by inquiry. (8) Finishing of the flange faces sealing regions. a - Standard: ANSI B 16.5 / MSS-SP6: Smooth finishing no exceeding: 1.6 µm Rt (63 µ" AA); Face Small or Large Tongue and Small or Large Groove with smooth finishing not exceeding: 3.2 µm Rt (125 µ" AA); b - Standard DIN 201 (DIN 2526): Smooth Finishing "B1" (PN 10 to PN40): 3.2 to 12.5 µm Ra (125 to 500 µ" AA); <t< td=""></t<>
Special Procedures P1 - Degrease Cleaning (Oxygen or Chlorine Service) (9) P5 - Mounting according NACE Standard Diaphragm Thickness N0 - Default (12) N1 - 0.1mm (7) Note - SR301T: (1) Fluorolube Filling Fluid is not available with Monel Diaphragm. (2) Supplied Without Gasket. (3) The Smar Standardized PN10/40 (With Dimension PN40), however, the DIN Standard Divides It in PN10/16 and PN25/40. (4) Also fits the #900 class. (5) Only the gasket code available I (Stainless 316). (6) The Insultator Kit is applicable with Raised Face (H0) and Flat Face (H1), with Gasket T (Teflon) material and limited only for models ANSI until #600, DIN until P40 and JIS until 40K; for models with extension the gasket T (Teflon) have special formation of the flange faces sealing regions. a - Standard: ANSI B 16.5 / MSS-SP6: Raised or Flat Face with grooved lining: 3.2 to 6.3 µm Ra (125 to 250 µ" AA); Face Small or Large Tongue and Small or Large Groove with smooth finishing not exceeding: 3.2 µm Rt (125 µ" AA); b - Standard DIN EN-1092-1: Grooved Finishing not exceeding: 1.6 µm Rt (63 µ" AA); c - Standard DIN EN-1092-1: Grooved Finishing "B1" (PN 10 to PN40): 3.2 to 12.5 µm Ra (125 to 500 µ" AA); Smooth Finishing "B2" (PN 63 to PN100), "C" (Tongue) and "D" (Groove): 0.8 to 3.2 µm Ra (32 to 125 µ" AA). d - Standard Jin ES201: Groove Finishing: 3.2 to 6.3 µm Ra (125 to 250 µ" AA). Whereby: Ra (average ruggedness) and Rt (total ruggedness). (9) Degrease cle
Special Procedures P1 - Degrease clearling (Oxyger of Chiofine Service) (9) P5 - Mounting according NACE Standard Diaphragm Thickness No - Default (12) N1 - 0.1mm (7) Note - SR301T: (1) Fluorolube Filling Fluid is not available with Monel Diaphragm. (2) Supplied Without Gasket. (3) The Smar Standardized PN10/40 (With Dimension PN40), however, the DIN Standard Divides It in PN10/16 and PN25/40. (4) Also fits the #900 class. (5) Only the gasket code available I (Stainless 316). (6) The Insulator Kit is applicable with Raised Face (H0) and Flat Face (H1), with Gasket T (Teflon) material and limited only for models ANSI until #600, DIN until P40 and JIS until 40K; for models with extension the gasket T (Teflon) have special forma (7) Item by inquiry. (8) Finishing of the flange faces sealing regions. a - Standard: ANSI B 16.5 / MSS-SP6: Raised or Flat Face with grooved lining: 3.2 to 6.3 μm Ra (125 to 250 μ" AA); Face Small or Large Tongue and Small or Large Groove with smooth finishing not exceeding: 3.2 μm Rt (125 μ" AA); b - Standard RIJ ANSI B 16.2 / MSS-SP6: Smooth finishing not exceeding: 1.6 μm Rt (63 μ" AA); c - Standard DIN EN-1092-1: Groove Finishing "B2" (PN 63 to PN100), "C" (Tongue) and "D" (Groove): 0.8 to 3.2 μm Ra (32 to 125 μ" AA). d - Standard DIN EX010, DIN 2526): Smooth Finishing "B2" (PN 63 to PN100), "C" (Tongue) and "D" (Groove): 0.8 to 3.2 μm Ra (32 to 125 μ" AA). d - Standard Jis B2201
Diaphragm Thickness N0 - Default (12) N1 - 0.1mm (7) Note = SR3011: (1) (1) Fluorolube Filling Fluid is not available with Monel Diaphragm. (2) Supplied Without Gasket. (3) The Smar Standardized PN10/40 (With Dimension PN40), however, the DIN Standard Divides It in PN10/16 and PN25/40. (4) Also fits the #900 class. (5) Only the gasket code available I (Stainless 316). (6) The Insulator Kit is applicable with Raised Face (H0) and Flat Face (H1), with Gasket T (Teflon) material and limited only for models ANSI until #600, DIN until P40 and JIS until 40K; for models with extension the gasket T (Teflon) have special formation by inquiry. (7) Item by inquiry. (8) Finishing of the flange faces sealing regions. a - Standard ATJ ANSI B 16.5 / MSS-SP6: Raised or Flat Face with grooved lining: 3.2 to 6.3 μm Ra (125 to 250 μ° AA); Face Small or Large Tongue and Small or Large Groove with smooth finishing not exceeding: 3.2 μm Rt (125 μ° AA); b - Standard DIN EN-1092-1: Grooved Finishing "B1" (PN 10 to PN40): 3.2 to 12.5 μm Ra (125 to 500 μ° AA); Smooth Finishing "B2" (PN 63 to PN100), "C" (Tongue) and "D" (Groove): 0.8 to 3.2 μm Ra (32 to 125 μ° AA). d - Standard Din 2501 (DIN 2526): Smooth Finishing "B2" (PN 160 to PN250): Rz = 16
Diapring in Finickness N1 - 0.1mm (7) Note - SR3011: (1) Fluorolube Filling Fluid is not available with Monel Diaphragm. (2) Supplied Without Gasket. (3) The Smar Standardized PN10/40 (With Dimension PN40), however, the DIN Standard Divides It in PN10/16 and PN25/40. (4) Also fits the #900 class. (5) Only the gasket code available I (Stainless 316). (6) The Insulator Kit is applicable with Raised Face (H0) and Flat Face (H1), with Gasket T (Teflon) material and limited only for models ANSI until #600, DIN until P40 and JIS until 40K; for models with extension the gasket T (Teflon) have special formation of the flange faces sealing regions. (7) Item by inquiry. (8) Finishing of the flange faces sealing regions. (7) Item by inquiry. Face Small or Large Tongue and Small or Large Groove with smooth finishing not exceeding: 3.2 μm Rt (125 μ" AA); (9) Finishing not exceeding: 1,6 μm Rt (63 μ" AA); c (1) C Standard NE N-1092-1: Grooved Finishing "B1" (PN 10 to PN40): 3.2 to 12.5 μm Ra (125 to 500 μ" AA); (1) Smooth Finishing "B2" (PN 63 to PN100), "C" (Tongue) and "D" (Groove): 0.8 to 3.2 μm Ra (32 to 125 μ" AA). (2) Standard Din Z501 (DIN 2526): Smooth Finishing "B2" (PN 60 to PN250): Rz = 16 (3.2 μm Ra (125 μ" AA)). (9)
 Note - SR301T: (1) Fluorolube Filling Fluid is not available with Monel Diaphragm. (2) Supplied Without Gasket. (3) The Smar Standardized PN10/40 (With Dimension PN40), however, the DIN Standard Divides It in PN10/16 and PN25/40. (4) Also fits the #900 class. (5) Only the gasket code available I (Stainless 316). (6) The Insulator Kit is applicable with Raised Face (H0) and Flat Face (H1), with Gasket T (Teflon) material and limited only for models ANSI until #600, DIN until P40 and JIS until 40K; for models with extension the gasket T (Teflon) have special format (7) Item by inquiry. (8) Finishing of the flange faces sealing regions. a - Standard: ANSI B 16.5 / MSS-SP6: Raised or Flat Face with grooved lining: 3.2 to 6.3 µm Ra (125 to 250 µ" AA); Face Small or Large Tongue and Small or Large Groove with smooth finishing not exceeding: 3.2 µm Rt (125 µ" AA); b - Standard TJ ANSI B 16.20 / MSS-SP6: Smooth finishing not exceeding: 1,6 µm Rt (63 µ" AA); c - Standard DIN EN-1092-1: Grooved Finishing "B1" (PN 10 to PN40): 3.2 to 12.5 µm Ra (125 to 500 µ" AA); Smooth Finishing "B2" (PN 63 to PN100), "C" (Tongue) and "D" (Groove): 0.8 to 3.2 µm Ra (32 to 125 µ" AA). d - Standard Jis B2201: Groove Finishing "B2" (PN 60 to PN250): Rz = 16 (3.2 µm Ra (125 µ" AA)). e - Standard Jis B2201: Groove Finishing "B2" (PN 10 to PN250): Rz = 16 (3.2 µm Ra (125 µ" AA)). e - Standard Jis B2201: Groove Finishing "C" (PN 100 to PN250): Rz = 16 (3.2 µm Ra (125 µ" AA)). e - Standard Jis B2201: Groove Finishing "B2" (PN 60 to PN250): Rz = 16 (3.2 µm Ra (125 µ" AA)). e - Standard Jis B2201: Groove Finishing "E" (PN 100 to PN250): Rz = 16 (3.2 µm Ra (125 µ" AA)). e - Standard Jis B2201: Groove Finishing "E" (CN 100 to PN250): Rz = 16 (3.2 µm Ra (125 µ" AA)). e - Standard Jis B2201: Groove Finishing "E" (DN 50 DIN 200 Class 10.2 0 µ" AA). Whereby: Ra (average rugg
 Fluorolube Filling Fluid is not available with Monel Diaphragm. Supplied Without Gasket. The Smar Standardized PN10/40 (With Dimension PN40), however, the DIN Standard Divides It in PN10/16 and PN25/40. Also fits the #900 class. Only the gasket code available I (Stainless 316). The Insulator Kit is applicable with Raised Face (H0) and Flat Face (H1), with Gasket T (Teflon) material and limited only for models ANSI until #600, DIN until P40 and JIS until 40K; for models with extension the gasket T (Teflon) have special forma (7) Item by inquiry. Finishing of the flange faces sealing regions. a Standard: ANSI B 16.5 / MSS-SP6: Raised or Flat Face with grooved lining: 3.2 to 6.3 μm Ra (125 to 250 μ" AA); Face Small or Large Tongue and Small or Large Groove with smooth finishing not exceeding: 3.2 μm Rt (125 μ" AA); b Standard RTJ ANSI B 16.20 / MSS-SP6: Smooth finishing not exceeding: 1,6 μm Rt (63 μ" AA); c Standard RTJ ANSI B 16.20 / MSS-SP6: Smooth Finishing "B1" (PN 10 to PN40): 3.2 to 12.5 μm Ra (125 to 500 μ" AA); Grooved Finishing "B1" (PN 10 to PN40): 3.2 to 12.5 μm Ra (125 to 500 μ" AA); Smooth Finishing "B1" (PN 10 to PN40): 3.2 to 12.5 μm Ra (125 to 500 μ" AA); Smooth Finishing "B2" (PN 63 to PN100), "C" (Tongue) and "D" (Groove): 0.8 to 3.2 μm Ra (32 to 125 μ" AA). d Standard Jin 82201(DIN 2526): Smooth Finishing "E" (PN 160 to PN250): Rz = 16 (3.2 μm Ra (125 μ" AA)). e Standard Jis B2201: Groove Finishing: 3.2 to 6.3 μm Ra (125 to 250 μ" AA). Whereby: Ra (average ruggedness) and Rt (total ruggedness). (9) Degrease cleaning not available for carbon steel flanges. (10) Applicable only tor: Diaphragm Thickness of 0.05mm. Diaphragm Thickness of 0.05mm. Diaphragm Thickness of 0.05mm.
 (2) Supplied Without Gasket. (3) The Smar Standardized PN10/40 (With Dimension PN40), however, the DIN Standard Divides It in PN10/16 and PN25/40. (4) Also fits the #900 class. (5) Only the gasket code available I (Stainless 316). (6) The Insulator Kit is applicable with Raised Face (H0) and Flat Face (H1), with Gasket T (Teflon) material and limited only for models ANSI until #600, DIN until P40 and JIS until 40K; for models with extension the gasket T (Teflon) have special forma (7) Item by inquiry. (8) Finishing of the flange faces sealing regions. a - Standard: ANSI B 16.5 / MSS-SP6: Raised or Flat Face with grooved lining: 3.2 to 6.3 µm Ra (125 to 250 µ" AA); Face Small or Large Tongue and Small or Large Groove with smooth finishing not exceeding: 3.2 µm Rt (125 µ" AA); b - Standard RT J ANSI B 16.20 / MSS-SP6: Smooth finishing not exceeding: 1,6 µm Rt (63 µ" AA); c - Standard DIN EN-1092-1: Grooved Finishing "B1" (PN 10 to PN40): 3.2 to 12.5 µm Ra (125 to 500 µ" AA); Smooth Finishing "B1" (PN 10 to PN40): 3.2 to 12.5 µm Ra (125 to 500 µ" AA); Smooth Finishing "B2" (PN 63 to PN100), "C" (Tongue) and "D" (Groove): 0.8 to 3.2 µm Ra (32 to 125 µ" AA). d - Standard Jis B2201: Groove Finishing "E" (PN 160 to PN250): Rz = 16 (3.2 µm Ra (125 µ" AA)). e - Standard Jis B2201: Groove Finishing: 3.2 to 6.3 µm Ra (125 to 250 µ" AA). Whereby: Ra (average ruggedness) and Rt (total ruggedness). (9) Degrease cleaning not available for carbon steel flanges. (10) Applicable only tor: Diaphragm Thickness of 0.05mm. Diaphragm Thickness of 0.05mm. Diaphragm Thickness of 0.05mm. ANSI B 16.5, DN 80 DIN, JIS 50 A, for seals up to 3 meters of capillary and level models (by inquiry). 3" ANSI B 16.5, DN 80 DIN, JIS 80 A, for seals up to 5 meters of capillary and level models.
 (a) Also fits the #900 class. (5) Only the gasket code available I (Stainless 316). (6) The Insulator Kit is applicable with Raised Face (H0) and Flat Face (H1), with Gasket T (Teflon) material and limited only for models ANSI until #600, DIN until P40 and JIS until 40K; for models with extension the gasket T (Teflon) have special formation of the flange faces sealing regions. a - Standard: ANSI B 16.5 / MSS-SP6: Raised or Flat Face with grooved lining: 3.2 to 6.3 µm Ra (125 to 250 µ° AA); Face Small or Large Tongue and Small or Large Groove with smooth finishing not exceeding: 3.2 µm Rt (125 µ° AA); b - Standard TJ ANSI B 16.20 / MSS-SP6: Smooth finishing not exceeding: 1,6 µm Rt (63 µ° AA); c - Standard DIN EN-1092-1: Grooved Finishing "B1" (PN 10 to PN40): 3.2 to 12.5 µm Ra (125 to 500 µ° AA); Smooth Finishing "B2" (PN 63 to PN100), "C" (Tongue) and "D" (Groove): 0.8 to 3.2 µm Ra (32 to 125 µ° AA). d - Standard Din 2501 (DIN 2526): Smooth Finishing "E" (PN 160 to PN250): Rz = 16 (3.2 µm Ra (125 µ° AA)). e - Standard Jis B2201: Groove Finishing: 3.2 to 6.3 µm Ra (125 to 250 µ° AA). Whereby: Ra (average ruggedness) and Rt (total ruggedness). (9) Degrease cleaning not available for carbon steel flanges. (10) Applicable only for: Diaphragm Thickness of 0.05mm. Diaphragm Thickness of 0.05mm. Diaphragm Thickness of 0.05mm. ANSI B 16.5, DN 80 DIN, JIS 50 A, for seals up to 3 meters of capillary and level models (by inquiry). 3" ANSI B 16.5, DN 80 DIN, JIS 50 A, for seals up to 5 meters of capillary and level models.
 (5) Only the gasket code available I (Stainless 316). (6) The Insulator Kit is applicable with Raised Face (H0) and Flat Face (H1), with Gasket T (Teflon) material and limited only for models ANSI until #600, DIN until P40 and JIS until 40K; for models with extension the gasket T (Teflon) have special formation of the flange faces sealing regions. a - Standard: ANSI B 16.5 / MSS-SP6: Raised or Flat Face with grooved lining: 3.2 to 6.3 µm Ra (125 to 250 µ" AA); Face Small or Large Tongue and Small or Large Groove with smooth finishing not exceeding: 3.2 µm Rt (125 µ" AA); b - Standard ANSI B 16.5 / MSS-SP6: Smooth finishing mot exceeding: 1,6 µm Rt (63 µ" AA); c - Standard DIN EN-1092-1: Grooved Finishing "B1" (PN 10 to PN40): 3.2 to 12.5 µm Ra (125 to 500 µ" AA); Smooth Finishing "B2" (PN 63 to PN100), "C" (Tongue) and "D" (Groove): 0.8 to 3.2 µm Ra (32 to 125 µ" AA). d - Standard Din 2501 (DIN 2526): Smooth Finishing "E1" (PN 160 to PN250): Rz = 16 (3.2 µm Ra (125 µ" AA)). e - Standard Jis B2201: Groove Finishing: "E (PN 160 to PN250): Rz = 16 (3.2 µm Ra (125 µ" AA)). e - Standard Jis B2201: Groove Finishing: "E1" (PN 160 to PN250): Rz = 16 (3.2 µm Ra (125 µ" AA)). e - Standard Jis B2201: Groove Finishing: "E1" (PN 160 to PN250): Rz = 16 (3.2 µm Ra (125 µ" AA)). e - Standard Jis B2201: Groove Finishing: "E1" (PN 160 to PN250): Rz = 16 (3.2 µm Ra (125 µ" AA)). e - Standard Jis B2201: Groove Finishing: "E1" (PN 160 to PN250): Rz = 16 (3.2 µm Ra (125 µ" AA)). e - Standard Jis B201: Groove Finishing: "E1" (PN 160 to PN250): Rz = 16 (3.2 µm Ra (125 µ" AA)). e - Standard Jis B201: Groove Finishing: "E1" (PN 160 to PN250): Rz = 16 (3.2 µm Ra (125 µ" AA)). e - Standard Jis B201: Groove Finishing: "E1" (PN 160 to PN250): Rz = 16 (3.2 µm Ra (125 µ" AA)). e - Standard Jis B201: Groove Finishing: "E1" (PN 160 to PN250): Rz = 16 (3.2 µm Ra (125 µ" AA)). e - Standard Jis B200: Groo
 (6) The Insulator Kit is applicable with Raised Face (H0) and Flat Face (H1), with Gasket T (Teflon) material and limited only for models ANSI until #600, DIN until P40 and JIS until 40K; for models with extension the gasket T (Teflon) have special forma (7) Item by inquiry. (8) Finishing of the flange faces sealing regions. a - Standard: ANSI B 16.5, DN MSS-SP6: Raised or Flat Face with grooved lining: 3.2 to 6.3 µm Ra (125 to 250 µ" AA); Face Small or Large Tongue and Small or Large Groove with smooth finishing not exceeding: 3.2 µm Rt (125 µ" AA); b - Standard ANSI B 16.5, DN 80 × SP6: Smooth finishing not exceeding: 1,6 µm Rt (63 µ" AA); c - Standard DIN EN-1092-1: Grooved Finishing "B1" (PN 10 to PN40): 3.2 to 12.5 µm Ra (125 to 500 µ" AA); Smooth Finishing "B2" (PN 63 to PN100), "C" (Tongue) and "D" (Groove): 0.8 to 3.2 µm Ra (32 to 125 µ" AA). d - Standard Din 2501 (DIN 2526): Smooth Finishing "E" (PN 160 to PN250): Rz = 16 (3.2 µm Ra (125 µ" AA)). e - Standard Jis B2201: Groover Finishing: "E" (PN 160 to PN250): Rz = 16 (3.2 µm Ra (125 µ" AA)). e - Standard Jis B2201: Groover Finishing: 3.2 to 6.3 µm Ra (125 to 250 µ" AA). Whereby: Ra (average ruggedness) and Rt (total ruggedness). (9) Degrease cleaning not available for carbon steel flanges. (10) Applicable only for: Diameters/Capillary Length: 2" ANSI B 16.5, DN 80 DIN, JIS 50 A, for seals up to 3 meters of capillary and level models (by inquiry). 3" ANSI B 16.5, DN 80 DIN, JIS 80 A, for seals up to 5 meters of capillary and level models.
 (a) Them by inquiry. (b) Finishing of the flange faces sealing regions. a - Standard: ANSI B 16.5 / MSS-SP6: Raised or Flat Face with grooved lining; 3.2 to 6.3 μm Ra (125 to 250 μ° AA); Face Small or Large Tongue and Small or Large Groove with smooth finishing not exceeding: 3.2 μm Rt (125 μ° AA); b - Standard RTJ ANSI B 16.20 / MSS-SP6: Smooth finishing not exceeding: 1,6 μm Rt (63 μ° AA); c - Standard DIN EN-1092-1: Grooved Finishing "B1" (PN 10 to PN40): 3.2 to 12.5 μm Ra (125 to 500 μ° AA); Smooth Finishing "B1" (PN 63 to PN100), "C" (Tongue) and "D" (Groove): 0.8 to 3.2 μm Ra (32 to 125 μ° AA). d - Standard Din 2501 (DIN 2526): Smooth Finishing "E" (PN 160 to PN250): Rz = 16 (3.2 μm Ra (125 μ° AA)). e - Standard Jis B2201: Groove Finishing: 3.2 to 6.3 μm Ra (125 to 250 μ° AA). Whereby: Ra (average ruggedness) and Rt (total ruggedness). (9) Degrease cleaning not available for carbon steel flanges. (10) Applicable only for: Diaphragm Thickness of 0.05mm. Diaphragm Thickness of 0.05mm. 2" ANSI B 16.5, DN 80 DIN, JIS 50 A, for seals up to 3 meters of capillary and level models (by inquiry). 3" ANSI B 16.5, DN 80 DIN, JIS 80 A, for seals up to 5 meters of capillary and level models (by inquiry).
 (d) Finishing of the flange faces sealing regions. a - Standard: ANSI B 16.5 / MSS-SP6: Raised or Flat Face with grooved lining: 3.2 to 6.3 μm Ra (125 to 250 μ" AA); Face Small or Large Tongue and Small or Large Groove with smooth finishing not exceeding: 3.2 μm Rt (125 μ" AA); b - Standard RTJ ANSI B 16.20 / MSS-SP6: Smooth finishing not exceeding: 1.6 μm Rt (63 μ" AA); c - Standard DIN EN-1092-1: Grooved Finishing "B1" (PN 10 to PN40): 3.2 to 12.5 μm Ra (125 to 500 μ" AA); Smooth Finishing "B2" (PN 63 to PN100), "C" (Tongue) and "D" (Groove): 0.8 to 3.2 μm Ra (32 to 125 μ" AA). d - Standard Din 2501 (DIN 2526): Smooth Finishing "E" (PN 160 to PN250): Rz = 16 (3.2 μm Ra (125 μ" AA)). e - Standard Jis B2201: Groove Finishing: 3.2 to 6.3 μm Ra (125 to 250 μ" AA). Whereby: Ra (average ruggedness) and Rt (total ruggedness). (e) Degrease cleaning not available for carbon steel flanges. (10) Applicable only for: Diaphragm Thickness of 0.05mm. Diameters/Capillary Length: 2" ANSI B 16.5, DN 80 DIN, JIS 50 A, for seals up to 3 meters of capillary and level models (by inquiry). 3" ANSI B 16.5, DN 80 DIN, JIS 80 A, for seals up to 5 meters of capillary and level models.
 a - Standard: ANSI B 16.5 / MSS-SP6: Raised or Flat Face with grooved lining: 3.2 to 6.3 μm Ra (125 to 250 μ" AA); Face Small or Large Tongue and Small or Large Groove with smooth finishing not exceeding: 3.2 μm Rt (125 μ" AA); b - Standard RTJ ANSI B 16.20 / MSS-SP6: Smooth finishing not exceeding: 1,6 μm Rt (63 μ" AA); c - Standard DIN EN-1092-1: Grooved Finishing "B1" (PN 10 to PN40): 3.2 to 12.5 μm Ra (125 to 500 μ" AA); Smooth Finishing "B2" (PN 63 to PN100), "C" (Tongue) and "D" (Groove): 0.8 to 3.2 μm Ra (32 to 125 μ" AA). d - Standard Din 2501 (DIN 2526): Smooth Finishing "E" (PN 160 to PN250): Rz = 16 (3.2 μm Ra (125 μ" AA)). e - Standard Jis B2201: Groove Finishing: 3.2 to 6.3 μm Ra (125 to 250 μ" AA). Whereby: Ra (average ruggedness) and Rt (total ruggedness). (9) Degrease cleaning not available for carbon steel flanges. (10) Applicable only for: Diaphragm Thickness of 0.05mm. Diameters/Capillary Length: 2" ANSI B 16.5, DN 80 DIN, JIS 50 A, for seals up to 3 meters of capillary and level models (by inquiry). 3" ANSI B 16.5, DN 80 DIN, JIS 80 A, for seals up to 5 meters of capillary and level models.
 Raised or Flat Face with grooved lining: 3.2 to 6.3 μm Ra (125 to 250 μ" AA); Face Small or Large Tongue and Small or Large Groove with smooth finishing not exceeding: 3.2 μm Rt (125 μ" AA); b - Standard RTJ ANSI B 16.20 / MSS-SP6: Smooth finishing not exceeding: 1.6 μm Rt (63 μ" AA); c - Standard DIN EN-1092-1: Grooved Finishing "B1" (PN 10 to PN40): 3.2 to 12.5 μm Ra (125 to 500 μ" AA); Smooth Finishing "B2" (PN 63 to PN100), "C" (Tongue) and "D" (Groove): 0.8 to 3.2 μm Ra (32 to 125 μ" AA). d - Standard Din 2501 (DIN 2526): Smooth Finishing "E" (PN 160 to PN250): Rz = 16 (3.2 μm Ra (125 μ" AA)). e - Standard Jis B2201: Groove Finishing: 3.2 to 6.3 μm Ra (125 to 250 μ" AA). Whereby: Ra (average ruggedness) and Rt (total ruggedness). (9) Degrease cleaning not available for carbon steel flanges. (10) Applicable only for: Diaphragm Thickness of 0.05mm. Diameters/Capillary Length: 2" ANSI B 16.5, DN 80 DIN, JIS 50 A, for seals up to 3 meters of capillary and level models (by inquiry). 3" ANSI B 16.5, DN 80 DIN, JIS 80 A, for seals up to 5 meters of capillary and level models.
 Pade Sinial of Large Torigue and Shall of Large Groove with smooth inisting not exceeding. 3.2 μm Rt (125 μ AA), b - Standard RT JANSI B 16.20 / MSS-SP6: Smooth finishing mB1" (PN 10 to PN40): 3.2 to 12.5 μm Ra (125 to 500 μ" AA); c - Standard DIN EN-1092-1: Grooved Finishing "B1" (PN 10 to PN40): 3.2 to 12.5 μm Ra (125 to 500 μ" AA); Smooth Finishing "B2" (PN 63 to PN100), "C" (Tongue) and "D" (Groove): 0.8 to 3.2 μm Ra (32 to 125 μ" AA). d - Standard Din 2501 (DIN 2526): Smooth Finishing "E" (PN 160 to PN250): Rz = 16 (3.2 μm Ra (125 μ" AA)). e - Standard Jis B2201: Groove Finishing: 3.2 to 6.3 μm Ra (125 to 250 μ" AA). Whereby: Ra (average ruggedness) and Rt (total ruggedness). (9) Degrease cleaning not available for carbon steel flanges. (10) Applicable only for: Diameters/Capillary Length: 2" ANSI B 16.5, DN 50 DIN, JIS 50 A, for seals up to 3 meters of capillary and level models (by inquiry). 3" ANSI B 16.5, DN 80 DIN, JIS 80 A, for seals up to 5 meters of capillary and level models.
 Smooth finishing not exceeding: 1,6 μm Rt (63 μ" AA); c - Standard DIN EN-1092-1: Grooved Finishing "B1" (PN 10 to PN40): 3.2 to 12.5 μm Ra (125 to 500 μ" AA); Smooth Finishing "B2" (PN 63 to PN100), "C" (Tongue) and "D" (Groove): 0.8 to 3.2 μm Ra (32 to 125 μ" AA). d - Standard Din 2501 (DIN 2526): Smooth Finishing "E" (PN 160 to PN250): Rz = 16 (3.2 μm Ra (125 μ" AA)). e - Standard Jis B2201: Groove Finishing: 3.2 to 6.3 μm Ra (125 to 250 μ" AA). Whereby: Ra (average ruggedness) and Rt (total ruggedness). (9) Degrease cleaning not available for carbon steel flanges. (10) Applicable only for: Diameters/Capillary Length: 2" ANSI B 16.5, DN 50 DIN, JIS 50 A, for seals up to 3 meters of capillary and level models (by inquiry). 3" ANSI B 16.5, DN 50 DIN, JIS 80 A, for seals up to 5 meters of capillary and level models.
 c - Standard DIN EN-1092-1: Grooved Finishing "B1" (PN 10 to PN40): 3.2 to 12.5 μm Ra (125 to 500 μ" AA); Smooth Finishing "B2" (PN 63 to PN100), "C" (Tongue) and "D" (Groove): 0.8 to 3.2 μm Ra (32 to 125 μ" AA). d - Standard Din 2501 (DIN 2526): Smooth Finishing "E" (PN 160 to PN250): Rz = 16 (3.2 μm Ra (125 μ" AA)). e - Standard Jis B2201: Groove Finishing: 3.2 to 6.3 μm Ra (125 to 250 μ" AA). Whereby: Ra (average ruggedness) and Rt (total ruggedness). (9) Degrease cleaning not available for carbon steel flanges. (10) Applicable only for: Diaphragm Thickness of 0.05mm. Diameters/Capillary Length: 2" ANSI B 16.5, DN 50 DIN, JIS 50 A, for seals up to 3 meters of capillary and level models (by inquiry). 3" ANSI B 16.5, DN 80 DIN, JIS 80 A, for seals up to 5 meters of capillary and level models.
 Grooved Finishing "B1" (PN 10 to PN40): 3.2 to 12.5 μm Ra (125 to 500 μ" AA); Smooth Finishing "B2" (PN 63 to PN100), "C" (Tongue) and "D" (Groove): 0.8 to 3.2 μm Ra (32 to 125 μ" AA). d - Standard Din 2501 (DIN 2526): Smooth Finishing "E" (PN 160 to PN250): Rz = 16 (3.2 μm Ra (125 μ" AA)). e - Standard Jis B2201: Groove Finishing: 3.2 to 6.3 μm Ra (125 to 250 μ" AA). Whereby: Ra (average ruggedness) and Rt (total ruggedness). (9) Degrease cleaning not available for carbon steel flanges. (10) Applicable only for: Diaphragm Thickness of 0.05mm. Diameters/Capillary Length: 2" ANSI B 16.5, DN 50 DIN, JIS 50 A, for seals up to 3 meters of capillary and level models (by inquiry). 3" ANSI B 16.5, DN 80 DIN, JIS 80 A, for seals up to 5 meters of capillary and level models.
 d - Standard Din 2501 (DIN 2526): Smooth Finishing "E" (PN 160 to PN250): Rz = 16 (3.2 µm Ra (125 µ" AA)). e - Standard Jis B2201: Groove Finishing: 3.2 to 6.3 µm Ra (125 to 250 µ" AA). Whereby: Ra (average ruggedness) and Rt (total ruggedness). (9) Degrease cleaning not available for carbon steel flanges. (10) Applicable only for: Diaphragm Thickness of 0.05mm. Diameters/Capillary Length: 2" ANSI B 16.5, DN 50 DIN, JIS 50 A, for seals up to 3 meters of capillary and level models (by inquiry). 3" ANSI B 16.5, DN 80 DIN, JIS 80 A, for seals up to 5 meters of capillary and level models.
 Smooth Finishing "E" (PN 160 to PN250): Rz = 16 (3.2 µm Ra (125 µ" AA)). e - Standard Jis B2201: Groove Finishing: 3.2 to 6.3 µm Ra (125 to 250 µ" AA). Whereby: Ra (average ruggedness) and Rt (total ruggedness). (9) Degrease cleaning not available for carbon steel flanges. (10) Applicable only for: Diaphragm Thickness of 0.05mm. Diameters/Capillary Length: 2" ANSI B 16.5, DN 50 DIN, JIS 50 A, for seals up to 3 meters of capillary and level models (by inquiry). 3" ANSI B 16.5, DN 80 DIN, JIS 80 A, for seals up to 5 meters of capillary and level models.
 e - Standard Jis B2201: Groove Finishing: 3.2 to 6.3 μm Ra (125 to 250 μ" AA). Whereby: Ra (average ruggedness) and Rt (total ruggedness). (9) Degrease cleaning not available for carbon steel flanges. (10) Applicable only for: Diaphragm Thickness of 0.05mm. Diameters/Capillary Length: 2" ANSI B 16.5, DN 50 DIN, JIS 50 A, for seals up to 3 meters of capillary and level models (by inquiry). 3" ANSI B 16.5, DN 80 DIN, JIS 80 A, for seals up to 5 meters of capillary and level models.
Groove Finishing: 3.2 to 6.3 µm Ra (125 to 250 µ" AA). Whereby: Ra (average ruggedness) and Rt (total ruggedness). (9) Degrease cleaning not available for carbon steel flanges. (10) Applicable only for: - Diaphragm Thickness of 0.05mm. - Diameters/Capillary Length: 2" ANSI B 16.5, DN 50 DIN, JIS 50 A, for seals up to 3 meters of capillary and level models (by inquiry). 3" ANSI B 16.5, DN 80 DIN, JIS 80 A, for seals up to 5 meters of capillary and level models.
 (10) Pogrease cleaning not available for carbon steel flanges. (10) Applicable only for: Diaphragm Thickness of 0.05mm. Diameters/Capillary Length: 2" ANSI B 16.5, DN 50 DIN, JIS 50 A, for seals up to 3 meters of capillary and level models (by inquiry). 3" ANSI B 16.5, DN 80 DIN, JIS 80 A, for seals up to 5 meters of capillary and level models.
 (10) Applicable only for: Diaphragm Thickness of 0.05mm. Diameters/Capillary Length: 2" ANSI B 16.5, DN 50 DIN, JIS 50 A, for seals up to 3 meters of capillary and level models (by inquiry). 3" ANSI B 16.5, DN 80 DIN, JIS 80 A, for seals up to 5 meters of capillary and level models.
 Diaphragm Thickness of 0.05mm. Diameters/Capillary Length: 2" ANSI B 16.5, DN 50 DIN, JIS 50 A, for seals up to 3 meters of capillary and level models (by inquiry). 3" ANSI B 16.5, DN 80 DIN, JIS 80 A, for seals up to 5 meters of capillary and level models.
 Diameters/Capillary Length: 2" ANSI B 16.5, DN 50 DIN, JIS 50 A, for seals up to 3 meters of capillary and level models (by inquiry). 3" ANSI B 16.5, DN 80 DIN, JIS 80 A, for seals up to 5 meters of capillary and level models.
3" ANSI B 16.5, DN 80 DIN, JIS 80 A, for seals up to 5 meters of capillary and level models.
4" ANSI B 16.5, DN 100 DIN, JIS 100 A, for seals up to 8 meters of capillary and level models.
- Faces: RF and FF.
- Iemperature Limits:
+10 to 100°C; +101 to 150°C (by inquiry).
Not applicable for diaphragm thickness: N1 – 0.10mm.
- Not applicable for use with housing.
 Not applicable for use with housing. Performance with Halar see page 6.22.

