
FIELDBUS

APR / 14

LIBRARY B FUNCTION BLOCKS INSTRUCTION MANUAL

Specifications and information are subject to change without notice.

Up-to-date address information is available on our website.

web: www.smar.com/contactus.asp

INTRODUCTION

Fieldbus is not a replacement for 4-20 mA or Intelligent/Smart Transmitter Protocols, it provides much more. Fieldbus is a complete Control System Architecture enabling distribution of the control function to equipment in the field; therefore it is a replacement for the DCS Architecture of the 1970s.

To achieve the desired control the devices must be configured. That includes calibration but also building of a control strategy. The latter is covered in this manual.

One of the major advantages of Fieldbus is interoperability. Some blocks described in this manual are used not only by Smar devices, but other Foundation Fieldbus devices too. No particular configuration tool is addressed in this manual, because the devices are independent of configuration tool due to the DD technology.

Get the best results of the Fieldbus System by carefully reading these instructions.

This manual presents the necessary background knowledge to understand the programming language of Function Blocks diagram focusing on Foundation Fieldbus technology.

Smar devices, that are members of System302, may not be covered by this manual, because they have specific manuals.

The **Library B** Function Blocks, which are described in this manual, refer to the most recent FOUNDATION Fieldbus function blocks specification. As one may notice, the block library is composed of more Enhanced blocks to guarantee greater functionality to the function block applications. Moreover, this manual version presents the Flexible Mathematical Function Block allowing the user to create customized mathematical expressions.

NOTE:

This manual is related to the DF62, DF63, DF73, DF75, DF79, DF81, DF89, DF95, DF97, DF99, and DF100 controllers.

TABLE OF CONTENTS

DEFINITIONS	
ABREVIATIONS	XIII
CHAPTER 1 - INTRODUCTION TO FUNCTION BLOCK APPLICATION	1.1
OVERVIEW	
FUNCTION BLOCK	
TRANSDUCER BLOCK	
RESOURCE BLOCK	
FUNCTION BLOCK DEFINITIONS	
FUNCTION BLOCK LINKAGES	1.1
LINK WITH FUNCTION BLOCK EXECUTING IN DFI302	
INFORMATION ACCESS	
FUNCTION BLOCK APPLICATION STRUCTURE	
BLOCK OBJECT	
BLOCK PARAMETERS	
PARAMETER IDENTIFIERS	
PARAMETER STORAGE	
PARAMETER USAGE	1.3
PARAMETER RELATIONSHIPS	
PARAMETER STATUSCOMPOSITION OF STATUS	
PROCESS VARIABLE CALCULATION	
SETPOINT CALCULATION	
OUTPUT CALCULATION	
CASCADE CONTROL	
MODE PARAMETER	
SCALING PARAMETERS	
MODBUS SCALE CONVERSION	
FAULT STATE HANDLING	
FAULT STATE ACTIVE	1.21
ALARMS AND EVENTS – ALERT PROCESSING	
SIMULATION	
I/O MAPPING FORMS	
NUMERIC MAPPING	
ROM MAPPING	
BLOCK INSTANTIATION	
ORDER OF PARAMETERS DURING DOWNLOAD	
DATA TYPE AND DATA STRUCTURE DEFINITION	
BLOCK STRUCTURE – DS-64 VALUE & STATUS - FLOATING POINT STRUCTURE – DS-65	1.34
VALUE & STATUS - FLOATING POINT STRUCTURE – DS-65VALUE & STATUS - DISCRETE STRUCTURE – DS-66	
SCALING STRUCTURE – DS-68	
MODE STRUCTURE - DS-69	
ACCESS PERMISSIONS – DS-70	
ALARM FLOAT STRUCTURE – DS-71	
ALARM DISCRETE STRUCTURE – DS-72	
EVENT UPDATE STRUCTURE - DS-73	
ALARM SUMMARY STRUCTURE - DS-74	
SIMULATE - FLOATING POINT STRUCTURE – DS-82	
SIMULATE - DISCRETE STRUCTURE – DS-83	
TEST STRUCTURE – DS-85	
BITSTRING32 ALARM - DS-87	
SIMULATION – FIELD DIAGNOSTICS - DS-89	
BITSTRING STRUCTURE – DS-158 DISCRETE STRUCTURE – DS-159	
DISCRETE STRUCTURE – DS-169	
FLOAT STRUCTURE – DS-174	
HART EQUIPMENT INFORMATION - DS-175	
EXPECTED ELEMENT - DS-176	