Flanged Remote Seal with Extension - SR301E

Description

The **SR301E** is a flanged seal with welded diaphragm. The diaphragm is extended from the seal flange and welded to the extension. Differently from Model SR301T, it is not supplied with housing, because the diaphragm coincides with the internal wall of the tank.

Bolts and nuts are not supplied with the seal.

For Dimensions Models and Pressure Limits see respectively the pages 6.24 (for integral flange), 6.25 and 6.26 (for slip-on flange) for Dimensions and page 6.17 for Pressure Limits.

MODEL SR301E	FLANGED REMOTE SEAL WITH EXTENSION									
	CC	DE	Process	s Conne	ction, Ra	ange and Standard (3)				
i	2	1	1.1/2" 1	50 # ANS	SI B-16.5	(9)				
!	2	2	1.1/2" 3	00 # ANS	SI B-16.5	5 (9)				
	2	3	1.1/2" 6	00 # ANS	SI B-16.5	(9)				
1	3	1	2" 150 #	ANSI B	-16.5					
	3	2	2" 300 #	ANSI B	-16.5					
i	3	3	2" 600 #	000 # ANSI B-16.5						
!	4	1	3" 150 #		-16.5					
	4	2	3 300 #	FANGI B	-10.5					
1	4	3	3 000 #		-16.5					
	5	2	4 130 # 4" 300 #		-16.5					
i	5	3	4" 600 #) # ANSI B-16.5						
-	7	B	DN 40 F	40 PN10/40 DIN EN1092-1 (9)						
i	8	В	DN 50 F	DN 50 PN10/40 DIN EN1092-1 (2)						
!	9	С	DN 80 F	PN10/40	DIN EN1	092-1 (2)				
	Α	Α	DN 100	PN10/16	5 DIN EN	1092-1				
	A	С	DN 100	PN25/40) DIN EN	1092-1				
ł	i		CODE	Capilla	ry Lengt	h				
!	1	i	1	500 n	nm					
	i		2	1000 n	nm					
1	!	i	3	2000 r	nm					
	-	!	5	3000 r	nm					
i	1		6	4000 r	nm					
!			7	5000 r	nm					
i	i		8	8 6000 mm						
!		1	9	9 8000 mm						
1	i	-	в	B 9000 mm						
!	!	i	A	10000 r	nm					
1	÷		<u> </u>	11000 n	nm					
!		i	i	CODE	Diaphra	gm waterial				
	1			L.	316L Sta	aniess Steel				
1		i	i	M	Monel 4	00				
		!		Т	Tantalu	m				
i		i i	i	Ŭ	Titaniun	n				
			A 316L Stainless Steel with Teflon Lining							
i	1		B Tantalum with Teflon Lining							
	G 316L Gold Plated Stainless Steel									
i	i.		-	L	316L St	ainless Steel with Halar Lining (8)				
1	C Hastelloy with Letion Lining									
i	i.		-	- i -	CODE					
1			!		D D	DC 200 – silicone oli				
i	i		-	i i	F	DC 704 – silicone oil				
!	1	i i	i i	1	Ť	Fluorolube MO-10 (1)				
	- i		N Neobee M20							
1	!	i	G Glycerin + Water (5)							
	- 1				в	Fomblim 06/06				
i	1	i	Krytox 1506							
		1	H Halocarbom 4.2							
i	1	i	CODE Extension Length (2)							
		1	1 50 mm (2")							
i	1		i	2 100 mm (4")						
		!	!	3 150 mm (6")						
i	i i		-	4 200 mm (8")						
1			!	1		77 Special Optional Rems"				
i	1		-	i	1					

SR301E – 4 2 3 H S 1 / *

* Leave it blank when there are not optional items.