ACTUAL ELEMENT - DS-177	1.39
ELEMENT STATUS - DS-178	1.39
THRESHOLD ANALOG I/O - DS-179	1.40
INFORMATION OF HART BURST CONTROL - DS-183	
INDICATION ALARM OF FOREIGN PROTOCOL - DS-184	
MANUFACTURER SPECIFIC DATA STRUCTURE	1.41
SCALING CONVERSION STRUCTURE - DS-256	
SCALING CONVERSION STRUCTURE WITH STATUS - DS-257	1.41
SCALING LOCATOR STRUCTURE - DS-258	
SCALING LOCATOR STRUCTURE WITH STATUS- DS-259	1.42
MODBUS VARIABLE LOCATOR STRUCTURE - DS-260	1 42
MODBUS VARIABLE LOCATOR STRUCTURE WITH STATUS- DS-261	1.42
FF PARAMETER ID STRUCTURE - DS-262	1 42
SLAVE ADDRESS STRUCTURE - DS-263	
02.02.020.020.000.000	
CHAPTER 2 - BLOCK LIBRARY	21
DESCRIPTION OF BLOCK TYPES	
BLOCK TYPE AVAILABILITY AND INITIAL BLOCK SET	
RESOURCE	
RS – RESOURCE BLOCK	
RS2 - RESOURCE BLOCK	
TRANSDUCER BLOCKS	
DIAG – DIAGNOSTICS TRANSDUCER BLOCK	2.14
TEMP – DF45 TEMPERATURE TRANSDUCER	
HC – HARDWARE CONFIGURATION TRANSDUCER	2.19
TRDRED - REDUNDANCY TRANSDUCER	
ABC - ASSOCIATION BLOCK FOR COMPONENTS	2 24
TB8BI – 8 BINARY INPUTS TRANSDUCER BLOCK	2 44
TB8BO – 8 BINARY OUTPUTS TRANSDUCER BLOCK	2 46
TB8AI – 8 ANALOG INPUTS TRANSDUCER BLOCK	2 48
TB4AO - 4 ANALOG OUTPUTS TRANSDUCER BLOCK	
TBHG - TRANSDUCER BLOCK FOR HART GATEWAY	
TBWH - TRANSDUCER BLOCK FOR WIRELESSHART	
INPUT FUNCTION BLOCKS	
AI - ANALOG INPUT	
EAI – ENHANCED ANALOG INPUT	
DI - DISCRETE INPUT	
MAI - MULTIPLE ANALOG INPUT	
MDI - MULTIPLE DISCRETE INPUT	
PUL – PULSE INPUT	
ROMAI – ROM ANALOG INPUT	
MAI16 –16 MULTIPLE ANALOG INPUT	
MBI64 – MULTIPLE BINARY INPUTS 64	
CONTROL AND CALCULATION FUNCTION BLOCKS	
PID - PID CONTROL	
EPID – ENHANCED PID CONTROL	2.99
APID – ADVANCED PID CONTROL	2.102
ARTH - ARITHMETIC	2.108
SPLT-SPLITTER	
CHAR - SIGNAL CHARACTERIZER	2.119
ECHAR – ENHANCED SIGNAL CHARACTERIZER	
INTG - INTEGRATOR	
AALM - ANALOG ALARM	
EAALM – ENHANCED ANALOG ALARM	
ISEL - INPUT SELECTOR	
SPG - SETPOINT RAMP GENERATOR	
ESPG – ENHANCED SETPOINT RAMP GENERATOR	
TIME – TIMER AND LOGIC	
LLAG - LEAD LAG	
OSDL - OUTPUT SIGNAL SELECTOR AND DYNAMIC LIMITER	
DENS - DENSITY	
CTRW – CONSTANT AND CONTAINED RW	
FFET - FLIP-FLOP AND EDGE TRIGGER	
AEQU – ADVANCED EQUATIONS	
PRED – SMITH PREDICTOR	2.179

TF - TRANSFER FUNCTION	2.181
LCF - LIQUID CORRECTION FACTORS	
CCF CALCULATION	2.183
BSW CALCULATION- DUAL RANGE	2.184
BSW CALCULATION – LAB ANALYSIS	
FMTH – FLEXIBLE MATHEMATICAL BLOCK	
ADT – ANALOG DATA TRANSFER	2.201
DDT – DISCRETE DATA TRANSFER	2.204
FLEXIBLE FUNCTION BLOCK 1131	2.207
FFB_1131 - FLEXIBLE FUNCTION BLOCK	
FFB2_1131 – FLEXIBLE FUNCTION BLOCK 2	
MODBUS FUNCTION BLOCKS	
MBCF - MODBUS CONFIGURATION	
MBCS - MODBUS CONTROL SLAVE	
MBSS - MODBUS SUPERVISION SLAVE	
MBCM - MODBUS CONTROL MASTER	2.224
MBSM - MODBUS SUPERVISION MASTER	2.229
OUTPUT FUNCTION BLOCKS	2.233
AO - ANALOG OUTPUT	2.233
DO - DISCRETE OUTPUT	
MAO - MULTIPLE ANALOG OUTPUT	2.240
MDO - MULTIPLE DISCRETE OUTPUT	
STEP – STEP OUTPUT PID	
ROMAO – ROM ANALOG OUTPUT	
MAO16 – 16 MULTIPLE ANALOG OUTPUT	
MBO64 – 64 MULTIPLE BINARY OUTPUT	
BLOCK OPTIONS	
RESOURCE BLOCK OPTIONS	
IO_OPTS	
CONTROL_OPTS	
STATUS_OPTS	
ALARM_SUM AND ACK_OPTION	
PID_OPTS	
INTEG_OPTS	
INVERT_OPTS	
INPUT_OPTS	
OSDL_OPTS MO_STATUS_OPTS	
MO_STATUS_OFTS	
CT_OPTS	
HARDWARE CONFIGURATION BLOCK OPTIONS	2 267
ELEM_MISMAT_BS_1[4]	2 260
ELEM_MISMAT_BS_2[4]	
MO_FSTATE_OPTS_16[2]	
MO_FSTATE_OPTS_64[8]	
MO_POWERUP_OPTS_16[2]	
MO_POWERUP_OPTS_64[8]	
FSTATE_ST_16[2]	
FSTATE_ST_64[8]	
MAP_MM_16	
MAP_MM_64	2.271
CHAPTER 3 - EXAMPLES	3.1
SIMPLE CONTROL APPLICATION	3.1
CASCADE CONTROL	
CORRESPONDING CONFIGURATION	
PARAMETERIZATION	
RATIO CONTROL	
CORRESPONDING CONFIGURATION	
PARAMETERIZATION	
FEEDFORWARD CONTROL	
CORRESPONDING CONFIGURATION	
PARAMETERIZATION	
SPLIT RANGE CONTROL	
COPPESPONDING CONFIGURATION	3.7