Shield Material A0 - 304 Stainless Steel A1 - 316 Stainless Steel With PVC Lining A3 - 316 Stainless Steel With PVC Lining A3 - 316 Stainless Steel With PVC Lining A3 - 316 Stainless Steel With PVC Lining F0 - 316L Stainless Steel (Integral Flange) F1 - C276 Hastelloy (Integral Flange) F2 - 304L Stainless Steel (Integral Flange) F3 - Super Duplex (UNS 32750) (Integral Flange) (5) F4 - Duplex (UNS 31803) (Integral Flange) F5 - Coated Carbon Steel (Slip-on Flange) F6 - 304 Stainless Steel (Slip-on Flange) F6 - 304 Stainless Steel (Slip-on Flange) F6 - 304 Stainless Steel (Slip-on Flange) F7 - 316 Stainless Steel (Slip-on Flange) F7 - 316 Stainless Steel (Slip-on Flange) F1 - Raised Face (ANSI, DIN, JIS) H1 - Flat Face With Sealing Channel - RTJ (ANSI B 16.20) H3 - Tongue Type Face (DIN) (5) H4 - Groove Type Face (DIN) (5) H5 - Small Tongue (ANSI) (5) H6 - Small Tongue (ANSI) (5) H7 - Large Tongue (ANSI) (5) H8 - Large Groove (ANSI) (5)		OPTIONAL ITEMS						
A3 - 316 Stainless Steel With PVC Lining F0 - 316L Stainless Steel (Integral Flange) F1 - C276 Hastelloy (Integral Flange) F2 - 304L Stainless Steel (Integral Flange) (5) F3 - Super Duplex (UNS 31803) (Integral Flange) (5) F4 - Duplex (UNS 31803) (Integral Flange) (5) F5 - Coated Carbon Steel (Slip-on Flange) F6 - 304 Stainless Steel (Slip-on Flange) F7 - 316 Stainless Steel (Slip-on Flange) F7 - 316 Stainless Steel (Slip-on Flange) F7 - 316 Stainless Steel (Slip-on Flange) H0 - Raised Face (ANSI, DIN, JIS) H1 - Flat Face (ANSI, DIN, JIS) H2 - Flat Face (ANSI, DIN, JIS) H3 - Tongue Type Face (DIN) (5) H3 - Tongue Type Face (DIN) (5) H5 - Small Tongue (ANSI) (5) H6 - Small Groove (ANSI) (5) H7 - Large Tongue (ANSI) (5) H8 - Large Groove (ANSI) (5) H9 - Duplex	Shield Material	A0 - 304 Stainless Steel A1 - 316 Stainless Steel A2 - 304 Stainless Steel With PVC Lining						
H0 - Raised Face (ANSI, DIN, JIS) H1 - Flat Face (ANSI, DIN) H1 - Flat Face (ANSI, DIN) H2 - Flat Face With Sealing Channel - RTJ (ANSI B 16.20) H3 - Tongue Type Face (DIN) (5) H4 - Groove Type Face (DIN) (5) H5 - Small Tongue (ANSI) (5) H6 - Small Groove (ANSI) (5) H7 - Large Tongue (ANSI) (5) H8 - Large Groove (ANSI) (5) H7 - Large Tongue (ANSI) (5) H8 - Large Groove (ANSI) (5) H7 - Large Tongue (ANSI) (5) H8 - Large Groove (ANSI) (5) J1 - C276 Hastelloy J2 - 304l Stainless Steel (5) Insulator Kit (4) K1 - With Kit K1 - With Kit Special Procedures P1 - Degrease Cleaning (Oxygen or Chlorine Service) (7) P5 - Mounting according NACE Standard Diabhragm Thickness N0 - Default (10)	Material / Flange Type	A3 - 316 Stahless Steel (integral Flange) F0 - 316L Stahless Steel (integral Flange) F1 - C276 Hastelloy (integral Flange) F2 - 304L Stahless Steel (integral Flange) (5) F3 - Super Duplex (UNS 32750) (integral Flange) F4 - Duplex (UNS 31803) (integral Flange) (5) F5 - Coated Carbon Steel (Slip-on Flange) F6 - 304 Stahless Steel (Slip-on Flange) F7 - 316 Stahless Steel (Slip-on Flange)) (5)					
J0 - 316 Štainless Šteel J3 - Super Duplex (UNS 32750) (5) Extension Material J1 - C276 Hastelloy J4 - Duplex (UNS 31803) (5) J1 - C276 Hastelloy J4 - Duplex (UNS 31803) (5) J2 - 304l Stainless Steel (5) J4 - Duplex (UNS 31803) (5) Insulator Kit (4) K0 - Without Kit K1 - With Kit Special Procedures P1 - Degrease Cleaning (Oxygen or Chlorine Service) (7) P5 - Mounting according NACE Standard Diaphragm Thickness N0 - Default (10)	Face (6)	H0 - Raised Face (ANSI, DIN, JIS) H1 - Flat Face (ANSI, DIN) H2 - Flat Face With Sealing Channel – RTJ (AN H3 - Tongue Type Face (DIN) (5) H4 - Groove Type Face (DIN) (5) H5 - Small Groove (ANSI) (5) H6 - Small Groove (ANSI) (5) H7 - Large Groove (ANSI) (5) H8 - Large Groove (ANSI) (5)	ISI B 16.20)					
Insulator Kit (4) K0 - Without Kit K1 - With Kit Special Procedures P1 - Degrease Cleaning (Oxygen or Chlorine Service) (7) P5 - Mounting according NACE Standard Diaphragm Thickness N0 - Default (10) N1 - 0 1mm (5)	Extension Material	J0 - 316 Stainless Steel J1 - C276 Hastelloy J2 - 304l Stainless Steel (5)	J3 - Super Duplex (UNS 32750) (5) J4 - Duplex (UNS 31803) (5)					
Special Procedures P1 - Degrease Cleaning (Oxygen or Chlorine Service) (7) Pianbragm Thickness No - Default (10) N1 - 0 Imm (5)	Insulator Kit (4)	K0 - Without Kit K1 - With Kit						
Diaphragm Thickness N0 - Default (10) N1 - 0.1mm (5)	Special Procedures	P1 - Degrease Cleaning (Oxygen or Chlorine Service) (7) P5 - Mounting according NACE Standard						
	Diaphragm Thickness	N0 - Default (10) N1 - 0.1mm (5)						

Note – SR301E:
(1) Fluorolube Filling Fluid Is Not Available With Monel Diaphragm.
(2) The Smar Standardized PN10/40 (With Dimension PN40), however, the DIN Standard Divides It in PN10/16 and PN25/40.
(3) Flanges ANSI # (1500 and 2500), DIN PN (63, 100, 160 and 250) and JIS. Supply by inquiry.
(4) The Insulator Kit is applicable with Raised Face (H0) and Flat Face (H1), with Gasket T (Teflon) material and limited only for the
models ANSI until #600, DIN until P40 and JIS until 40K; for models with extension the gasket T (Teflon) have special format.
(5) Item by inquiry.
(6) Finishing of the flange faces sealing regions.
a - Standard: ANSI B 16.5 / MSS-SP6:
Raised or Flat Face with grooved lining: 3.2 to 6.3 μ m Ra (125 to 250 μ " AA);
Face Small or Large Tongue and Small or Large Groove with smooth finishing not exceeding: 3.2 µm Rt (125 µ" AA);
b - Standard RTJ ANSI B 16.20 / MSS-SP6:
Smooth finishing not exceeding: 1,6 μm Rt (63 μ" AA);
c - Standard DIN EN-1092-1:
Grooved Finishing "B1" (PN 10 to PN40): 3.2 to 12.5 µm Ra (125 to 500 µ" AA);
Smooth Finishing "B2" (PN 63 to PN100), "C" (Tongue) and "D" (Groove): 0.8 to 3.2 µm Ra (32 to 125 µ" AA).
d - Standard Din 2501 (DIN 2526):
Smooth Finishing "E" (PN 160 to PN250): Rz = 16 (3.2 µm Ra (125 µ" AA)).
e - Standard Jis B2201:
Groove Finishing: 3.2 to 6.3 μm Ra (125 to 250 μ" AA).
Whereby: Ra (average ruggedness) and Rt (total ruggedness).
(7) Degrease cleaning not available for carbon steel flanges.
(8) Applicable only for:
- Diaphragm Thickness of 0.05mm.
- Diameters/Capillary Length:
2" ANSI B 16.5, DN 50 DIN, JIS 50 A, for seals up to 3 meters of capillary and level models (by inquiry).
3" ANSI B 16.5, DN 80 DIN, JIS 80 A, for seals up to 5 meters of capillary and level models.
4" ANSI B 16.5, DN 100 DIN, JIS 100 A, for seals up to 8 meters of capillary and level models.
- Faces: RF and FF.
- Temperature Limits:
+10 to 100°C;
+101 to 150°C (by inquiry).
 Not applicable for diaphragm thickness: N1 – 0.10mm.
- Performance with Halar see page 6.22.
(9) Not available for slip-on flange.
(10) Diaphragms of Litanium and Monel available only in 0.1 mm, and diaphragms of Tantalum only in 0.075 mm.

Threaded Remote Seal – SR301R

Description

The **SR301R** is a threaded connection seal. The diaphragm is welded to the flange. This model is always supplied with housing, because the process thread is located in this part. The (optional) flush connection in the housing enables to remove deposits on the diaphragm without disconnecting the seal. The parts are bolted together and sealed with a gasket.

This model is supplied with bolts and nuts in Stainless Steel 316.

For Dimension Models and Pressure Limits see respectively the page 6.27 for Dimensions and page 6.17 for Pressure Limits.
MODEL SR301R	THRE	ADED RE	MOTE	SEAL		
Critico III	CODE	Proces	s Conn	ection		
	1	1/4 NPT				
!	2	3/8 NPT				
	3	1/2 NPT				
	4	3/4 NPT	•			
	5	1 NPT	_			
i	6	1 ½ NP				
		1/2" BSI	<u> </u>			
i	<u> </u>	CODE	Dress	ura Linniu	(2)	
1	. !		2500 pr	ure Linnin si (E)	(3)	
i	- i -		2300 pt	Capill	any Long	ith
!		!	4 CODE	500 r		
i i			2	1000	mm	
!	1	!	3	1500	nm	
			4	2000 1	nm	
!	1	1	5	3000 i	nm	
			6	4000 ı	nm	
1	i	i i	7	5000 ı	nm	
			8	6000 ı	nm	
i	i	i	9	8000 1	nm	
			P .	10000	11111 mm	
1	i i	i _ !	-î-	CODE	Dianh	ragm Material
			1	I	316L St	ainless Steel
!	i	1	i	н	Hastell	by C276
				м	Monel	400
i	- i -	i	- i	т	Tantalu	Im
			!	U	Titaniu	n
i	- i -	i	-	A	316L S	tainless Steel with Teflon Lining
1				В	Tantait	Im with Tetion Lining
i	- i	i	- 1	G	Hastell	ov with Teflon Lining
1	. !		!	ų į	CODE	Filling Fluid
i		- i		!	CODL	PC 200 silizana sil
!	!		1	i	D	DC 200 - Silicone cil
i	- 1	- i		!	F	DC 704 – Silicone oli
!	1		i i		т	Syltherm 800
1				!	N	Neobee M20
!	1		i i		G	Glycerin + Water (5)
1			-		В	Fomblim 06/06
!	1	1	i		ĸ	Krytox 1506
1				1		Halocarbom 4.2
!	1		i		i	CODE Lower Housing
i			-	!		I 316L Stainless Steel
!	1		i		i	H Hastelloy C276
				i i	!	D Dupley (UNS 32750) (5)
!	i i	1	i		i	A 304L Stainless Steel (5)
1			-	i	!	M Monel
1	i i	i i	i		- i	CODE Gasket Material (4)
1			1	i	!	T Teflon (Ptfe)
i.	i	1	i		i	G Grafoil (Flexible Grafoil)
	1		1	i	!	CODE Flush Connection
i	i	i	i	-		0 Without Flush Connection
	1		:	i	!	1 With Flush Connection (2)
i	i	i	i	1		CODE Optional Items*
1	!		!	i	!	ZZ Special Options – Specify
000010		, in the second se				
S1560015 -	4		- 3	-	A	

* Leave it blank when there are not optional items.

	OPTIONAL ITEMS
Shield Material	A0 - 304 Stainless Steel A1 - 316 Stainless Steel A2 - 304 Stainless Steel With PVC Lining A3 - 316 Stainless Steel With PVC Lining
Flange Material	F0 - 316 Stainless Steel F1 - C276 Hastelloy F2 - 304L Stainless Steel F3 - Super Duplex (UNS 32750) (5) F4 - Duplex (UNS 31803) (5)
Lower Housing Connection	G0 - With Flush Connection of ¼" NPT (If Supplied with Housing) G1 - With Two Flush Connections of ¼" NPT at 180° G2 - With Two Flush Connections of ¼" NPT at 90° G3 - With Two Connections of ½" – 14 NPT at 180° (With Lid) G4 - Without Flush Connection
Special Procedures	P1 - Degrease Cleaning (Oxygen or Chlorine Service) (6)
Diaphragm Thickness	N0 – Default (7) N1 - 0.1mm (5)

- Note SR301R:
 (1) Fluorolube Filling Fluid Is Not Available With Monel Diaphragm.
 (2) Flush connection not available for process connection 1½" NPT.
 (3) See Table 4 For Pressure Limits and Temperature.
 (4) See Table 7 Gasket Application Guide for Pressure and Temperature Limits.
 (5) Item by inquiry.
 (6) Degrease cleaning not available for carbon steel flanges.
 (7) Diaphragms of Titanium and Monel available only in 0.1 mm, and diaphragms of Tantalum only in 0.075 mm.

Sanitary Remote Seal – SR301S

Description

The SR301S is a seal for food and other applications where the sanitary connections are necessary. The diaphragm is welded to the connection face, which can be Threaded type or Tri-Clamp, allowing an easy and fast connection/disconnection of the process equipment.

For Dimension Models and Pressure Limits see respectively the pages 6.34, 6.35 and 6.36 for Dimensions and pages 6.17 and 6.18 for Pressure Limits.

Leave it blank when there are not optional items.

	OPTIONAL ITEMS
Shield Material	A0 - 304 Stainless Steel A1 - 316 Stainless Steel A2 - 304 Stainless Steel with PVC Lining A3 - 316 Stainless Steel with PVC Lining
Special Procedures	P1 - Degrease Cleaning (Oxygen or Chlorine Service) (7) P3 - Polishing of the wet parts according to 3A Certification (4) (6)
Diaphragm Thickness	N0 - Default N1 - 0.1mm (6)

Note - SR301S:

(1) Extension Material in 316 Stainless Steel and wet part with diaphragm material.

(2) Not available for Tri-clamp in 304 stainless steel.

(4) Compliant with 3A-7403 standard for food and other applications where sanitary connections are required:

- Neobee M2O Filling Fluid
- Wet Face lining: 0.8 µm Ra (32 µ" AA) Wet O-Ring: Viton
- (5) HP High Pressure. (6) Item by inquiry.
- (7) Degrease cleaning is not available for Carbon Steel Flanges

Pancake Remote Seal - SR301P

Description

The **SR301P** is a seal with welded diaphragm, whose assembly requests blind flanges. This model is supplied with housing and flush connection (optional). The flush connection removes deposits on the diaphragm without disconnecting the seal. The seal diaphragm and the housing are wetted (in contact with the process fluid). However, the blind flange does not get wet.

Bolts, nuts and blind flange are not supplied with the seal.

The pressure limits are established by pressure class of the blind flange.

For Dimensions Models and Pressure Limits see respectively the pages 6.28 and 6.29 for Dimensions and page 6.17 for Pressure Limits.

 * Leave it blank when there are not optional items.

	OPTIONAL ITEMS
Shield Material	A0 - 304 Stainless Steel A1 - 316 Stainless Steel A2 - 304 Stainless Steel with PVC Lining A3 - 316 Stainless Steel with PVC Lining
Flange Material	F0 - 316L Stainless Steel F1 - C276Hastelloy F2 - 304L Stainless Steel (4) F3 - Super Duplex (UNS 32750) (4) F4 - Duplex (UNS 31803) (4)
Lower Housing Connection	G0 - With Flush Connection of ¼" NPT (If Supplied with Housing) G1 - With Two Flush Connections of ¼" NPT at 180° G2 - With Two Flush Connections of ¼" NPT at 90° G3 - With Two Connections of ½" - 14 NPT at 180° (With Lid)
Face (6)	H0 - Face (ANSI, DIN, JIS) (5)
Insulator Kit	K0 - Without Kit K1 - With Kit
Special Procedure	P1 - Degrease Cleaning (Oxygen or Chlorine Service)
Diaphragm Thickness	N0 – Default (8) N1 - 0.1 mm

Note – SR301P:	
 Meets Din 2501 PN 10PN250 Standard, however with grooved lining and if mounted with counter-flange by solicited pressure class. Fluorolube filling fluid is not available with Monel diaphragm. Supplied without gasket. Imm by inquiry. This face does not cause interference when mounted with counter-flanges with Flat Face (FF) or Raised Face (RF). 	 (6) Finishing of the flange faces sealing regions. a - Standard ANSI B 16.5 / MSS-SP6: Face with grooved lining: 3.2 to 6.3 µm Ra (125 to 250 µ" AA); b - Standard DIN EN-1092-1: Grooved Finishing (PN 10 to PN100): 3.2 to 12.5 µm Ra (125 to 500 µ" AA); c - Standard JIS B2201: Groove Finishing: 3.2 to 6.3 µm Ra (125 to 250 µ" AA). Whereby: Ra (average ruggedness) and Rt (total ruggedness). (7) Applicable only for: Diaphragm Thickness of 0.05mm. Diaphragm Thickness of 0.05mm. Diaphragm Thickness of 0.05mm. Z ANSI B 16.5, DN 50 DIN, JIS 50 A, for seals up to 3 meters of capillary and level models (by inquiry). 3" ANSI B 16.5, DN 80 DIN, JIS 100 A, for seals up to 5 meters of capillary and level models. Faces: RF and FF. Temperature Limits: +10 to 100°C; +10 to 150°C (by inquiry). Not applicable for use with housing. Performance with Halar see page 6.22. (8) Diaphragms of Tiatuium and Monel available only in 0.1 mm, and diaphragms of Tantalum only in 0.075 mm.

Pancake Remote Seal with Extension - SR301Q

Description

The **SR301Q** is a seal with welded diaphragm, whose assembly requests blind flanges. The diaphragm is extended from the seal flange and welded to the extension. Differently from Model SR301P, it is not supplied with housing, because the diaphragm coincides with the internal wall of the tank.

Bolts, nuts, gaskets and blind flange are not supplied with the seal.

The pressure limits are established by pressure class of the blind flange.

For Dimensions Models and Pressure Limits see respectively the page 6.28 for Dimensions and page 6.17 for Pressure Limits.