Function Blocks Instruction Manual – Library B

PARAMETERIZATION	3.7
LEVEL CONTROL	
CORRESPONDING CONFIGURATION	
PARAMETERIZATION	
RATE CONTROL LOOP WITH LEAD - LAG	
CORRESPONDING CONFIGURATION	3.10
PARAMETERIZATION	
FLOW COMPENSATION CONFIGURATION WITH TOTALIZATION	3.11
CORRESPONDING CONFIGURATION	3.11
PARAMETERIZATION	3.11
HYDROSTATIC TANK GAUGING	
CORRESPONDING CONFIGURATION	3.13
PARAMETERIZATION	
COMBUSTION CONTROL WITH DOUBLE CROSS LIMITS	3.15
CORRESPONDING CONFIGURATION	
PARAMETERIZATION	
3 ELEMENT BOILER LEVEL/FEEDWATER CONTROL	3.18
CORRESPONDING CONFIGURATION	
PARAMETERIZATION	
APPLICATION OF THE FLEXIBLE MATHEMATICAL FUNCTION BLOCK	
SMITH PREDICTOR AND TRANSFER FUNCTION BLOCK APPLICATION	
CORRESPONDING CONFIGURATION	
PARAMETERIZATION	

DEFINITIONS

Term	Description
Action Object (action)	Object that supports object instantiation and exclusion (blocks or links) in the resource.
Alarm	Detection when the block leaves a particular status and when it returns to this status.
Alert	Alarms and Events.
Algorithm	Rule set for problem solution following some steps
Application	Software functional unit which consists of a set of interconnected function blocks, events and objects, that can be distributed, have interfaces with their applications and posses other applications.
Array	Array with all elements that are of the same type and each one can be uniquely referenced by a subscript reference.
Attribute	Property or characteristic of an entity for instantiation. Value and status are attributes for an output parameter.
Bitstring	Data type which consists of a bit array. Each bit corresponds to a specific characteristic that is allowed to the user make a composition of some bits (some characteristics at the same time).
Block or block instantiation	Software logic processing unit which consists of a single copy named of the block and of the specific parameters associated by the block type, it can have several PID block instantiations, for example.
Block Type	Common qualities for all type instantiations. The PID block is a block type, for example.
BLOCK.PARAMETER	Definition used to indicate the block and the parameter associated, for example: DIAG.BEHAVIOR.
Bypass	This parameter indicates a deviation, normally from the input to the block output, without passing through the algorithm. In the PID block, for example, it means the SP goes to the output.
Configuration (of a system or device)	Steps for a system: selecting function units, indicating their positions and identifiers, and defining their interconnections.
Constant status	Status attribute which has both the indications for high and low limits, used to indicate the lower block can not respond to the output of the higher block.
Container Parameter	Block parameter that is accessible in the communication network but can not be connected to the input or output parameter. The value of the parameter can be used in the block algorithm or written by the block algorithm.
Critical Alert	Alert object with priority from 8 to 15.
Data Structure	A set, whose elements need to be of the same data type and each one can be referenced uniquely by an identification

Term	Description			
Data Type	Value set for a set of allowed operations.			
Dd Item Id	A unique number which identifies the description of the object class associated, that is developed as part of the Equipment Description.			
Dd member Id	A unique number which identifies the function of the object class associated, that is developed as part of the Equipment Description.			
Device	Physical entity able to perform one ou more specific functions into a particular context and delimited for its interfaces.			
Download	Function which consists of loading data from the client to the server.			
Engineering Unit	Terms of data measuring, such as Celsius degrees, Pound, grams and others.			
Enhanced	The enhanced block has additional characteristics related to the standard block. For example: EPID block has all characteristics of the PID block plus additional characteristics.			
Event	Instantaneous occurrence that is important to schedule the algorithm execution.			
Execution	Process of executing an operation sequence for an algorithm.			
Feed forward	Process antecipation.			
Function Block	Block which consists of one or more input or output parameters.			
Input Parameter	Block parameter that has data structure of value and status elements that can be updated through link for the output parameter.			
Interface	Limit shared between two function units, defined by the function characteristics, common physic interconnection characteristics, signal characteristics, and other adequated characteristics			
Interoperability	Capacity to operate multiple equipment, regardless of the manufacturer, in the same system, without losing the functionality.			
Invocation	Process of starting the sequence execution od specific operations for an algorithm.			
Link	Connection between two devices.			
Multi-Variable Container (MVC)	Object in the Function Block Application Process refered to a group of Function Block parameters defined by user, that can be one or more function blocks in the equipment.			
Output Parameter	Block parameter which has data structure of value and status elements that can be updated through the block algorithm.			
Primary Input	Input parameter which is critical for the operation of the control or calculation function block. The value of the primary input can be reflected in the parameter of the process variable.			