	MODEL SR301Q PANC	AKE REMOTE SEAL WITH EXTENSION
	CODE 1	Process Connection, Pressure Class / Standard 1 1/2" 150 600 # ANSI B-16.5
	2	2" 150 600 # ANSI B-16.5 3" 150 600 # ANSI B-16.5
	4	4" 150 600 # ANSI B-16.5 DN 40 PN1040 DIN EN1092-1 (1)
	6	DN 50 PN1040 DIN EN1092-1 (1) DN 80 PN1040 DIN EN1092-1 (1)
		DN 100 PN1040 DIN EN1092-1 (1) CODE Capillary Length
		1 500 mm 2 1000 mm
		3 1500 mm 4 2000 mm
		5 3000 mm 6 4000 mm
		7 5000 mm 8 6000 mm
		9 8000 mm B 9000 mm
	1	A 10000 mm CODE Diaphragm Material
	i i	I 316L Stainless Steel H Hastellov C276
		M Monel 400 T Tantalum
		U Titanium A 316L Stainless Steel with Teflon Lining
		B Tantalum with Teflon Lining G 316L Stainless Steel Gold Plated
		L 316L Stainless Steel with Halar Lining (6) C Hastelloy with Teflon Lining
		CODE Fill Fluid S DC 200 - silicone oil
		D DC 704 – silicone oil
		T Syltherm 800
		Glycerin + Water
		K Krytox 1506
		CODE Extension Length
		1 50 mm (2) 2 100 mm (4") 2 50 mm (5")
		3 (150 mm (6)) 4 200 mm (6")
		ZZ Special Optional items*
I	SR301Q - 2	3 I S 1 / *
	* Leave it blank w	hen there are not optional items.
	Shield Material	A0 - 304 Stainless Steel A1 - 316 Stainless Steel A2 - 304 Stainless Steel With PVC Lining
		A3 - 3 to Stainless Steel With PVC Lining F0 - 316L Stainless Steel F1 - C73F Hastellov
	Flange Material	F2 - 304L Stahless Steel (3) F3 - Super Duplex (UNS 32750) (3)
	Face (5)	F4 - Duplex (UNS 31803) (3) H0 - Face (ANSI, DIN, JIS) (4)
	E de maio	J0 - 316 Stainless Steel J1 - C276Hastelloy
	⊏xtension Material	J2 - 304L Stainless Steel (3) J3 - Super Duplex (UNS 32750) (3)
	Insulator Kit	34 - Duplex (UNS 31803) (3) K0 - Without Kit
	Special	NI - wum Nit P1 - Degrease Cleaning (Oxygen or Chlorine Service)
	Procedure Diaphragm	NO – Default (7)
Note – SR301Q:	INICKNESS	N1 • V. I IIIII
(1) Meets Din 2501 PN 10PN40 Standard, however with	(5) Finishing of a - Standa	the flange faces sealing regions: rd ANSI B 16.5 / MSS-SP6:
pressure class. (2) Fluorolube filling fluid is not available with Monel diaphraom	Face b - Standar	with grooved lining: 3.2 to 6.3 μm Ra (125 to 250 μ" AA); d DIN EN-1092-1;
(3) Item by inquiry.(4) This face does not cause interference when mounted with	Groov c - Standar	eo Finishing (FN 10 to FN100): 3.2 to 12.5 μm Ra (125 to 500 μ" AA); d JIS B2201: = Enisishio: 3.2 to 6.3 μm Ra (125 to 250 μ" AA)
counter-flanges with Flat Face (FF) or Raised Face (RF).	Where (6) Applicable of	by: Ra (average ruggedness) and Rt (total ruggedness). niv for:
	- Diaphrag - Diameter	m Thickness of 0.05mm. s/Capillary Length:
	2" AN 3" AN	ISI B 16.5, DN 50 DIN, JIS 50 A, for seals up to 3 meters of capillary and level models (by inquiry). ISI B 16.5, DN 80 DIN, JIS 80 A, for seals up to 5 meters of capillary and level models.
	4" AN - Faces: R	ISI B 16.5, DN 100 DIN, JIS 100 A, for seals up to 8 meters of capillary and level models. F and FF.
	- Tempera +10 to	ture Limits:) 100°C; to 150°C (by inquiry)
	- Not appli	cable for diaphragm thickness: N1 – 0.10mm. noc with Hajar see page 6.22.
	(7) Diaphragms	of Titanium and Monel available only in 0.1 mm, and diaphragms of Tantalum only in 0.075 mm.

Level Transmitter – LD300L

Description

The **LD300L** is a pressure or level transmitter using a high side flange. Its technical specifications are the same as the LD300L catalogue. The specifications for precision, drift and temperature effect of the same as the LD300L catalogue. The LD300L is a transmitter for industrial applications. The process connections can be supplied with housing when not having an extension.

For LD300L dimensions see pages 6.30 (for integral flange) and 6.31 (for slip-on flange). For Pressure Limits see the Tables of the page 6.17.

MO	DEL	LEVE		SMITT	ERS																							
LD: LD: LD:	301 302 303	HART ^R FOUNE PROFIL	ATION F	IELDBU	JS™																							
		COD L2 L3 L4 L5 -2	Range Min. -50 -250 -2500 25000	Limits Max. 50 250 2500 25000	Mi Sp 1.2 2.0 20.8 208	n. an 25 kP 18 kP 13 kP 13 kP 13 kP	nit a a a a	F 	Range I Win. 200 -36 360 625 3	imits Max. 200 36 360 625 do)	Mir Spa 5 0.3 3 30.2	n. in ir p p	Unit hH ₂ O si si si	N	ote: Tł up	ne ran per ra	ge car nge va	n be e alue n	extenc nust b	led up e limite	to 0.7 ed to ti	5 LRL he flan	and 1. ge ratii	2 URL w ng.	vith small	degradati	on of accur	acy. The
			1 316 2 316 3 Has 4 Has 5 Mor	LSST LSST telloyC telloyC telloyC telloyC tellOyC tellOyC	S S S S S S S S S S S S S S S S S S S	licone O ert Fluo licone O ert Fluo licone O , Adapt CS (Drai	il (2) rolube il (1) (2 rolube il (1) (2 er and n/Vent	Oil (3) (2 2) Oil (1) (3 2) d Drain/ t in Stair	25) 3) (25) /Vent Va nless St	7 Tan 8 Tan 9 316 A Mon D 316 alves eel) (2	talum LSST el400 LSST mater 2)	Silico Inert I Fomb Fomb Inert I ial (Lo	ne Oil (2 Fluorolu Iim Oil Iim Oil (Krytox C Dw Side	2) be C (1) Dil (2: e) Mon	il (3) (2 5) el 400	5) E G K M P (1)	Hastell Tantalu Monel4 Monel4 Monel4	loyC27 um 400 400 Go 400 Go	76 old Pla old Pla	Ine Ine Ine Ine Sili ated Ine	ert Kryf ert Kryf ert Kryf icone (ert Kryf	tox Oil (tox Oil (tox Oil (Oil (1) (tox Oil ((1) (25) (25) (1) (25) 2) (1) (25)	Q 3 R H S T	16L SST Iastelloy C antalum	Inert 276 Inert Inert	Haloc 4.2 Oi Haloc 4.2 Oi Haloc 4.2Oil	il (25) il (1) (25) i (25)
				H H I 3 - C	astello 16 SS ⁻ OD. 0 V B B	y C276 - CF8 Wetted /ithout C una N thylopo	(CW – M (AS O'Rin D'Ring	- 12MW TM – A3 g Mater s	, ASTM 351) rial (Lov	– A49 w Side	4) (1)	ĸт	Ralrez Teflon	316 316	SST – SST –	CF8N CF8N Note	I (AST I (AST : O'rin	⁻ M – A - <u>M – A</u> gs are	A351) A351) e not a	(Drain/ Flange availab	Vent i with	in Hast PVDF the side	telloy C (Kynar es with	276) (1)) insert (remote) (3) (4) (5) seals.	A 304	L SST	
						OD. D O Wi A Dr	thout ain/Ve	/ent Po Drain/Vent (Opp	sition (ent oosite to	Low S Proce	ide) ss Co	nnect	ion)		D Bo J To	ttom p		No	te: Fo re Dr	or bette comme ain/Ver	r Draii nded. nt valv	n/Vent ve are i	operat not ava	ion, ven iilable or	t valves a n the side	re strongl s with ren	y note seals.	
!		1	1				0 W	/ithout I	ndicator				1	With	Digita	l indic	ator											
							С	OD. P 0 1/4 1 1/2 3 Re	rocess 4 - 18 N 2 - 14 N emote S	Conn PT (W PT (W eal (W	ectior ithout ith Ada ith Plu	n (Lov Adap apter) ig) (7	v Side) ter))	5 9 T	1/2 Rer 1/2	- 14 I note S 14 B	NPT A Seal (L SP (W	xial w .ow Vo 'ith Ad	rith P\ olume lapter	/DF Ins Flange)	ert (3 e) (3)) (4) (6 (7)	^{;)} w	Withou	it Connec	tion (Abso	lute Refere	nce)
			1 1 1 1 1	1 1 1 1 1	1 1 1 1 1			C	DD. El 0 1/2 1 3/4 2 3/4 3 1/2	ectric - 14 M - 14 M - 14 M - 14 M	al Cor NPT (2 NPT (v SSP (v SP (w	necti 9) vith 31 vith 31 ith 31	ion 16 SST 16 SST 6 SST :	ada ada adap	pter for pter for oter for	· ½ - ² ½ - ² ½ - 1	14 NP ⁻ 14 NP ⁻ 4 NPT	T) (26 T) (9) T) (9)	i)		A B Z	M20 x PG 13 User's	1.5 (3 .5 DIN specif	0) (30) ication				
İ		i	1	1	1 1				CO	D. Z	ero ar	nd Sp	an Adju	ust Vdiur	tmont													
		-	- - -			:				CC	DD. F	Proce	ss Con	nec	tion													
			 	 	 						J 1" / 1" V 1" D 1. D 1. D 2. A 2" B 2" B 2"	150 # 300 600 1/2" 1 1/2" (1/2" (150 # 300 #	# (ANS # (ANS 50 # (A 300 # (A 300 # (A 300 # (A 4 (ANS 4 (ANS 4 (ANS 4 (ANS	I B1 I B ANS ANS ANS I B1 I B1 I B1	6.5) (3 6.5) (3 6.5) (3 816.5 816.5 816.5 8.5) 6.5) 6.5)	1) (1) (1) (1) (5) (5)			1 3'3' 3'3'3' 3'4'4' 10'4' 5 R D D D D	' 150 # ' 300 # ' 600 # ' 150 # ' 300 # ' 300 # ' 600 # N 25 F N 40 F N 50 F	(ANS) (ANS)	SI B16. SI B16. SI B16. SI B16. SI B16. SI B16. SI B16. /40 (31 /40	5) 5) 5) 5) 5) 5)	6 7 8 S F T G L H Z	DN 80 DN 100 DN 100 JIS 40A JIS 50A JIS 50A JIS 80A JIS 80A JIS 100 User's s	PN 10/40 PN 10/10 PN 25/40 20K (21) 10K (21) 40K (21) 10k (21) 20K (21) 20K (21) 20K (21) 500 (21) 40K (21)) 5)))))))	
		-	1 1 1	 	 				-			23 20 20	16L SS ser's s	ar ar T (Ir pecit	tegral ication	ge ry Flang	e (L	a Ha 4 30	astello 4 SS	у C276 Г (Slip-	6 (Inte on Fla	gral Fla ange)	ange)	5 316 6 Co	6 SST (SI ated Carb	p-on Flar on Steel	ige) (Slip-on Fla	nge)
			 	 	1 1 1 1 1								OD E	Exte 0 m 50 m 00 m	nsion m (0") m (2") m (4")	Lengt	h am (l	ovol '	Top	3 1 4 2 Z U	50 mr 00 mr Iser's	m (6") m (8") specifi	cation	Note	e: Extensi	on Mater	al 316L SS	т
			 	 	 									1 2 3 4 5	316 Has Mor Tan Tita	SST stelloy nel 40 italum nium	C276 0 (10) (10)	id (I o		an)			6 7 B L C A	316L S 316L S Tantalu 316L S Hastel 304L S	ST with T ST Gold p um with Te tainless S loy with T SST	eflon Lini blated eflon Linir steel with eflon Lini	ng (For 2"ar Ig Halar Linin ng	nd 3") g (20)
					 							 			1 3 2 4 N	DC DC MC Kry Ne	200 \$ 704 \$ 0 – 10 /tox O obee 0D. Lo	Silicor Silicor Fluor il M20 F	ne Oil ne Oil rolube Propy Hous	Oil (8) ene Gl ing Ma	ycol C terial	Dil		G Gly B Fo H Ha T Sy	ycerin + V mblim 06 alocarbon Itherm 80	/ater (11) /06 4.2 0 Oil		
												 					0 W St 2 Ha 3 St C	Vithout tainles astello uper [OD. 0	t Lowe ss Ste by C2 Duple Gask Witho	er Hous el 316 76 (UNS et Mate	3275 rial	2) 0) (11)		4 Du 5 Sta M Mo	iplex (UN ainless St onel	S 31803) eel 304L	(11) (11)	
			 	 	 							 						T G C L	Teflor Grafoi Coppe Stainle COD.	(Ptfe) I (Flexi er ess 316 Contil	ble lea 3 L nues	ad) Next P	age					
LD:	301	L2	1	i 1 1	B	ן U	1	0	0	1	1	2	2	1	1	1	і Т	¦	*	+	TYPI	ICAL I	MODE	EL NUN	/IBER			

 * Leave it blank when there are not optional items.

MODEL	LEVE	LTRANS	бмітте	ERS (CONTI	NUOU	S)															
	COD.	Flanges	s Bolts	and N	Nuts M	ateria																
	A0 A1	Plated Ca 316 SST	arbon S	teel (D	Default)	(22)							A5 Ha	stelloy C	276							
	A2	Carbon S	Steel (AS	STM A	193 B7	M) (1)	(22)	orioe (ader	ntore	122-5	nifele	ls mo	unting h	racket	s etc)						
i I	ł	D0 7	/16" UN	F (Def	ault)	ang a	ccesso	ones (aua	pters	, 111a	mole	ns, 1110		Tackets	s, elc,						
1	1	D1 M	110 X 1.	5 Thre	ad		1 (10.00						M	12 x 1.75	,							
 		CC	20. FI	lange aised f	Facing	g Finis RE (De	sh (18) fault)															
	ł			at Fac	e – FF			weilehl	o for	for ANSI standard flange) (17) Q4 Grooved Face (11)												
	Q2 Ring Joint Face – RTJ (Only available COD. Output Signal										or ANSI standard flange) (17)											
I			C	30 4	– 20 m	A (Def	ault)		_	_	(G1 0	– 20 m	nA (4 wire	e) (13)	G3 NAM	IUR NE	E43 Extende	ed 4-20 m	A (Burnou	t 3.55 and 22.8	mA)
I I			1	CO	DD. H	lousin	g Mate	erial (2	27) (2	28)			110	Aluminu		alian Atao amb a	(00)	(ID)((T) = -)	0	Aluminum	. O	22)
			1	; Ľ	HU A H1 3	16 SS	m (Dera Γ – CF8	auit) (IF M (AS	77yp TM –	- A351	1) (IP	/Type)	HZ H3	316 SS	T for Sal	line Atmosphere	re (23) e (23) (l	(IPW/TypeX) IPW/TypeX)	⁽⁾ H4	(IPW/Typ	eX)	23)
	i	i	!	1	C	DD.	Fag Pla	ate		-:6!	(Def			1								
			÷			J0 1 J1 E	Blank	, wnen	spec	cined	(Dera	auit)	J2	Accordi	ng to us	er's notes						
1	-		1	!		C	OD. F		onfig	jurati	ion		M1	Without								
	1		:	1	-	: L				D1 In) dica	tion	IVIII	Withou	It PID							
		i	!	i i	i i	i i		Y0	LCD	01: Pe	ercen	tage (E	Default)				Y3	LCD1: T	emperatu	ire (Engine	ering Unit)	
	Ì	1	!	1	i	i -	:	Y1 Y2	LCD	01: Ct 01: Pr	rren essu	: – I (m re (Eng	iA) gineerin	ng Unit)			YL	J LCD1: A	ccording	to user no	tes (14)	
i i	ł	-	1	!		:	-		COD). L(CD2	Indica	ation	Defeu (#)								
:	!		:	i	-	!	i		Y0 Y4		D2:	Percer Currer	ntage ([nt – I (m	Jerault) hA)			Ye	LCD2: T	emperatu	ire (Engine	ering Unit) tes (14)	
			1	i i	1	-	i	i L	Y5		CD2:	Pressu	ure (Eng tificati	gineering	Unit)			EOD2. N	coording	10 4361 110	(14)	
	i	i		i -	i	i i	1	Ì	-		11	FM:)	XP, IS,	NI, DI,			16	Without	Certificati	ion		
i			i i	1	i i	i -	1	-	÷		12 13	NEM CSA:	KO: Ex : XP, IS	-d, Ex-ia , NI, DI			17	EXAM (E	OMT): Gro	oup I, M1 E	x-ia	
1			1	1		ł	-	1	Ì		14 15	EXAI CEP	M (DMT EL: Ex-	"): Ex-ia;∣ d. Ex-ia	Nemko:	Ex-d	IN	BDSR -	GOST: E	x-d, Ex-ia		
	1		1	į.	ł	ļ	i	÷			1	COD	. Pain	ting								
	i	i	-	i i	i	į	1	Ì	-		-	P0 P3	Gray	Munsell Polvest	N6,5 P ter	olyesters	P8 P9	B Without Safety F	Painting) xv – Flec	trostatic Paintir	na
	-		i	1	i i	i -	1	-	÷		!	P4	White	e Epoxy			PC	Safety F	Polyester	rs – Electi	ostatic Paintin	g
1	-	-	Ì	!	1	1	1	-	÷		i.	P5	Yello	w Polyes	ster							
_D301-L2I-BU10-01-12211	A0	D0	F0 (G0	H0	JO	MO	Y0	Y	0	16	P0	*	•	TYPIC	CAL MODEL N	IUMBE	R				
* Leave it blank when th	ere are	not optic	onal iter	ms.																		
										0	ΡΤΙΟ	NAL	ITEMS	;								
Burn-out		E	3D - Dow	/n Scale	e (Accor	dance t	o NAML	JR NE4	3 spe	cificat	ion)		BU - Up	Scale (Ac	cordance	e to NAMUR NE4	3 specit	fication)				
Special Features		Z	ZZ - User	r's Sper	cificatior	(Oxyge	en or Ch	ionne 5	ervice	e) (15))		C2 - F0	vacuum	Applicatio	JN	65-	Mounting act		ACE Standa	aro	
Lower Housing Connection	n	L	J0 - With	Flush	Connec	tion of 3	4" NPT (If Suppl	lied w	vith Ho	ousing	I)	U2 - Wit	h Two Flu	sh Conne	ections of 1/4" NP	Tat 90°		U4 – Wi	ithout Flush	Connection	
Insulator Kit (16)			<0 - With	nout Kit	IUSII CO	Inection	15 01 74	INF I di	100				03 - 111		Inections	5 UI /2 - 14 INF I	at 100	(WITI LIG)				
Diaphragm Thickness		- K	(1 - With 10 - Def:	Kit ault (24	l)		N1 -	0.1mm	(11)													
Note – LD300L:																						
 (1) Meets NACE MR - 01 - 75 (2) Silicone oil not recommende 	5/ISO 15 led for O	156 recomm xygen (O2)	mendatio	ons. orine Se	ervice.				ſ	(19) T (20) A	Temp Applic	erature able or	applicat	tion range:	-40 to 1	50°C.						
(3) Not applicable for vacuum	service.	,		. 20							- Diap - Dian	hragm heters/	Thickne Capillary	ess of 0.05 / Length:	mm.							
(5) O-ring material must be of	Viton or	Kalrez.									2	" ANSI " ANSI	B 16.5, B 16.5,	DN 50 DI DN 80 DI	N, JIS 50 N, JIS 80) A, for seals up t) A, for seals up t	o 3 met o 5 met	ers of capillar ers of capillar	y and leve y and leve	el models (b el models.	y inquiry).	
(6) Maximum pressure 24 bar.(7) For remote seal is only available.	ulable fla	inge in 316	stainles	s steel-	- CF8M	(ASTM	A351) (1	thread		-	- Face	" ANSI s: RF a	B 16.5, and FF.	DN 100 E	DIN, JIS 1	00 A, for seals u	p to 8 m	eters of capil	lary and le	evel models	i.	
M12). (8) Fluorolube fills fluid not ava	ailable wi	ith Monel d	liaphragr	n.						-	- Tem +	peratur 10 to 1	re Limits 00°C;	: 								
(9) Options not certified for Ex (10) Not recommended with or	plosive A	Atmosphere	э.							-	+ Not	101 to applica	150°C (I ble for d	oy inquiry) liaphragm	thickness	s: N1 – 0.10mm.						
(11) Item by inquiry.										-	Not Perf	applica	ble for u e with H	ise with ho lalar see p	ousing. bage 6.22	2.						
(12) Supplied without Gasket.(13) Without certification for Ex	kplosion	proof certif	ication o	or Intrins	sically sa	afe.				(21)	NOT AN	plicable	or slip- e for sal	on tiange. ine atmos	phere.			40.447	لمحمل			
(14) Limited values to 4 1/2 dig (15) Degreaser's cleaning is n	gits; limit ot availa	ed unit to 5 ble for cart	i charact	.ers. I flange	s					(23)	Pvv / Diaph	i ypeX ragms	tested for of Titani	um and M	onel avai	aing to NBR 8094 ilable only in 0.1	+/ AS IN mm, and	d diaphragms	of Tantalu	um only in ().075 mm.	
(16) The insulator kit is application material.	able with	Raised Fa	ce (HO)	and Sn	nooth Fa	ace (H1) with Ga	asket		(25) (26) (27)	Certifi	en nuic ed for u	uguaran use in Ex	rees satet	tmospher	re (CEPEL and C	SA).					
T(Teflon) and only for the fo	llowing r	nodels:	1 401							(28)	ngres	s Prote	ection:	ເອເຣ UI Wal	ei coium	III IUI 24 NUUIS.						
- ANSI UNTII #600 , DIN UN - For models with extension	 ANSI until #600, DIN until P40 and JIS until 40K; For models with extension the Gasket T (Teflon) it has special share. 											Produ	ict	CEP	EL L	NEMKO /		FM		CSA	NEPSL	
(17) Gasket for housing, avail(18) Finishing flange faces:	I7) Gasket for housing, available only in Stainless 316.I8) Finishing flange faces:											1 0 20	Y	IDeelo	8001	EXAM		Type 4Y/65			ID67	
ANSI B 16.5 / MSS-SP6: - Raised or Smoth Fa	ace with	gooved lin [;]	ing: 3.2 t	io 6.3 µ	m Ra ('	125 a 2	50 µ" AA);		l		LD30.	^	11-00/0	0/11	IF 00/00/W		· ype 47/0P		196 4V	1507	
 Small or Large Ton exceeding: 3.2 µm 	gue Fac Rt (125 j	e and Smal µ" AA);	II or Larg	je Groo	ve with	smooth	finishing	g not		(29) ((30) (Certifi Certifi	ed for u	use in Ex use in Fx	colosive At	tmospher tmospher	re (CEPEL, FM, C	CSA, NE	EPSI, NEMKO) and EXA M).	M).		
RTJ ANSI B 16.20 / MSS-SP - Smooth finishing no	6: ot excee	ding: 1.6 µr	m Rt (63	3 µ" AA);					(31)	Not av	ailable	for integ	gral flange		,,	,		,			
DIN EN 4000 4:																						
- Grooved finishing	"B1" (PN	10 a PN40)): 3.2 a	12.5 µr	n Ra (12	25 a 500)μ ΑΑ);															
- Grooved finishing " - Smooth finishing "E Ra (32 a 125 µ	"B1" (PN 82" (PN 6 1" AA).	10 a PN4(33 a PN100	0): 3.2 a)), "C" (T	12.5 µr ongue)	n Ra (12 e "D" (0	25 a 500 Groove):	0.8 a 3	, .2 μm														
- Grooved finishing "E - Smooth finishing "E Ra (32 a 125 µ DIN 2501 (DIN 2526): - Smooth finishing "E	"B1" (PN 82" (PN 6 1" AA). 5" (PN 16	110 a PN4(33 a PN100 30 a PN250	0): 3.2 a)), "C" (T I): Rz =	12.5 μr ongue) 16 (3.2	n Ra (12 e "D" (0 : µm Ra	25 a 500 Groove): (125 μ") µ° АА); : 0.8 а 3. АА).	, .2 μm														
DIN EN-1092-1: Grooved finishing " Ra (32 a 125 p Ra (32 a 125 p DIN 2501 (DIN 2526): - Smooth finishing "E JIS B2201: - Grooved finishing 3	"B1" (PN 82" (PN 6 1" AA). 5" (PN 16 8.2 a 6.3	I 10 a PN4(53 a PN100 50 a PN250 μm Ra (125	0): 3.2 a)), "C" (T)): Rz = 5 a 250 j	12.5 μr ongue) 16 (3.2 μ" AA).	n Ra (12 e "D" (0 :µm Ra	25 a 500 Groove): (125 μ"	AA): AA).	, .2 μm														

Sanitary Differential Pressure Transmitter – LD300S

Description

The **LD300S** is a transmitter for food applications and others, where sanitary connections are necessary.

The process connections can be Threaded or Tri-Clamp, allowing a fast and easy connection and disconnection of the process. The standard of lining of the wet surface is 32 Ra, highly polished, so that the seal is free of the breach not allowing the lodging of the food or bacterium that can infect the process.

The Smar's sanitary equipments (LD300S and SR301S) are supplied according to 3A standard, the sanitary pattern more accepted in the food industry, beverage and pharmaceutical.

For Dimensions of the LD300S see the pages 6.32, 6.33 and 6.36. For Pressure Limits see the Tables of the pages 6.17 and 6.18.

The figures 6.1 and 6.2 below show the LD300S Transmitter with Threaded and Tri-Clamp connection respectively.

Figure 6.1 – LD300S with Threaded Connection

Figure 6.2 – LD300S with Tri – Clamp Connection

MODEL	SANITARY	TRANSM	TTERS								
LD301 LD302 LD303	HART [®] FOUNDAT PROFIBUS	ION FIELD	BUS™								
	CODE Rar S2 S3 S4 -2 S5 -23 L CO	ge Limits Min. -50 -250 2500 5000 DE Diaph	Max. 50 250 2500 25000 aragm Mate	Min 2 20 erial and f	Span 1.25 2.08 0.83 8.30 Fill Fluic	Unit kPa kPa kPa kPa I (Low Sid	e)	Range Li Mir -: -3	mits 200 -36 360 525	Max. 200 36 360 3625	Min. Span Unit 5 inH ₂ O 0.3 psi 3 psi 30.2 psi
	1 2 3 4 5	316L 316L Haste Haste Monel	SST SST Iloy C276 Iloy C276 400 Flange	Silico Inert Silico Inert Silico (s), Adap	one Oil (Fluorolu one Oil (Fluorolu one Oil (ter (s) a	2) Ibe Oil (3) I) (2) Ibe Oil (1) I) (2) Ind Drain V	7 19) 8 9 3) (19) A D alve(s) Materi	Tantalum Tantalum 316L SST Monel 400 316L SST al (Low Si	Silicon Inert F Fombli Fombli Inert K de)	e Oil (2) luorolube C m Oil m Oil (1) rytox Oil (1)	E Hastelloy C276 Inert Krytox Oil (1) (19) Q 316L SST Inert Haloc 4.2 Oil (19) G Tantalum Inert Krytox Oil (19) R Hastelloy C276 Inert Krytox Oil (19) M Monel 400 Inert Krytox Oil (1) (19) R Hastelloy C276 Inert Haloc 4.2 Oil (1) (19) M Monel 400 Gold Plated Silicone Oil (1) (12) Nonel 400 Gold Plated Silicone Oil (1) (2) P Monel 400 Gold Plated Inert Krytox Oil (1) (19) Silicone Oil (1) (2) Silicone Oil (1) (2)
		C H I	Plated Hastello 316 SS CODE	CS (Drain oy C276 (0 T - CF8M Wetted	in Stainl CW-12M (ASTM O-Ring	ess Steel) W, ASTM - A351) Material (I	(17) A494) (1) .ow Side)				M Monel 400 (1) N 316 SST – CF8M (ASTM – A351) (Drain in Hastelloy C276) (1) P 316 SST – CF8M (ASTM – A351) Flange with PVDF (Kynar) insert (3) (4) (5)
			BE	Without Buna N Ethylen	O-Ring e - Propy	/lene	ow Sido)			K T V	Kalrez Note: O-Rings are not available on the sides with remote seal. Teflon Viton
					Withou Drain (CODE	t Drain Opposite to Local In	process conr dicator	ection)			D Bottom Note: For better drain operation, drain valves are strongly recommended. U Top Drain valve are not available on the sides with remote seal.
						CODE 0 1 3	Process Con 1/4 - 18 NPT (1/2 - 14 NPT (Remote Seal	nection (L Without Ao With Adap With Plug	ow Side) lapter) ter) – Vacuun	n Assembly	5 1/2 - 14 NPT Axial with PVDF insert (3) (4) (6) 9 9 Remote Seal (Low Volume Flange) (3) (7) 1 1/2 - 14 SP (With Adapter)
							CODE Ele 0 1/2 - 1 3/4 - 2 3/4 -	ctrical Co 14 NPT (2 14 NPT (1 14 BSP (1	nnection 2 3) Vith 316 S Vith 316 S	SST adapte	A M20 X 1.5 (24) er for 1/2 - 14 NPT) (20) B PG 13.5 DIN (24) er for 1/2 - 14 NPT) (9) Z User's Specification
							3 1/2 ·	DE Zer	Vith 316 S o and Sp Local Adj	SST adapte an Adjust ustment	ar for 1/2 - 14 NPT) (9)
								COL 8 9 9 H V V V V V V V V X W 4 4 8 K 3 3 5 5 C L 2 2 S	DE Prov Threa Thre	sess Conn ded DN25 ided DN40 ided DN40 ided DN50 ided DN50 ided DN80 ided DN80 ided DN80 ided IDF 2° ided IDF 3° ided IDF 3° ided IDF 3° ided IDF 3° ided IDF 3° ided RJT 2 ided RJT 2 ided RJT 3 ided RJT 3 ided RJT 3 ided RJT 3	action DIN 11851 - with extension/316L SST (10) (11) 7 Threaded SMS 2" - with extension/316L SST (10) (11) DIN 11851 - with extension/316L SST (10) (11) E Threaded SMS 3" - with extension/316L SST (10) (11) DIN 11851 - with extension/316L SST (10) (11) Threaded SMS 3" - with extension/316L SST (10) (11) DIN 11851 - with extension/316L SST (10) (11) Threaded SMS 3" - with extension/316L SST (10) (11) DIN 11851 - with extension/316L SST (10) (11) Threaded SMS 3" - without extension/316L SST (10) (11) DIN 11851 - without extension/316L SST (10) (11) Tri-Clamp 11/2" - without extension/316L SST (11) DIN 11851 - without extension/316L SST (10) (11) G Tri-Clamp 2" - without extension/316L SST (11) - without extension/316L SST (10) (11) Tri-Clamp 2" - without extension/316L SST (11) Tri-Clamp 2" + Without extension/316L SST (11) - without extension/316L SST (10) (11) P Tri-Clamp 2" + Without extension/316L SST (13) - without extension/316L SST (10) (11) P Tri-Clamp 2" + Without extension/316L SST (11) - without extension/316L SST (10) (11) F Tri-Clamp 3" + Without extension/316L SST (13) - without extension/316L SST (10) (11) F Tri-Clamp 3" + Without extension/316L SST (13) - without extensi
									H	Hastello 316L SS	y C276 ST
										CODE S D F T N G B K H	Fill Fluid DC 200 - silicone oil DC 704 - silicone oil Fluorolube MC-10 Syltherm 800 Neobee M20 (11) Glycerin + Water (12) Fomblin 06/06 Krytox 1506 Halocarborn 4.2 CODE Wet 0-ring T T Tefno (11) B Una-N (11) V Vitor (11) CODE CODE Tank Adapter
											WithOut Tank Adapter With Tank Adapter in 316 SST CODE Tri-Clamp O Without Tri-Clamp 2 With Tri-Clamp in 304 SST CODE Continues next page
LD301	52		в	U	1	U	0 1	A	2		

* Leave it blank when there are not optional items.

MOL	DEL	SANIT	ARY TR	ANSMI	ITTERS ((CONTIN	IUOUS)										
		CODE	Flang	je Bolt	s and N	uts Mat	erial										
		A0 A1	316 S	ST	on Steel	(Default	t) (17)				A5	Hastelloy	C276				
		<u>A2</u>	Carbo	Flan	ige Thre	ad for f	37M) (1) (fixing ac	(17) cessori	es (adap	ters, m	anifold	s, mount	ting bracket	s, etc)			
		į	D0 D1	7/16 M10	" UNF ([X 1.5 T	Default) hread					D2	M12 X 1.	75				
	i			CODE	Outpu	it Signa	l										
	1		÷	G0 G1	4 – 20 0 – 20	mA (De mA (4 v	efault) wire) (13)					G3	NAMUR N	E43 Exte	ende	ed 4-20 mA (Burnout 3.55 and 22.8 mA)	
	-		1 1 1	į	CODE H0	Housi	ng Mate	rial (21) fault) (IP/	(22) (Type)			H2 Alu	uminum for S	aline At	tmos	sphere (18) (IPW/TypeX)	20
		i	:	ł	H1	316 S		<u>BM (AST</u>	M – Á35	1) (IP/Ty	ype)	H3 31	6 SST for Sa	aline Atm	nosp	phere (18) (IPW/TypeX) H4 Auminum Copper Free (18) (IPW/TypeX)	Dex)
	ł		ļ			JO	With tag	g, when s	specified	(Default	t)						
			ł		i L	J1 J2	Accordi	ng to use	er's notes		_				_		_
	!			į		C	ODE P	ID Conf Vith PID	iguratior (Default)	1							
					i	i L	M1 V	Vithout P	ID D1 Indic	ation							-
			i						D1: Perc	entage	(Default	t)		Y	3	LCD1: Temperature (Engineering Unit)	
			ł		ł			/2 LC	D1: Pres	sure (Ei	ngineeri	ing Unit)		Y	U	LCD1: User's Specification (14)	_
	-	ļ		ł	į	i		YO		2 Indica 2: Perce	ation entage (Default)		Y	6	LCD2: Temperature (Engineering Linit)	
					ł		-	Y4 Y5		2: Curre 2: Press	nt - I (m sure (En	nA) Igineering	g Unit)	Ŷ	ΰ	LCD2: User's Specification (14)	
	- - -		i			-			CODE	Identi	ification	n Plate					
	!			į	-	i			12	NEM	(0: Ex-0	d, Ex-ia		16	6 \ 7	Without Certification	
	į				i		-	1	14	EXAN	1 (DMT) Ex-d. E	: Ex-ia; N x-ia	Nemko: Ex-d	18	B	0 to 20 mA: LD301 (13)	
			i					i		CODE	E Pain	ting					
		-					1			P0 P3	Black	Munsell k Polyest	N 6,5 Polyes er	ster P	9	Without Painting Safety Blue Epoxy – Electrostatic Painting	
	:					į				P4 P5	Yellov	e Epoxy w Polyes	ter	P		Safety Polyester - Electrostatic Painting	
	į				ł		-	1									
LD3	01	A0	D0	GO	HO	JO	MO	YO	YO	16	P0	*	🖌 🗭 ТҮ	PICAL	. MC	ODEL NUMBER	
* Leave it	t blank w	hen there	e are no	ot optio	onal item	IS.											_
Burn	out				BD -	Down S	icale (Ac	cordance	e to NAM	UR NE4	OPTIO 13 speci	NAL ITE ification)	MS				
Snoc	ial Proc	oduros			BU - C1 -	Up Scal Degreas	le (Accor se Clean	dance to ing (Oxy	NAMUR gen or Ch	NE43 s	specifica Service)	ation) (15)			C4	- Polishing of the wet parts according to 3A Certification (11) (12)	
Opec		coures			C2 -	For Vac	uum App	olication							C5	- Mounting according NACE Standard	-
Diant		ures			N0 -	Default	specifical	lion									-
Noto		nicknes	5		N1 - I	0.1mm ((12)]
(1) Me	ets NAC	E MR-01-	75/ISO	15156 r	recomme	ndations	s. orine Sen	vice									
(3) No (4) Dr	ot applical ain not ap	ble for vac	cuum se	ervice.	ygen (oz	2) 01 0110		100.									
(5) O- (6) Ma	Ring mat aximum p	erial must ressure 2	t be of V 4 bar.	iton or l	Kalrez.												
(7) Fo (8) HF	or remote P – High F	seal is on Pressure.	ly availa	able flan	nge in 31	6 Stainle	ss Steel -	· CF8M (A	ASTM A35	i1) (threa	ad M12).						
(10) N (11) C	lot availal	ble for Tri-	-clamp. 7403 sta	ndard fo	or food a	nd other	applicatio	ons where	sanitary	connecti	ions are	required.					
(, c	- Neobee - Finishir	e M2O Fill ng wet Fac	l Fluid ce: 0,8 μ	um Ra (32 µ" AA	()	approate		o our intur y	00111000		roquiou					
(12) lt	- Wet O-	Ring: Vito quiry.	n, Buna	-N and	Teflon												
(13) V (14) L	Vithout ce imited va	ertification lues to 4	for expl 1/2 digits	osion p s; limite	roof or in d unit to	trinsically 5 charac	y safe. ters.										
(16) T	emperatu lot applica	ure application	ation rar	nge: -40) to 140 °	C and Ta	ables 5 ar	nd 6 – pag	ges 6.17 a	and 6.18							
(18) II (19) T	PW / Type he inert f	eX tested luid guara	for 200 intees sa	hours a afety for	according r Oxygen	to NBR	8094 / As rvice.	STM B 11	7 standar	d.							
(20) ((21)	PX8 teste	for use in d in 10 m	Explosi eters of	ive Atm water c	osphere column fo	(CEPEL or 24 hou	and CSA rs.	.).									
(22) Ir	ngress Pr	otection:		_	NEM	IKO /			- 1								
	Prod		CEPI	8///	EX	AM	T		C		NEP	251 27					
	LD3	UA .	1200/0	0/11	1206/	00/11	i y	pe 47/6P	iy	μe 4λ	126	<i></i>					
(23) ((24) (Certified for Certified for	or use in E or use in E	Explosive Explosive	e Atmos e Atmos	sphere (C sphere (C	CEPEL, F CEPEL, M	⁻ M, CSA, NEPSI, N	NEPSI, N EMKO an	NEMKO aı ıd EXAM).	nd EXAN	И).]

Technical Data

The calibration maximum limit of the remote seal or level transmitter should be the smallest value between the connection pressure limit (Tables 1 to 6) and the upper range limit of the transmitter (URL). See transmitter's manual.