Term	Description
Primary Output	Output parameter which depends on the mode parameter, reflects the results of the block algoritm execution or the input value given by user.
Resource	Internal function unit of the equipment that has the control, independent of the operation, and provides characteristics needed for scheduling and execution of application algorithms (resource).
Resource block	Block which consists of internal parameters that provide the interface for common resource characteristics or information.
ROM (Remote Operations Management)	New technology of Fieldbus Foundation aiming the following application types: Remote devices with great number of I/O points Optimized links of multiple points (64 discretes, 16 analogs) WiredHART and WirelessHART connectivity.
Schedule	Order of the function block execution.
Shedding	The shedding occurs when one or other non fieldbus interface provides data periodically for the algorithm.
Target Mode	Mode reached by user for the block acts.
Time stamp	Date and time register (hour:minute:milisecond) for the alert occurrence.
Transducer Block	Block which consists of internal parameters that provide an interface for one or more function abilities for a resource.
Upload	This function allows transmit data from server to client.
View	Data structure with the mapping associated to the sub set of block parameters. It is used for optimization of reading parameters.

ABREVIATIONS

- Al (Analog Input)
- AO (Analog Output)
- Cas (Cascade Mode)
- DCS (Distributed Control System)
- DD (Device Description)
- DI (Discrete Input)
- DO (Discrete Output)
- DS (Data Structure)
- E (Enumerated Parameter)
- EU (Engineering Unit)
- FB (Function Block)
- FF: Fieldbus Foundation
- IA (Initialization Acknowledge): status when the block is in Cascade mode
- IMan (Initialization Manual): status when the block is in Cascade mode
- IR (Initialization Request): status when the block is in Cascade mode
- LO (Local Override)
- NI (Not invited)
- RCas (Remote Cascade Mode): status when the block is in Cascade mode
- Rout (Remote Output Mode): status when the block is in Cascade mode
- ROM (Remote Operations Management)
- TB (Transducer Block)

INTRODUCTION TO FUNCTION BLOCK APPLICATION

Overview

Function block applications are defined as plant or factory applications that perform one or more automatic monitoring and control functions.

Function Block

Function blocks represent the basic automation functions performed by the function block application. Each function block processes input parameters according to a specified algorithm and an internal set of control parameters. They produce output parameters that are available for use within the same function block application or by other function block applications.

Transducer Block

Transducer blocks insulate function blocks from the specifics of I/O devices, such as sensors, actuators, and switches. Transducer blocks control access to I/O devices through a device independent interface defined for use by function blocks. Transducer blocks also perform functions, such as calibration and linearization, on I/O data to convert it to a device independent representation. Their interface to function blocks is defined as one or more implementation independent I/O channels.

Resource Block

Resource blocks are used to define hardware specific characteristics of function block applications. Similar to transducer blocks, they insulate function blocks from the physical hardware by containing a set of implementation independent hardware parameters.

Function Block Definitions

Function blocks are defined by their inputs, outputs, control parameters, and by the algorithm that operates on these parameters. Function blocks are identified using a name (Tag) and a numeric index.

Tags provide a symbolic reference to function blocks. They are unambiguous within the scope of a Fieldbus system. Numeric indices are numbers assigned to optimize access to function blocks. As opposed to function block tags, which are global, numeric indices have meaning only within the application that contains the function block.

Function block parameters define the inputs, outputs, and the data used to control function block operation. They are visible and accessible over the network. Additional parameters, called "contained within" parameters are used to define the private data of a function block. Although visible over the network, they may not participate in function block linkages.

Function Block Linkages

Function block outputs may be linked to inputs of other function blocks. Each linkage indicates that an input parameter of one function block obtains its value from specific output parameters of another function block. While function block "pull" their values from upstream blocks, which block controls the "pulling" depends on the characteristics of the underlying communications.

Two function blocks linked together may exist in the same function block application, or in separate applications, either in the same device or in different devices.

To transfer the data for a function block link, the communication channel must be known, that provide the transfer of parameter data (and other types of data) between applications.

Link with Function Block executing in DFI302

Any function block executing in DFI302 may be linked to any other function block being executed in other device connected to any of four H1 channels available.

Information Access

Function block information may be grouped for access depending on how it is to be used. The following four groups are defined for access purposes:

- 1) Dynamic operation data.
- 2) Static operation data.
- 3) All dynamic data, and
- 4) Other static data.

To support access of operator interface information during function block execution, two levels of network access are defined, one for operational traffic and one for background traffic. Operator interface traffic is transferred as background traffic to prevent it from interfering with the operation of time-critical function blocks.

Function Block Application Structure

Function block applications are modeled as a set of function blocks coordinated to execute a related set of operations. This set of operations collectively provides a single, higher level control function.

Function block model is real-time algorithm that transforms input parameters into output parameters. Their operation is controlled through the setting of control parameters.

Interoperation between function blocks is modeled by linking an input parameter of one function block to an output parameter of another. Function blocks can be bound together within and across devices. Interfaces between function blocks located in the same function block application are locally defined. Those interfaces between function blocks in different devices use the communication services.

To support function block operation, the function block architecture also provides transducer and resource blocks, and display objects.

Function Block Application Process represents the function block application as an integrated set of these components accessed to its network interface.

Block Object

A block object represents a logical processing unit composed of a set of input, processing, and control parameters and an associated algorithm.

Each block is identified by its Tag which is defined to be unique throughout the control system at one plant site. Block tags are defined as strings with a maximum length of 32 characters.

During system operation, a short hand reference, known as a numeric index is used for block access purposes. A block's numeric index is unique only within the function block application where it exists.

The algorithm of a block is identified by its type and the revision level of its type. This information indicates how the execution of the algorithm is affected by control parameters.

Block Parameters

Parameters define the inputs, outputs, and control data for a block. Their relationship to each other and to the block algorithm is shown below.

Parameter Identifiers

Parameter names are unique within a block. Within a system, a parameter can be unambiguously identified by qualifying its name with the tag of its block. This construction is referred to as "Tag.Parameter".

The Tag.Parameter construct is used to obtain the index of a parameter. This is the second way of identifying a parameter.

Parameter Storage

Parameter may be classified as dynamic, static, or non-volatile. The value of parameter may need to be restored after a power failure based on its classification:

Dynamic - a parameter whose value is calculated by the block algorithm and therefore does not need to be restored after a power failure.

Static - a parameter which has a specific configured value that must be restored by a device after power failure. An Interface or temporary devices may write to static parameter on an infrequent basis. Static parameter values are normally tracked by a configuration device. To support tracking changes in static parameter, the associated block's static revision parameter will be incremented and an update event will be generated each time a static parameter value is modified.

Non-volatile - a parameter whose value is written on a frequent basis and the last saved value must be restored by the device after a power failure.

The classification of a parameter will determine the manner is which the parameter is stored within a device.

NOTE

The concepts of Non-Volatile (N) and Dynamic (D) parameters are only applied for transmitters. For controllers, the Dynamic and Non-Volatile parameters will be recovered after the Power Up.

Parameter Usage

Parameters are defined for a block for a specific purpose. Each is defined for use as an input, an output, or a control parameter. Control parameters are also referred to as "contained" parameters because they may not be linked with parameters in other blocks. Each type of usage is defined as follows:

Contained

A contained parameter is a parameter whose value is configured, set by an operator, higher level device, or calculated. It may not be linked to another function block input or output. The mode parameter is an example of a contained parameter common to all blocks.

Output

An output parameter is a parameter that may be linked to an input parameter of another function block. Output parameters contain status. The output status indicates the quality of the parameter value and the mode of the block when it was generated.