	Pressure Limit (Bar) - ANSI (ASME B 16.5 – 2003) – Table 1														
Temperature °C (°F) Class	- 29 to 38 (20 to 100)	50 (122)	100 (212)	150 (302)	200 (392)	250 (482)	300 (572)	325 (617)	350 (662)						
150	15.9	15.3	13.3	12.0	11.2	10.5	10.0	9.3	8.4						
300	41.4	40.0	34.8	31.4	29.2	27.5	26.1	25.5	25.1						
600	82.7	80.0	69.6	62.8	58.3	54.9	52.1	51.0	50.1						
900	124.1	120.1	104.4	94.2	87.5	82.4	78.2	76.4	75.2						
1500	206.8	200.1	173.9	157.0	145.8	137.3	130.3	127.4	125.4						
2500	344.7	333.5	289.9	261.6	243.0	228.9	217.2	212.3	208.9						

	Pressure Limit (Bar) - DIN (EN1092-1 / DIN 2501) – Table 2														
Temperature ºC (ºF) PN	-10 to 50 50 100 150 200 250 300 350 (14 to 122) (122) (212) (302) (392) (482) (572) (662)														
10	7.6	7.4	6.3	5.7	5.3	4.9	4.6	4.4							
16	12.3	11.8	10.2	9.2	8.5	7.9	7.4	7.1							
25	19.2	18.5	16.0	14.5	13.3	12.4	11.7	11.1							
40	30.6	29.6	25.5	23.1	21.2	19.8	18.7	17.8							
63	48.3	46.6	40.2	36.4	33.5	31.1	29.5	28.1							
100	76.6	74.0	63.9	57.8	53.1	49.4	46.8	44.5							

Pressure Limit (Kgf/cm ²) - JIS B 2201 – Table 3												
Temperature °C (°F) PN	120 (248)	220 (428)	300 (572)	350 (662)								
10 K	14.0	12.0	10.0									
20 K	34.0	31.0	29.0	26.0								
40 K	68.0	62.0	57.0	52.0								

Pressure Limit (Bar) - SR301 R – Table 4										
Temperature °C (°F) Model	25 (77)									
2500 psi	172									

Note – Tables 1, 2, 3 and 4:

The Tables 1, 2 and 3 are based on the Norm and are subject to modifications. For more details consult the corresponding Norms;
The DIN EN1092-1 norm does not assist pressure limits for PN 160 and 250;
It is necessary verify the application limits of the sealing gasket, because the limits can do unviable the tables above;
The tables 1, 2 and 4 for 316L e 304L. Stainless Steel.

	Pressure Limit Tri-Clamp (TC) (Bar) – Table 5												
DN	Normal	Pressure	High Pressure (HP)										
DN	20°C (68ºF)	120°C (248ºF)	20°C (68ºF)	120°C (248ºF)									
1.1/2"	34	20	100	60									
2" / DN50	28	17	70	42									
3"	22	13	70	42									

Pressure Limit for Thread (Bar) – NP – Table 6												
DN	RJT	IDF	SMS	DIN								
DN	120°C (248ºF)	120°C (248ºF)	120°C (248ºF)	140°C (284ºF)								
DN25	10	16	40	40								
1.1/2" / DN40	10	16	40	40								
2" / DN50	10	16	25	25								
3" / DN80	10	10	25	25								

Note – Tables 5 and 6:

Note – Tables 5 and 6: This Tables are based on the Norm and are subject to modifications. For more details consult the Norm: - Tri-Clamp (TC) - BS 4825 : Part 3; ISO 2852; - RJT - BS 4825 : Part 5; - IDF - BS 4825 : Part 4; ISO 2853; - SMS – 1145; - DIN - 11851(Standard OD).

Application Guide of Sealing Gasket – Table 7 (3, 4 and 7)													
Gas	ket Material	Factor (P.T) (Bar x ⁰C) <u>Ambient</u> (5)		Minimum Temperature ° C (°F) (8)	Maximum Temperature ° C (°F) (8)	Maximum Pressure (Bar absolute) (6)	Ph	Hardness (HB)					
	Teflon (PTFE)	2700	—	-210 (-346)	260 (500)	83	0 to 14	—					
No Metallic	Flexible Graphite		Neutral	-240 (-400)	3000 (5432)		0 to 14						
		12000	Oxidant	-240 (-400)	450 (842)	20 (1)		-					
			Vapour	-240 (-400)	650 (1202)								
Metallic -	Copper	Above 25000	_	_	260 (500)	(2)	—	80					
	316L Stainless Steel	ABOVE 20000	_		815 (1499)	(2)	_	160					

Note	e – Table 7:		
(1) (2) (3) (4)	Value for gasket without metallic reinforcement. According to pressure class referring to Norm (ANSI, DIN and JIS). This table does not gasket specification, only indicative guide for application. The corrosion analysis is very important for sealing gasket application.	(5) (6) (7) (8)	Factor (P.T) = Pressure (Bar abs.) x Temperature (°C). Maximum Pressure - Use Continuous. For projects of gasket other factors must be considered as the gasket and screw squeezing. For maximum and minimum temperatures verify the Limits for Seal/Level filling fluids.

O'Ring Application Guide – Table 8												
Ring Material	Resistance to Continuo	Temperature in us Service	Application – Recommended Use and Specification									
	Minimum Temperature ° C (ºF)	Maximum Temperature º C (ºF)	Recommended	Not Recommended								
Teflon® (PTFE)	-23 (-10)	232 (450)	General Applications, Excellent resistance to acids, bases, water and amines	To avoid solvents and aromatic fuels.								
Viton	-29 (-20)	205 (400)	Products of Petroleum, Silicone Fluids, Diester Fluids.	Amines, Cetone, Hot Water/Vapor Brake Fluids.								
Buna N	-35 (-31)	135 (275)	General Applications, Products of Petroleum, Silicone Fluids, Fluids to Ethylene Glycol	Acids, Brake Fluids, Ozone, Cetones.								

	O'Ring Materials	s Guide – Table 9			
Ambient	Teflon® (PTFE)	Viton	Buna N		
Acetic Acid, 30%	S.I.	++	+++		
Acetone	-	-	-		
Air, below 93 °C (200° F)	++++	++++	++++		
Ammonia Gas, Cold	++++	-	++++		
Ammonia Gas, Hot	+++	-	-		
Ammonia, Liquid	++		+++		
Carbon Dioxide, Dry	++++	+++	++++		
Carbon Dioxide, Wet	++++	+++	++++		
Carbon Monoxide	++++	++++	++++		
Caustic Soda	++++	-	+++		
Chloro Dioxide	++	+++	-		
Citric Acid	++++	++++	++++		
Corn Oil	++++	++++	++++		
Cottonseed Oil	++++	++++	++++		
Diesel Oil	++++	++++	++++		
Ethyl Alcohol (Ethanol)	++++	++	++++		
Glycol Ethylene	++++	++++	++++		
Fish Oil	S.I.	++++	++++		
Gasoline	+++	++++	++++		
Glucose	++++	++++	++++		
Hydrogen	S.I.	++++	++++		
Kerosene	+++	++++	++++		
Methane	+++	++++	++++		
Milk	++++	++++	++++		
Mineral Oil	++++	++++	++++		
Olive Oil	++++	++++	++++		
Oxygen, Gas (Hot)	-	++	-		
Oxygen, Liquid	-	-	-		
Ozone	++++	++++	-		
Propane	++++	++++	++++		
Propylene Glycol	++++	++++	++++		
Sodium Bicarbonate	++++	++++	++++		
Vapour < 149 ºC (300 ºF)	+++	+++	-		
Vapour > 149 °C (300 °F)	++	-	-		
Vegetable Oils	++++	++++	++++		
Vinegar	S.I.	+++	+++		
Water	++++	+++++	+++++		
(++++) Recommen	ded; (+++) Satisfactory; (++) Trans	sitory; (-) Not Recommended; (S. I.)	Without Information		

Diaphragm Hydrogen Migration

The hydrogen in H2 form does not have penetration danger in the diaphragm. However if the hydrogen separates forming ions of hydrogen (H+), the penetration can happen, therefore the spaces between the molecules of the diaphragm material can be larger than the size of the ion.

Inside of the diaphragm, this ion in contact with filling fluid (silicone oils) can be return the H2 form and to be arrested (inflating the diaphragm), causing damages the measurement.

Steps to Facilitate the Migration

- In High Temperatures or High Pressures, the H_2 molecules are excited, generating its break, favoring the migration of the ion (H+);

- Processes of spontaneous generation of electric current for potential difference between flanges;

- Corrosion of the pipe material due to the process fluid, liberating ion (H+); and

- Vapour to the High Temperature can generate corrosion of the diaphragm metal and to liberate ions (H+).

Form to Inhibit the Hydrogen Migration

- Kit of electric insulator, inhibit the galvanic current between flanges; and

- Stainless Steel diaphragms gold plated can aid in the hydrogen migration due to the size of the molecular space to be smaller than the ion space.

Gold Plated Stainless Steel Diaphragm

Resistance to Diaphragm Hydrogen Migration

Diaphragm Material	AISI 316 Gold Plated	AISI 316	Hastelloy C							
Hydrogen Penetration	+++	+								
(+++) Excellent Performance, (++) Good Performance, (+) Low Performance.										

Smar Insulator Kit

The Insulator Kit Smar prevents the generation of galvanic current between metals when in contact. The difference of potential between the metals generates this current that flows from the metal with higher potential to the other. This process in the presence of aqueous solution with salts, acids or bases can start the corrosion process, where the corroded metal is always the one with bigger potential (anode).

In the processes, when it is impossible to isolate the two potencialized metals, occurs the generation of galvanic current. This current will form free ions of hydrogen (H+) in one of the solutions, with tendency to start the corrosion and the migration of the Hydrogen to the diaphragm of the Remote Seal or of the Level Transmitter.

The figure 6.3 shows the following parts that constitute the Smar Insulator Kit: Teflon Gasket (6), Nonmetallic Insulating Sleeve (4), Mica Washers (3) and Steel Washers (2).

Smar Insulator Kit Mounting

Mounting step by step:

- 1 Insert all the Nonmetallic Insulating Sleeve (4); in the holes of the Sealed Flange (5);
- 2 Put the Teflon Gasket (6) between the Flanges (5 e 7);
- 3 Insert the Steel Washers (2) and the Mica Washers (3) in the bolts (1)
- 4 Join the Flanges positioning its holes (5 and 7);
- 5 Introduce the bolts in the holes of the flanges (5 and 7) and tighten the flanges with the nuts (8)
- 6 Measure the resistance between the Sealed Flange (5) and the Flange of Process (7) that should be tending to the infinite to check the efficiency of the Insulator Kit.

NOTE

If the studs are used instead of the bolts, obey the same mounting sequence for the items 2, 3 and 4. This Insulator Kit can be applied with raised and flat face flanges.

The Gasket must be made of Teflon when the Smar Insulator Kit is indicated.

Figure 6.3 – Insulator Kit Mounting

Besides Insulator Kit described previously, there is also the Insulator Kit for Pancake Remote Seals (SR301P) and Pancake with Extension (SR301Q).

The Figure 6.4 shows this kit which is composed by: Bolts (1), Process Flange (2), Sealing Gasket in Teflon (3), Pancake Seal (4), Counter-Flange (5) and Nuts (6). Note that the "support tube" of the SR301P and SR301Q should not have direct contact with the bolts, process flanges and counter-flange, avoiding metallic contact.

Figure 6.4 – SR301P and SR301Q Electric Insulator Kit

Application with Halar for Seals and Levels

Technical Specification

Halar® is chemically one of the most resistant fluoropolymer. It is a thermoplastic of the melting process manufactured by Solvay Solexis, Inc. For its chemical structure, a 1:1 alternating ethylene copolymer and chlorinetrifluoroethylene, Halar® *(ECTFE)* offers an only combination of useful properties.

The diaphragms in 316L Stainless Steel covered with Halar®, are ideal for applications in contact with aggressive liquids. They offer excellent resistance to the chemic and abrasion with a wide temperature range. Halar® does not contaminate liquids of high purity and it is not affected by most of corrosive chemists, usually found in the industries, including strong minerals, oxidant acids, alkalis, liquid oxygen and some organic solvents.

Halar® is trademark of Solvay Solexis, Inc.

Performance Specification

For the performance specification see the equation below:

[1% SPAN x (URL/SPAN)] - Included temperature error*

Diameters/Capillary Length:

- 2" ANSI B 16.5, DN 50 DIN, JIS 50 A, for seals up to 3 meters of capillary and level models (by inquiry).

- 3" ANSI B 16.5, DN 80 DIN, JIS 80 A, for seals up to 5 meters of capillary and level models.

- 4" ANSI B 16.5, DN 100 DIN, JIS 100 A, for seals up to 8 meters of capillary and level models.

*Temperature Limits:

+10 to 100°C;

+101 to 150°C (by inquiry).

TPE – Total Probable Error (Software)

Software to calculate the assembly error of the Pressure Transmitters with the possible connections to the process.

TPE was developed to a fast and effective aid of the products related the pressure measurement. The users are the Applications Engineer and Commercial Areas. The customer can request a report of performance estimate to Smar.

This product allows doing simulations of possible assemblies, verifying important data as the error estimates of the response time, of capillary length analysis and mechanical resistance of diaphragms with temperature variation. See an example in the Figure 6.5.

ð	TPENet 4.00 (Alpha 1	.01) - Microsoft Inl	ernet Explorer							_ 8	I X
E	e <u>E</u> dit <u>V</u> iew F <u>a</u> vo	orites <u>T</u> ools <u>H</u> elp									
4	Back	회 杰님 @ Search	Gal Favorites	Media 🖽 民	• 🚑 🖬 🗐 💽 •						
Ad	dress 🙆 http://www.s	smarnet.com.br/etn/c	sicula/calculo.nbn	910					• @	Go Lini	s »
	auinment speci	fication	accurate care of prop-						`		
Lì	-quipment speci	neation									_
	LD300 (after oct/2005	5)									
	Туре:	D - Differential			Requested TPE:	5%			(\odot)		
	Range:	Range 2 (50 kPa)			Stability:	12 months			¥.		
	Diaphragm material:	316 SST			Special stability:	no					
	Sensor oil:	Silicone			Statio procesure unintere	10 hor					
	Measurement limit:	0 to 50 kPa			Vacuum:	no bai					
	Minimum temperature:	10 °C			vacuum.	10				~	
	Maximum temperature:	40 °C							sn	nar	
	Zero ajust temperature	⊂ (Zeroajust 25 °C)									
	Conections:										
	Disploracen material: 24	IE CCT			Diaphragen thickness:	Standard					
	Filling oil: Si	lcone 200/20			Thermal symmetry	Symmetric					
	Seal project M	ndel Jun/2008			Cappilary internal diame	ter: 1.10 mm [Standard]					
	High conection: SR30	01T (Type T)			Low con	nection: SR301T (Type	T)				
		Process	temp. minimum: 10	°C			Process temp. minimu	m: 10 °C			
	Conection Ø: 3 in	Process	temp. maximum: 10	0 °C	Conection	nø:3in	Process temp. maximu	um: 100 °C			
	Cappilary: 500 cm	Cappilar	y temp. minimum: 10	°C	Capilar:	500 cm	Cappilary temp. minim	um: 10 °C			
		Cappilar	ytemp.maximum: 40	°C			Cappilary temp. maxim	num: 40 °C			
	Fotal probable ei	rror									
	Accuracy:		0.08%			Minimum temperature:		-0.06%			
	Stability:		0.15% by 60.0 r	nonths		Maximum temperature:		0.06%			_
	Static pressure - zero e	mor:	0.00%			Power supply error:		0.01%			
	Static pressure - span e	error:	0.03%			Transmitter time:		0.1 s			
	Transmitter TPE to m	ninimum temp.:	0.10%			Transmitter TPE to m	naximum temp.:	0.10%			
	High side minimum temp	erature:	-0.30%			Low side minimum temp	erature:	-0.30%			
	High side maximum temp	perature:	0.49%			Low side maximum tem	perature:	0.49%			
	TPE		Minimum t	emp.	Maximum temp.						
	Seal/level error to:		0.17%		0.28%						-
1	Done								🔠 Intranet loca	1	

Figure 6.5 – TPE Software Screen

Dimensions

SR301T (RF/FF/RTJ) - "T" Type Flanged Remote Seal and SR301E (RF/FF/RTJ) - Flanged Remote Seal with Extension (Integral Flange)

DIMENSIONS IN mm (in) EXTENSION LENGTH: 0 , 50 , 100 , 150 OR 200 * FLANGES 1500 AND 2500 WITH EXTENSION HAVE SUPPLYING UNDER CONSULT