The value of an output parameter may not be obtained from a source external to the block. It may be generated by the block algorithm, but does not have to be.

The values of certain output parameters are dependent on the value of the mode parameter of the block. These output parameters may be referred to as mode-controlled output parameters.

Blocks whose purpose is to generate a single output contain one parameter designed as the primary output parameter. Primary outputs are used by other blocks for control or calculation purposes. These blocks also contain secondary output parameters such as alarm and event parameters that play a supporting role to the primary output parameter.

Input

An input parameter obtains its value from a source external to the block. An input parameter may be linked to an output parameter of another function block. Its value may be used by the algorithm of the block.

Input parameter values are accompanied by status. When an input parameter is linked to an output parameter, the status will be provided as the status of the output parameter. When it is not linked to

an output parameter, the status will indicate that the value was not provided by an output parameter. When an expected input parameter value is not received, the function block supported services responsible for delivering the data will set the status of the input parameter to indicate the failure.

If an input parameter is not linked to an output parameter, then it will be treated as a constant value by the function block application. The difference between unlinked input parameters and contained parameters is that input parameters have the capability to support a linkage and contained parameters do not.

Blocks whose purpose is to transform or operate on a single input will contain one parameter designed as the primary input parameter. One input parameter of some types of blocks is designated as the primary input parameter. Primary inputs are used for control or calculation purposes. These blocks may also contain secondary input parameters that support processing done on the primary input parameter.

Parameter Relationships

The execution of a block involves the inputs, outputs, contained parameters, and the algorithm of the block. The execution time for a block's algorithm is defined as a parameter of the block. Its value is dependent on how the block was implemented.

The input parameters are used by the algorithm in conjunction with the state of the function block application containing the block to determine if the algorithm can achieve the target mode established for it. The target mode is the part of the mode parameter that indicates what mode of operation is desired for the block. It is normally set by a control device or the operator.

Under certain operating condition a block may not be able to function in the requested mode. In such cases, the actual mode reflects the mode it is able to achieve. Comparison of the actual against the target indicates whether the target was achieved.

The values for the mode parameter for a block are defined by the Permitted Mode parameter. Thus, the modes available for controlling a block may vary with each block.

The values assigned to the Permitted Mode are selected from those defined by the block designer. They are assigned during block configuration for the specific use of the function block application.

Once the actual mode is determined, the block execution progresses and the outputs are generated.

Parameter Status

All input and output parameters are structures composed of status and value, but some contained parameter (internal parameter, not accessible by other blocks) have also that data type, for example, RCAS_IN, ROUT_IN, SP and PV.

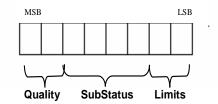
The Status field is composed of three parts: Quality, Sub-Status and Limits.

Quality – It indicates the quality of the parameter value.

Good Cascade - The quality of the value is good, and it may be part of a cascade structure.

Good Non-Cascade – The quality of the value is good, and the block doesn't support a cascade path.

Uncertain – The quality of the value is less than normal, but the value may still be useful. Bad – The value is not useful.


Sub-Status – The sub-status is a complement of the quality status and takes information to initialize or break a cascade control, alarms and others. There are different sets of sub-status for each quality.

Limits – It provides information whether the associated value is limited or not, as well the direction. The limits are classified as: Not Limited, High Limited, Low Limited, and Constant.

When an input parameter is linked to an output parameter through the link object, the whole structure (status and value) is copied (local link) or received from the bus (external link). If the input is not linked, then the status may be set manually by the user, as well the value.

Composition of Status

The Status has the following composition:

The quality, sub-status, and limit components of status are defined as follows:

Quality - The quality used will be determined by the highest priority condition:

- 0 = Bad
- 1 = Uncertain
- 2 = Good (Non-cascade)
- 3 = Good (Cascade)

<u>Sub status</u> - Sub-status values in the status attribute are defined as shown in the following table.

<u>Limit</u> - The following limit conditions will be always available in the status attribute.