						ANSI-B 16.	5 DIMENSIC	NS					
DN	CLASS	А	В	С	C1 (FF)	C2 (RTJ)	D	E	F	F1 (RTJ)	ANEL RTJ	G	# HOLES
	150	108 (4.25)	79.2 (3.12)	20 (0.78) 15 (0.59)	21 (0.83)	1.6 (0.06)	16 (0.63)	50.8 (2)	47.6 (1.87)	R15	/	4
	300	123.9 (4.88)	88.9 (3.50)	20 (0.78) 18 (0.71)	24.4 (0.96)	1.6 (0.06)	19 (0.75)	50.8 (2)	50.8 (2)	R16		4
1"	600	123.9 (4.88)	88.9 (3.50)	24.4 (0.96) 24.4 (0.96)	24.4 (0.96)	6.4 (0.25)	19 (0.75)	50.8 (2)	50.8 (2)	R16		4
	1500	149.3 (5.88)	101.6 (4)	35.4 (1.39)		35.4 (1.39)	6.4 (0.25)	25 (0.98)	50.8 (2)	50.8 (2)	R16		4
	2500	158 (6.22)	108 (4.25)	42 (1.65)		42 (1.65)	6.4 (0.25)	25 (0.98)	50.8 (2)	60.3 (2.37)	R18		4
	150	127 (5)	98.6 (3.88)	20 (0.78	19 (0.75)	24.4 (0.96)	1.6 (0.06)	16 (0.63)	73.2 (2.88)	65 1 (2.56)	R19	40 (1.57)	4
	200	155 4 (6.12)	114.2 (4.5)	21 (0.83) 21 (0.83)	27.4 (1.07)	1.6 (0.06)	22 (0.87)	73.2 (2.88)	68.3 (2.68)	R20	40 (1.57)	-
1.1/2"	600	155.4 (6.12)	114.3 (4.5)	20.3 (1.15	20.3 (1.15)	20.3 (1.15)	6.4 (0.25)	22 (0.87)	73.2 (2.88)	68.3 (2.68)	R20	40 (1.67)	4
	4500	177.0 (7)	404 (4.99)	23.3 (1.10)	23.3 (1.10)	38.6 (1.52)	6.4 (0.25)	22 (0.07)	73.2 (2.88)	68.3 (2.68)	R20	40 (1.57)	4
	1500	177.0 (7)	124 (4.00)	50.0 (1.52)		52.0 (2.09)	0.4 (0.25)	28 (1.10)	73.2 (2.00)	00.0 (2.25)	D22	40 (1.57)	4
	2500	203.2 (0)	146 (3.73)	51.5 (2.03)	(0.79)	52.9 (2.00)	6.4 (0.23)	32 (1.20)	73.2 (2.00)	82.6 (3.25)	R23	40 (1.37)	4
	150	152.4 (6)	120.7 (4.75)	22 (0.87) 20 (0.78)	25.9 (1.02)	1.6 (0.06)	19 (0.75)	91.9 (3.62)	82.6 (3.25)	RZZ	48 (1.89)	4
	300	165.1 (6.5)	127 (5)	22.8 (0.9)	22.8 (0.9)	30.8 (1.21)	1.6 (0.06)	19 (0.75)	91.9 (3.62)	82.6 (3.25)	R23	48 (1.89)	8
2"	600	165.1 (6.5)	127 (5)	32.3 (1.27	32.3 (1.27)	32.3 (1.27)	6.4 (0.25)	19 (0.75)	91.9 (3.62)	82.6 (3.25)	R23	48 (1.89)	8
	1500	215.9 (8.50)	165 (6.50)	45 (1.77)		46.5 (1.83)	6.4 (0.25)	25 (0.98)	91.9 (3.62)	95.3 (3.75)	R24	48* (1.89)	8
	2500	235 (9.25)	171.5 (6.75)	57.7 (2.27)		59.2 (2.33)	6.4 (0.25)	28 (1.10)	91.9 (3.62)	101.6 (4)	R26	48* (1.89)	8
	150	190.5 (7.5)	152.4 (6)	24.4 (0.96	24.4 (0.96)	30.7 (1.21)	1.6 (0.06)	19 (0.75)	127 (5)	114.3 (4.5)	R29	73 (2.87)	4
3"	300	209.5 (8.25)	168.1 (6.62)	29 (1.14) 29 (1.14)	36.9 (1.45)	1.6 (0.06)	22 (0.87)	127 (5)	123.8 (4.87)	R31	73 (2.87)	8
	600	209.5 (8.25)	168.1 (6.62)	38.7 (1.52) 38.7 (1.52)	40.2 (1.58)	6.4 (0.25)	22 (0.87)	127 (5)	123.8 (4.87)	R31	73 (2.87)	8
	150	228.6 (9)	190.5 (7.5)	24.4 (0.96	24.4 (0.96)	30.7 (1.21)	1.6 (0.06)	19 (0.75)	158 (6.22)	149.2 (5.87)	R36	96 (3.78)	8
4"	300	254 (10)	200 (7.87)	32.2 (1.27	32.2 (1.27)	40.2 (1.58)	1.6 (0.06)	22 (0.87)	158 (6.22)	149.2 (5.87)	R37	96 (3.78)	8
	600	273 (10.75)	215.9 (8.5)	45 (1.77) 45 (1.77)	46.5 (1.83)	6.4 (0.25)	25 (1)	158 (6.22)	149.2 (5.87)	R37	96 (3.78)	8
EN 1092-1 / DIN2501 DIMENSIONS													
DN	PN	A	В	С	C1 (FF)		D	E	F			G	# HOLES
	10/40	115 (4.53)	85 (3.35)	20 (0.78)	20 (0.78)		2 (0.08)	14 (0.55)	68 (2.67)			1	4
25	63/100	140 (5.51)	100 (3.94)	24 (0.95)		1 /	2 (0.08)	18 (0.71)	68 (2.67)		/		4
20	160	140 (5.51)	100 (3.94)	24 (0.95)	1 /	/	2 (0.08)	18 (0.71)	68 (2.67)	1	/		4
	250	150 (5.91)	105 (4.13)	28 (1.10)	1/	/	2 (0.08)	22 (0.87)	68 (2.67)				4
	10/40	150 (5.91)	110 (4.33)	20 (0.78)	20 (0.78)	1 /	3 (0.12)	18 (0.71)	88 (3.46)		/	40 (1.57)	4
40	63/100	170 (6.69)	125 (4.92)	26 (1.02)		1 /	3 (0.12)	22 (0.87)	88 (3.46)	-	/	40 * (1.57)	4
	160	170 (6.69)	125 (4.92)	28 (1.10)	- /		3 (0.12)	22 (0.87)	88 (3.46)	-		40 * (1.57)	4
	250	185 (7.28)	135 (5.31)	34 (1.34)	+	/	3 (0.12)	26 (1.02)	88 (3.46)			40 * (1.57)	4
	10/40	165 (6.50)	125 (4.92)	20 (0.78)	22 (0.86)	/	3 (0.12)	18 (0.71)	102 (4.01)	-		48 (1.89)	4
	63	180 (7.09)	135 (5.31)	26 (1.02)	(1111)		3 (0.12)	22 (0.87)	102 (4.01)	-	/	48 (1.89)	
50	100	100 (7.03)	145 (5.71)	20 (1.02)	- /		3 (0.12)	22 (0.07)	102 (1.01)	/	/	48 (1.89)	4
	100	195 (7.68)	145 (5.71)	20 (1.12)	+ /		3 (0.12)	20 (1.02)	102 (1.01)	+ /		48 * (1.89)	4
	250	195 (7.00)	140 (5.01)	29 (1.10)	+/		3 (0.12)	20 (1.02)	102 (1.01)			48 * (1.89)	9
	250	200 (7.87)	150 (5.91)	38 (1.50)	24 (0.05)	/	3 (0.12)	20 (1.02)	102 (4.01)	- /		48 (1.89)	0
	10/40	200 (7.07)		24 (0.95)	24 (0.95)	+ /	3 (0.12)		100 (0.43)	/			0
80	63	215 (8.46)	170 (6.69)	28 (1.12)	- /	/	3 (0.12)	22 (0.87)	138 (5.43)	- /		73 (2.87)	8
	100	230 (9.06)	180 (7.09)	32 (1.26)		/	3 (0.12)	26 (1.02)	138 (5.43)	/		/3 * (2.87)	8
	160	230 (9.06)	180 (7.09)	36 (1.42)		-/	3 (0.12)	26 (1.02)	138 (5.43)	/		73 * (2.87)	8
100	10/16	220 (8.67)	180 (7.08)	20 (0.78)		/	3 (0.12)	18 (0.71)	158 (6.22)	/		96 (3.78)	8
	25/40	235 (9.25)	190 (7.5)	24 (0.95)		/	3 (0.12)	22 (0.87)	162 (6.38)	/		96 (3.78)	8
						JIS B 22	202 DIMENSI	ONS					
	CLASS	A	В	С			D	E	F			G	# HOLES
40A	1 0014	1 4 4 0 (E E)	1 10E (4 12)	26 (102)		2 (0.08)	19 (0.75)	81 (3.2)			40 (1.57)	4
	20K	140 (5.5)	105 (4.13)	20 (4								1
50A	20K 10K	140 (5.5) 155 (6.1)	120 (4.72)	26 (1.02)		2 (0.08)	19 (0.75)	96 (3.78)			48 (1.89)	4
50A	20K 10K 40K	140 (5.5) 155 (6.1) 165 (6.5)	103 (4.13) 120 (4.72) 130 (5.12)	26 (1.02 26 (1.02 26 (1.02)		2 (0.08) 2 (0.08)	19 (0.75) 19 (0.75)	96 (3.78) 105 (4.13)			48 (1.89) 48 (1.89)	4 8
50A	20K 10K 40K 10K	140 (5.3) 155 (6.1) 165 (6.5) 185 (7.28)	103 (4.13) 120 (4.72) 130 (5.12) 150 (5.9)	26 (1.02) 26 (1.02) 26 (1.02) 26 (1.02)	<u>)</u>)		2 (0.08) 2 (0.08) 2 (0.08) 2 (0.08)	19 (0.75) 19 (0.75) 19 (0.75) 19 (0.75)	96 (3.78) 105 (4.13) 126 (4.96)			48 (1.89) 48 (1.89) 73 (2.87)	4 8 8
50A 80A	20K 10K 40K 10K 20K	140 (3.3) 155 (6.1) 165 (6.5) 185 (7.28) 200 (7.87)	103 (4.13) 120 (4.72) 130 (5.12) 150 (5.9) 160 (6.3)	26 (1.02) 26 (1.02) 26 (1.02) 26 (1.02) 26 (1.02) 26 (1.02)	<u>, , , , , , , , , , , , , , , , , , , </u>		2 (0.08) 2 (0.08) 2 (0.08) 2 (0.08) 2 (0.08)	19 (0.75) 19 (0.75) 19 (0.75) 19 (0.75) 19 (0.75) 19 (0.75)	96 (3.78) 105 (4.13) 126 (4.96) 132 (5.2)			48 (1.89) 48 (1.89) 73 (2.87) 73 (2.87)	4 8 8 8

SR301T (RF/FF/RTJ) - "T" Type Flanged Remote Seal and SR301E (RF/FF/RTJ) - Flanged Remote Seal with Extension (Slip-on Flange)

	ANSI-B 16.5 DIMENSIONS																			
DN	CLASS		٩	E			С	D			E		F (RF)		FF)	F2 (RTJ)		G		# HOLES
1"	150	108	(4.25)	79.4	(3.16)	14.3	(0.56)	-		16	(0.63)	50.8	(2)	50.8	(2)	-			-	4
1	300/600	124	(4.88)	8.9	(3.5)	17.5	(0.69)	-	-		(0.75)	50.8	(2)	50.8	(2)	-			-	4
4 4/0"	150	127	(5)	98.4	(3.87)	17.5	(0.69)	-	•	16	(0.63)	73	(2.87)	73	(2.87)	-		40	(1.57)	4
11/2	300/600	156	(6.14)	114.3	(4.5)	22.2	(0.87)	-	•	22	(0.87)	73	(2.87)	73	(2.87)	-		40	(1.57)	4
	150	152.4	(6)	120.7	(4.75)	17.5	(0.69)	82.6	(3.25)	19	(0.75)	92	(3.62)	92	(3.62)	101.6	(4.00)	48	(1.89)	4
2"	300	165.1	(6.5)	127	(5)	20.7	(0.8)	82.6	(3.25)	19	(0.75)	92	(3.62)	92	(3.62)	107.9	(4.25)	48	(1.89)	8
	600	165.1	(6.5)	127	(5)	25.4	(1)	82.6	(3,25)	19	(0.75)	92	(3.62)	92	(3.62)	107.9	(4.25)	48	(1.89)	8
	150	190.5	(7.5)	152.4	(6)	22.3	(0.87)	114.3	(4.50)	19	(0.75)	127	(5)	127	(5)	133.4	(5.25)	73	(2.87)	4
3"	300	209.5	(8.25)	168.1	(6.62)	27	(1.06)	123.8	(4.87)	22	(0.87)	127	(5)	127	(5)	146.1	(5.75)	73	(2.87)	8
	600	209.5	(8.25)	168.1	(6.62)	31.8	(1.25)	123.8	(4.87)	22	(0.87)	127	(5)	127	(5)	146.1	(5.75)	73	(2.87)	8
	150 22	228.6	(9)	190.5	(7.5)	22.3	(0.87)	149.2	(5.87)	19	(0.75)	158	(6.22)	158	(6.22)	171.5	(6.75)	89	(3.5)	8
4"	300	254	(10)	200	(7.87)	30.2	(1.18)	149.2	(5.87)	22	(0.87)	158	(6.22)	158	(6.22)	174.6	(6.87)	89	(3.5)	8
	600	273	(10.75)	215.9	(8.5)	38.1	(1.5)	149.2	(5.87)	25	(1)	158	(6.22)	158	(6.22)	174.6	(6.87)	89	(3.5)	8

EN 1092-1 / DIN2501								DIMENSIONS - RF/ FF						
DN	PN		4	E	B C				E	F	=	(G	# HOLES
25	10/40	115	(4.53)	85	(3.35)	18	(0.71)	14	(0.55)	68	(2.68)		-	4
40	10/40	150	(5.91)	110	(4.33)	18	(0.71)	18	(0.71)	88	(3.46)	73	(2.87)	4
50	10/40	165	(6.50)	125	(4.92)	20	(0.78)	18	(0.71)	102	(4.01)	48	(1.89)	4
80	10/40	200	(7.87)	160	(6.30)	24	(0.95)	18	(0.71)	138	(5.43)	73	(2.87)	8
100	10/16	220	(8.67)	180	(7.08)	20	(0.78)	18	(0.71)	158	(6.22)	89	(3.5)	8
100	25/40	235	(9.25)	190	(7.50)	24	(0.95)	22	(0.87)	162	(6.38)	89	(3.5)	8

NOTES:

- EXTENSIONS LENGTH IN mm(in): 0, 50 (1.96), 100 (3.93), 150 (5.9) or 200 (7.87)

- FOR 1" AND DN25 THE EXTENSION LENGTH IS 0 mm - DIMENSIONS IN mm(in)

SR301R – Threaded Remote Seal

DIMENSIONS IN MM (") DRAIN NOT AVAILABLE FOR 1.1/2"NPT

DIMENSIONS SR301R - TABLE 10												
LIMIT	A	В	С	# HOLES								
2500PSI	89 (3.50)	76 (2.99)	51 (2.01)	6								

SR301P – Pancake Remote Seal without Extension and SR301Q – Pancake Remote Seal with Extension

WITH EXTENSION

ANSI-B 16.5												
DN	CLASS		С	Ø	В	Ø	A					
1.1/2"	150600	30	(1.18)	39.5	(1.55)	73.2	(2.88)					
2"	150600	30	(1.18)	47.5	(1.87)	92	(3.62)					
3"	150600	30	(1.18)	72.5	(2.85)	127	(5)					
4"	150600	30	(1.18)	95.5	(3.76)	157.2	(6.19)					
		ΕN	1092-1	/ DIN2	2501							
DN	PN		С	Ø	В	Ø	A					
40	1040	30	(1.18)	39.5	(1.55)	88	(3.46)					
50	1040	30	(1.18)	47.5	(1.87)	101.6	(4)					
80	1040	30	(1.18)	72.5	(2.85)	138	(5.43)					
100	1040	30	(1.18)	95.5	(3.76)	162	(6.38)					

WITHOUT EXTENSION

IA I	VSI-B16.5	DIM	ENSIC	ONS	
DN	CLASS		С	Ø	A
1.1/2"	1502500	32	(1.26)	73.2	(2.88)
2"	1502500	32	(1.26)	92	(3.62)
3"	1502500	32	(1.26)	127	(5)
4"	1502500	32	(1.26)	157.2	(6.19)
	EN 1092	-1/C	N2501	l	
DN	PN		С	Ø	A
40	10100	32	(1.26)	88	(3.46)
50	10100	32	(1.26)	101.6	(4)
80	10100	32	(1.26)	138	(5.43)
100	10100	32	(1.26)	162	(6.38)
	JIS B 220	2 DI	MENS	IONS	
	CLASS		С	Ø	A
40A	20K	32	(1.26)	81	(3.19)
504	10K	32	(1.26)	96	(3.78)
JUA	40K	32	(1.26)	105	(4.13)
004	10K	32	(1.26)	126	(4.96)
80A	20K	32	(1.26)	132	(5.19)
100A	10K	32	(1.26)	151	(5.94)

DIMENSIONS IN MM(") EXTENSION LENGTH: 0, 50, 100, 150 OR 200 *FLANGES 1500 AND 2500 WITH EXTENSION HAVE SUPPLYING UNDER CONSULT

Lower Housing

DIMENSIONS IN MM (")

ANSI-B 16.5 DIMENSIONS- FACE RF / FF											
	CI 499	ц		E	-						
	CLASS	п	5	1/4"NPT	1/2"NPT						
1"		50,8 (2,00)	35 (1,38)	25	35						
1.1/2"		73,2 (2,88)	48 (1,89)	25	35						
2"	ALL	91,9 (3,62)	60 (2,36)	25	35						
3"		127 (5,00)	89 (3,50)	25	35						
4"		158 (6,22)	115 (4,53)	25	35						
DIN EN10	92-1/ DIN2501/2	2526 FORM D D	IMENSIONS								
DN	PN	Н	J								
25		68 (2,68)	35 (1,38)	25	35						
40		88 (3,46)	48 (1,89)	25	35						
50	ALL	102 (4,02)	60 (2,36)	25	35						
80		138 (5,43)	89 (3,50)	25	35						
100		158 (6,22)	115 (4,53)	25	35						
	JIS B 2202 DI	MENSIONS									
DN	CLASS	Н	J								
40A	20K	81 (3,19)	48 (1,89)	25	35						
504	10K	96 (3,78)	60 (1,36)	25	35						
AUC	40K	105 (4,13)	60 (1,36)	25	35						
804	10K	126 (4,96)	89 (3,50)	25	35						
80A	20K	132 (5,20)	89 (3,50)	25	35						
100A	10K	151 (5,94)	115 (4,53)	25	35						

DIMENSIONS IN MM (")

ANSI-B 16.5 DIMENSIONS - FACE RTJ											
	01499	E 1		LI1	1	E	1				
DN	CLA35	FI	0-KING	111	3 1/4"NP 33,5 (2,50) 35 (1,38) 40 70 (2,75) 35 (1,38) 40	1/4"NPT	1/2"NPT				
	150	47,6 (1,87)	R15	63,5 (2,50)	35 (1,38)	40	45				
	300	50,8 (2,00)	R16	70 (2,75)	35 (1,38)	40	45				
1"	600	50,8 (2,00)	R16	70 (2,75)	35 (1,38)	40	45				
	1500	50,8 (2,00)	R16	71,5 (2,81)	35 (1,38)	40	45				
	2500	60,3 (2,37)	R18	73 (2,88)	35 (1,38)	40	45				
	150	65,1 (2,56)	R19	82,5 (3,25)	48 (1,89)	40	45				
	300	68,3 (2,69)	R20	90,5 (3,56)	48 (1,89)	40	45				
1.1/2"	600	68,3 (2,69)	R20	90,5 (3,56)	48 (1,89)	40	45				
	1500	68,3 (2,69)	R20	92 (3,62)	48 (1,89)	40	45				
	2500	82,6 (3,25)	R23	114 (4,50)	48 (1,89)	40	45				
	150	82,6 (3,25)	R22	102 (4,00)	60 (2,36)	40	45				
	300	82,6 (3,25)	R23	108 (4,25)	60 (2,36)	40	45				
2"	600	82,6 (3,25)	R23	108 (4,25)	60 (2,36)	40	45				
	1500	95,3 (3,75)	R24	124 (4,88)	60 (2,36)	40	45				
	2500	101,6 (4,00)	R26	133 (5,25)	60 (2,36)	40	45				
	150	114,3 (4,50)	R29	133 (5,25)	89 (3,50)	40	45				
3"	300	123,8 (4,87)	R31	146 (5,75)	89 (3,50)	40	45				
	600	123,8 (4,87)	R31	146 (5,75)	89 (3,50)	40	45				
	150	149,2 (5,87)	R36	171 (6,75)	115 (4,53)	40	45				
4"	300	149,2 (5,87)	R37	175 (6,88)	115 (4,53)	40	45				
	600	149,2 (5,87)	R37	175 (6,88)	115 (4,53)	40	45				

LD300L (RF/FF/RTJ) – Level Transmitter (Integral Flange)

										ANSI-	B 16.	5 DI	MENS	ONS								
DN	CLASS	/	٩	E	3	С	(RF)	C1	(FF)	C2 (F	RTJ)	D (RF)		E	F (I	RF)	F1 (RTJ)	ANEL RTJ	(G	# HOLES
	150	127	(5)	98.6	(3.88)	20	(0.78)	19	(0.75)	24.4	(0.96)	1.6	(0.06)	16	(0.63)	73.2	(2.88)	65.1 (2.56)	R19	40	(1.57)	4
1.1/2"	300	155.4	(6.12)	114.3	(4.5)	21	(0.83)	21	(0.83)	27.4	(1.07)	1.6	(0.06)	22	(0.87)	73.2	(2.88)	68.3 (2.68)	R20	40	(1.57)	4
	600	155.4	(6.12)	114.3	(4.5)	29.3	(1.15)	29.3	(1.15)	29.3	(1.15)	6.4	(0.25)	22	(0.87)	73.2	(2.88)	68.3 (2.68)	R20	40	(1.57)	4
	150	152.4	(6)	120.7	(4.75)	22	(0.87)	20	(0.78)	25.9	(1.02)	1.6	(0.06)	19	(0.75)	91.9	(3.62)	82.6 (3.25)	R22	48	(1.89)	4
2"	300	165.1	(6.5)	127	(5)	22.8	(0.9)	22.8	(0.89)	30.8	(1.21)	1.6	(0.06)	19	(0.75)	91.9	(3.62)	82.6 (3.25)	R23	48	(1.89)	8
	600	165.1	(6.5)	127	(5)	32.3	(1.27)	32.3	(1.27)	32.3	(1.27)	6.4	(0.25)	19	(0.75)	91.9	(3.62)	82.6 (3.25)	R23	48	(1.89)	8
	150	190.5	(7.5)	152.4	(6)	24.4	(0.96)	24.4	(0.96)	30.7	(1.21)	1.6	(0.06)	19	(0.75)	127	(5)	114.3 (4.50)	R29	73	(2.87)	4
3"	300	209.5	(8.25)	168.1	(6.62)	29	(1.14)	29	(1.14)	36.9	(1.45)	1.6	(0.06)	22	(0.87)	127	(5)	123.8 (4.87)	R31	73	(2.87)	8
	600	209.5	(8.25)	168.1	(6.62)	38.7	(1.52)	38.7	(1.52)	40.2	(1.58)	6.4	(0.25)	22	(0.87)	127	(5)	123.8 (4.87)	R31	73	(2.87)	8
	150	228.6	(9)	190.5	(7.5)	24.4	(0.96)	24.4	(0.96)	30.7	(1.21)	1.6	(0.06)	19	(0.75)	158	(6.22)	149.2 (5.87)	R36	96	(3.78)	8
4"	300	254	(10)	200	(7.87)	32.2	(1.27)	32.2	(1.27)	40.2	(1.58)	1.6	(0.06)	22	(0.87)	158	(6.22)	149.2 (5.87)	R37	96	(3.78)	8
	600	273	(10.75)	215.9	(8.5)	45	(1.77)	45	(1.77)	46.5	(1.83)	6.4	(0.25)	25	(1)	158	(6.22)	149.2 (5.87)	R37	96	(3.78)	8
										EN	1092	-1 DI	MENS	ONS								
DN	PN	A		В		С	(RF)	C1	(FF)				C	1	E	F (I	RF)			(3	# HOLES
DN40	10/40	150	(5.9)	110	(4.33)	20	(0.78)	20	(0.78)			3	(0.12)	18	(0.71)	88	(3.46)			40	(1.57)	4
DN50	10/40	165	(6.5)	125	(4.92)	20	(0.78)	22	(0.86)			3	(0.12)	18	(0.71)	102	(4.01)			48	(1.89)	4
DN80	10/40	200	(7.87)	160	(6.3)	24	(0.95)	24	(0.94)		/	3	(0.12)	18	(0.71)	138	(5.43)	/		73	(2.87)	8
DN100	10/16	220	(8.67)	180	(7.08)	20	(0.78)					3	(0.12)	18	(0.71)	158	(6.22)			96	(3.78)	8
	25/40	235	(9.25)	190	(7.5)	24	(0.95)			\vee		3	(0.12)	22	(0.87)	162	(6.38)			96	(3.78)	8
										JIS	5 B 22	02 D	IMENS	SIONS	3							
DN	CLASS	A		В			С					I	C	I	E	F (I	RF)			(G	# HOLES
40A	20K	140	(5.5)	105	(4.13)	26	(1.02)					2	(0.08)	19	(0.75)	81	(3.2)			40	(1.57)	4
50A	10K	155	(6.1)	120	(4.72)	26	(1.02)			/		2	(0.08)	19	(0.75)	96	(3.78)			48	(1.89)	4
	40K	165	(6.5)	130	(5.12)	26	(1.02)					2	(0.08)	19	(0.75)	105	(4.13)			48	(1.89)	8
804	10K	185	(7.28)	150	(5.9)	26	(1.02)					2	(0.08)	19	(0.75)	126	(4.96)			73	(2.87)	8
	20K	200	(7.87)	160	(6.3)	26	(1.02)		/			2	(0.08)	19	(0.75)	132	(5.2)			73	(2.87)	8
100A	10K	210	(8.27)	175	(6.89)	26	(1.02)					2	(0.08)	19	(0.75)	151	(5.95)	/		96	(3.78)	8

LD300L (RF/FF/RTJ) – Level Transmitter (Slip-on Flange)

ANSI-B 16.5 DIMENSIONS DN CLASS A B C D E F (RF) F1 (FF) F2 (RTJ) G # HOLE 1" 150 108 (4.25) 79.4 (3.16) 14.3 (0.56) - 16 (0.63) 50.8 (2) 50.8 (2) - - 4 1" 150 124 (4.88) 88.9 (3.5) 17.5 (0.69) - 19 (0.75) 50.8 (2) 50.8 (2) - - 4 11/2" 150 127 (5) 98.4 (3.87) 17.5 (0.69) - 16 (0.63) 73 (2.87) 73 (2.87) - 40 (1.57) 4 11/2" 150 152.4 (6) 120.7 (4.75) 17.5 (0.69) 82.6 (3.25) 19 (0.75) 92 (3.62) 92 (3.62) 101.6 400 11.89 4																			
DN	CLASS	,	4	E	3		С	[C		E	F (F	RF)	F1 (FF)	F2 (RTJ)	C	3	# HOLES
1"	150	108	(4.25)	79.4	(3.16)	14.3	(0.56)		-	16	(0.63)	50.8	(2)	50.8	(2)	-	-		4
'	300/600	124	(4.88)	88.9	(3.5)	17.5	(0.69)		-	19	(0.75)	50.8	(2)	50.8	(2)	-	-		4
1 1/0"	150	127	(5)	98.4	(3.87)	17.5	(0.69)		-	16	(0.63)	73	(2.87)	73	(2.87)	-	40	(1.57)	4
11/2	300/600	156	(6.14)	114.3	(4.5)	22.2	(0.87)	-	-	22	(0.87)	73	(2.87)	73	(2.87)	-	40	(1.57)	4
	150	152.4	(6)	120.7	(4.75)	17.5	(0.69)	82.6	(3.25)	19	(0.75)	92	(3.62)	92	(3.62)	101.6 (4.00)	48	(1.89)	4
2"	300	165.1	(6.5)	127	(5)	20.7	(0.8)	82.6	(3.25)	19	(0.75)	92	(3.62)	92	(3.62)	107.9 (4.25)	48	(1.89)	8
	600	165.1	(6.5)	127	(5)	25.4	(1)	82.6	(3.25)	19	(0.75)	92	(3.62)	92	(3.62)	107.9 (4.25)	48	(1.89)	8
	150	190.5	(7.5)	152.4	(6)	22.3	(0.87)	114.3	(4.50)	19	(0.75)	127	(5)	127	(5)	133.4 (5.25)	73	(2.87)	4
3"	300	209.5	(8.25)	168.1	(6.62)	27	(1.06)	123.8	(4.87)	22	(0.87)	127	(5)	127	(5)	146.1 (5.75)	73	(2.87)	8
	600	209.5	(8.25)	168.1	(6.62)	31.8	(1.25)	123.8	(4.87)	22	(0.87)	127	(5)	127	(5)	146.1 (5.75)	73	(2.87)	8
	150	228.6	(9)	190.5	(7.5)	22.3	(0.87)	149.2	(5.87)	19	(0.75)	158	(6.22)	158	(6.22)	171.5 (6.75)	89	(3.5)	8
4"	300	254	(10)	200	(7.87)	30.2	(1.18)	149.2	(5.87)	22	(0.87)	158	(6.22)	158	(6.22)	174.6 (6.87)	89	(3.5)	8
	600	273	(10.75)	215.9	(8.5)	38.1	(1.5)	149.2	(5.87)	25	(1)	158	(6.22)	158	(6.22)	174.6 (6.87)	89	(3.5)	8

EN 1092-1 / DIN2501								DII	MENSI					
DN	PN	/	۹.	E	В				E	F	-	(G	# HOLES
25	10/40	115	(4.53)	85	(3.35)	18	(0.71)	14	(0.55)	68	(2.68)		-	4
40	10/40	150	(5.91)	110	(4.33)	18	(0.71)	18	(0.71)	88	(3.46)	73	(2.87)	4
50	10/40	165	(6.50)	125	(4.92)	20	(0.78)	18	(0.71)	102	(4.01)	48	(1.89)	4
80	10/40	200	(7.87)	160	(6.30)	24	(0.95)	18	(0.71)	138	(5.43)	73	(2.87)	8
100	10/16	220	(8.67)	180	(7.08)	20	(0.78)	18	(0.71)	158	(6.22)	89	(3.5)	8
100	25/40	235	(9.25)	190	(7.50)	24	(0.95)	22	(0.87)	162	(6.38)	89	(3.5)	8

NOTES:

-EXTENSION LENGTH IN mm(in): 0, 50 (1.96), 100 (3.93), 150(5.9) or 200 (7.87) -FOR 1" AND DN25 THE EXTENSION LENGTH IS 0 mm -DIMENSIONS IN mm(in)

LD300S – Sanitary Transmitter with Extension

Dimensions see Table 11

LD300S – Sanitary Transmitter without Extension

Dimensions see Table 11

SR301S – Sanitary Remote Seal with Extension

Dimensions see Table 11

SR301S – Sanitary Remote Seal without Extension

Dimensions see Table 11

SR301S / LD300S										
CONNECTION WITHOUT			Dime	nsions in m	ım (")					
EXTENSION	А	ØC	ØD	E	ØF	ØG	EXT.			
Tri-Clamp DN50 - without extension	8 (0.315)	63.5 (2.5)	76.5 (3.01)	18 (0.71)	47.5 (1.87)	-	_			
Tri-Clamp - 1 1/2" - without extension	12 (0.47)	50 (1.96)	61 (2.4)	18 (0.71)	35 (1.38)	—	_			
Tri-Clamp - 1 1/2" HP - without extension	12 (0.47)	50 (1.96)	66 (2.59)	25 (0.98)	35 (1.38)	-				
Tri-Clamp - 2" - without extension	12 (0.47)	63.5 (2.5)	76.5 (3.01)	18 (0.71)	47.6 (1.87)	-	_			
Tri-Clamp - 2" HP - without extension	12 (0.47)	63.5 (2.5)	81 (3.19)	25 (0.98)	47.6 (1.87)	—				
Tri-Clamp - 3" - without extension	12 (0.47)	91 (3.58)	110 (4.33)	18 (0.71)	72 (2.83)	_				
Tri-Clamp - 3" HP - without extension	12 (0.47)	91 (3.58)	115 (4.53)	25 (0.98)	72 (2.83)	-	_			
Threaded DN40 - DIN 11851 - without extension	13 (0.51)	56 (2.2)	78 (3.07)	21 (0.83)	38 (1.5)	—				
Threaded DN50 - DIN 11851 - without extension	15 (0.59)	68.5 (2.7)	92 (3.62)	22 (0.86)	50 (1.96)	_	_			
Threaded DN80 - DIN 11851 - without extension	16 (0.63)	100 (3.94)	127 (5)	29 (1.14)	81 (3.19)	—	_			
Threaded SMS - 1 1/2" - without extension	12 (0.47)	55 (2.16)	74 (2.91)	25 (0.98)	35 (1.38)	—	—			
Threaded SMS - 2" - without extension	12 (0.47)	65 (2.56)	84 (3.3)	26 (1.02)	48.6 (1.91)	—	_			
Threaded SMS - 3" - without extension	12 (0.47)	93 (3.66)	113 (4.45)	32 (1.26)	73 (2.87)	—				
Threaded RJT - 2" - without extension	15 (0.59)	66.7 (2.63)	86 (3.38)	22 (0.86)	47.6 (1.87)	_	_			
Threaded RJT - 3" - without extension	15 (0.59)	92 (3.62)	112 (4.41)	22.2 (0.87)	73 (2.87)	-	_			
Threaded IDF - 2" - without extension	12 (0.47)	60.5 (2.38)	76 (2.99)	30 (1.18)	47.6 (1.87)	-	—			
Threaded IDF - 3" - without extension	12 (0.47)	87.5 (3.44)	101.6 (4)	30 (1.18)	73 (2.87)	_	_			

Table 11: Dimensions relative to pages 6.32, 6.33, 6.34 and 6.35.

	SR	301S / LD	300S				
CONNECTION WITH			Dime	nsions in n	าm (")		
EXTENSION	А	ØC	ØD	E	ØF	ØG	EXT.
Tri-Clamp DN50 - with extension	8 (0.315)	63.5 (2.5)	76.5 (3.01)	18 (0.71)	50.5 (1.99)	80 (3.15)	48 (1.89)
Tri-Clamp DN50 HP - with extension	8 (0.315)	63.5 (2.5)	81 (3.19)	25 (0.98)	50.5 (1.99)	80 (3.15)	48 (1.89)
Tri-Clamp - 2" - with extension	8 (0.315)	63.5 (2.5)	76.5 (3.01)	18 (0.71)	50.5 (1.99)	80 (3.15)	48 (1.89)
Tri-Clamp - 2" HP - with extension	8 (0.315)	63.5 (2.5)	81 (3.19)	25 (0.98)	50.5 (1.99)	80 (3.15)	48 (1.89)
Tri-Clamp - 3" - with extension	8 (0.315)	91 (3.58)	110 (4.33)	18 (0.71)	72.5 (2.85)	100 (3.94)	50 (1.96)
Tri-Clamp - 3" HP - with extension	8 (0.315)	91 (3.58)	115 (4.53)	25 (0.98)	72.5 (2.85)	100 (3.94)	50 (1.96)
Threaded DN25 - DIN 11851 - with extension	6 (0.24)	47.5 (1.87)	63 (2.48)	21 (0.83)	43.2 (1.7)	80 (3.15)	26.3 (1.03)
Threaded DN40 - DIN 11851 - with extension	8 (0.315)	56 (2.2)	78 (3.07)	21 (0.83)	50.5 (1.99)	80 (3.15)	48 (1.89)
Threaded DN50 - DIN 11851 - with extension	8 (0.315)	68.5 (2.7)	92 (3.62)	22 (0.86)	50.5 (1.99)	80 (3.15)	48 (1.89)
Threaded DN80 - DIN 11851 - with extension	8 (0.315)	100 (3.94)	127 (5)	29 (1.14)	72.5 (2.85)	100 (3.94)	50 (1.96)
Threaded SMS - 2" - with extension	8 (0.315)	65 (2.56)	84 (3.3)	26 (1.02)	50.5 (1.99)	80 (3.15)	48 (1.89)
Threaded SMS - 3" - with extension	8 (0.315)	93 (3.66)	113 (4.45)	32 (1.26)	72.5 (2.85)	100 (3.94)	50 (1.96)
Threaded RJT - 2" - with extension	8 (0.315)	66.7 (2.63)	86 (3.38)	22 (0.86)	50.5 (1.99)	80 (3.15)	48 (1.89)
Threaded RJT - 3" - with extension	8 (0.315)	92 (3.62)	112 (4.41)	22.2 (0.87)	72.5 (2.85)	100 (3.94)	50 (1.96)
Threaded IDF - 2" - with extension	8 (0.315)	60.5 (2.38)	76.2 (3)	30 (1.18)	50.5 (1.99)	80 (3.15)	48 (1.89)
Threaded IDF - 3" - with extension	8 (0.315)	87.5 (3.44)	101.6 (4)	30 (1.18)	72.5 (2.85)	100 (3.94)	50 (1.96)

smar	SRF – S	Service Req Remote Sea	uest Form als		Proposal No.:					
Company:	1	Unit:			Invoice:					
	COMMERCIAL CONTACT			TECH	INICAL CONTACT					
Full Name:			Full Name	:						
Function:			Function:							
Phone:	Ex	tension:	Phone:			Extension:				
Fax:			Fax:							
Email:			Email:							
		EQUIPM	MENT DATA							
Model:		S	Serial Number:		Sensor Number:					
Dreeses Fluid		PROC	ESS DATA							
Process Fiuld:										
Calibration Rang	e Ambient Temperat	ure(ºC)	Process Ten	nperature (°C)	Process Pressure					
Min: Max:	Min: Max	:	Min:	Max:	Min:	Max:				
	Static Pressure			v	/acuum					
Min:	Max:		Min:		Max:					
Normal Operation Time:	·		Failure Date:							
	(Please, describe the o	FAILURE bserved behavi	DESCRIPTION or, if it is repetitiv	e, how it reproduces	, etc.)					
		OBSEI	RVATIONS							
		UBSEI	RVATIONS							
		USER IN	FORMATION							
Company:										
Contact:			Title:		Section:					
Phone:	Extension:		E-mail:							
Date:			Signature:							
For warranty or non-warranty repair, please contact your representative. Further information about address and contacts can be found on www.smar.com/contactus.asp.										

SMAR WARRANTY CERTIFICATE

- SMAR guarantees the equipment of its own manufacture for a period of 24 (twenty four) months, starting on the day the invoice is issued. The guarantee is effective regardless of the day the product was installed. Third-party equipment and software are not included in this Term of Guarantee and Smar does not offer any guarantee or declaration in the name of the manufacturer. Any guarantees related to these products are the supplier or licenser responsibility.
- 2. SMAR products are guaranteed against any defect originating from manufacturing, mounting, whether of a material or manpower nature, provided that the technical analysis reveals the existence of a quality failure liable to be classified under the meaning of the word, duly verified by the technical team within the warranty terms.
- Exceptions are proven cases of inappropriate use, wrong handling or lack of basic maintenance 3. compliant to the equipment manual provisions. SMAR does not guarantee any defect or damage caused by an uncontrolled situation, including but not limited to negligence, user imprudence or negligence, natural forces, wars or civil unrest, accidents, inadequate transportation or packaging due to the user's responsibility, defects caused by fire, theft or stray shipment, improper electric voltage or power source connection, electric surges, violations, modifications not described on the instructions manual, and/or if the serial number was altered or removed, substitution of parts, adjustments or repairs carried out by non-authorized personnel; inappropriate product use and/or application that cause corrosion, risks or deformation on the product, damages on parts or components, inadequate cleaning with incompatible chemical products, solvent and abrasive products incompatible with construction materials, chemical or electrolytic influences, parts and components susceptible to decay from regular use, use of equipment beyond operational limits (temperature, humidity, etc.) according to the instructions manual. In addition, this Warranty Certificate excludes expenses with transportation, freight, insurance, all of which are the customer's responsibility.
- 4. For warranty or non-warranty repair, please contact your representative.

Further information about address and contacts can be found on www.smar.com/contactus.asp

- 5. In cases needing technical assistance at the customer's facilities during the warranty period, the hours effectively worked will not be billed, although SMAR shall be reimbursed from the service technician's transportation, meals and lodging expenses, as well dismounting/mounting costs, if any.
- 6. The repair and/or substitution of defective parts do not extend, under any circumstance, the original warranty term, unless this extension is granted and communicated in writing by SMAR.
- 7. No Collaborator, Representative or any third party has the right, on SMAR's behalf, to grant warranty or assume some responsibility for SMAR products. If any warranty would be granted or assumed without SMAR's written consent, it will be declared void beforehand.
- 8. Cases of Extended Warranty acquisition must be negotiated with and documented by SMAR.
- 9. If necessary to return the equipment or product for repair or analysis, contact us. See item 4.
- 10. In cases of repair or analysis, the customer must fill out the Revision Requisition Form (FSR) included in the instructions manual, which contains details on the failure observed on the field, the circumstances it occurred, in addition to information on the installation site and process conditions. Equipments and products excluded from the warranty clauses must be approved by the client prior to the service execution.
- 11. In cases of repairs, the client shall be responsible for the proper product packaging and SMAR will not cover any damage occurred in shipment.

- 12. In cases of repairs under warranty, recall or outside warranty, the client is responsible for the correct packaging and packing and SMAR shall not cover any damage caused during transportation. Service expenses or any costs related to installing and uninstalling the product are the client's sole responsibility and SMAR does not assume any accountability before the buyer.
- 13. It is the customer's responsibility to clean and decontaminate products and accessories prior to shipping them for repair, and SMAR and its dealer reserve themselves the right to refuse the service in cases not compliant to those conditions. It is the customer's responsibility to tell SMAR and its dealer when the product was utilized in applications that contaminate the equipment with harmful products during its handling and repair. Any other damages, consequences, indemnity claims, expenses and other costs caused by the lack of decontamination will be attributed to the client. Kindly, fill out the Declaration of Decontamination prior to shipping products to SMAR or its dealers, which can be accessed at www.smar.com/doc/declarationofcontamination.pdf and include in the packaging.
- 14. This warranty certificate is valid only when accompanying the purchase invoice.