- 0 = Not limited
- 1 = Low limited
- 2 = High limited
- 3 = Constant

Examples:

0xC1 (in hexadecimal) is "Good-Cascade Non Specific and Low Limited" status

0xCF (in hexadecimal) is "Good-Cascade Not invited and Constant" status 0x4E (in hexadecimal) is "Uncertain Initial Value and High Limited" status

Quality	Sub-status Sub-status		Not in cascade	Forward path of cascade	Backward path of cascade
Bad	0 = Non-specific	0x00	Х	X	X
Bad	1 = Configuration Error	0x04	Х	X	X
Bad	2 = Not Connected	0x08			
Bad	3 = Device Failure 0x0c X X		X		
Bad	4 = Sensor Failure	0x10 X X X		X	
Bad	5 = No Communication, with last usable value	ue 0x14			
Bad	6 = No Communication, with no usable value	0x18			
Bad	7 = Out of Service (highest priority)	0x1c			

Quality	Sub-status	Hex value	Not in cascade	Forward path of cascade	Backward path of cascade
Uncertain	0 = Non-specific	0x40	Х		
Uncertain	1 = Last Usable Value	0x44	Х		
Uncertain	2 = Substitute	0x48	Х		
Uncertain	3 = Initial Value	0x4c	Х		
Uncertain	4 = Sensor Conversion not Accurate	0x50 X			
Uncertain	5 = Engineering Unit Range Violation	0x54 X			
Uncertain	6 = Sub-normal	0x58	Х		

Quality	Sub-status	Hex value	Not in cascade	Forward path of cascade	Backward path of cascade
GoodNC	0 = Non-specific (lowest priority)	0x80	Х		
GoodNC	1 = Active Block Alarm	0x84	Х		
GoodNC	2 = Active Advisory Alarm	0x88	Х		
GoodNC	3 = Active Critical Alarm	0x8c X			
GoodNC	4 = Unacknowledged Block Alarm	0x90	Х		
GoodNC	5 = Unacknowledged Advisory Alarm	0x94	Х		
GoodNC	6 = Unacknowledged Critical Alarm	0x98	Х		

Quality	Sub-status	Hex value	Not in cascade	Forward path of cascade	Backward path of cascade
GoodC	0 = Non-specific	0xc0		X	Х
GoodC	1 = Initiate Acknowledge (IA)	0xc4		X	
GoodC	2 = Initiate Request (IR)	0xc8 X		Х	
GoodC	3 = Not Invited (NI)	Oxcc X		Х	
GoodC	4 = Not Selected (NS)	0xd0 X		Х	
GoodC	6 = Local Override (LO)	0xd8			Х
GoodC	7 = Fault State Active (FSA)	0xdc		Х	
GoodC	8 = Initiate Fault State (IFS)	0xe0 X			

Example: Conversion from the Enumerations to Number

The following formula is used to obtain the enumeration number of a determinate status attribute:

Decimal Value Status = 64*Quality + 4* Sub-Status + Limit

For example, considering the following status:

"Uncertain - Initial Value - High Limited" Where:
Quality = "uncertain" = 1

Sub-Status = "Initial Value" = 3 Limit = "High Limited "= 2

Applying the formula:

Decimal Value Status = 64 * 1 + 4 * 3 + 2 = 78 (in decimal) or 0x4E (in Hexadecimal)

Example: Conversion from Number to Enumerations

There are many forms to convert the enumerate number to the status string. Below is shown two forms to do this.

The number is expressed in binary as:

Hex Value Status = 78 = 0x4E = 01001110 (in binary) Dividing this binary number in quality, sub-status and limit fields: Quality = 01 = 1 = "Uncertain" Sub-Status = 0011 = 3 = "Initial Value"

Limit = 10 = 2 = "High Limited"

The corresponding status is "Uncertain - Initial Value - High Limited".

The user must use the value of status in decimal format.

Decimal Value Status = 78

Divide the number by 64. The quotient will be the Quality and save the remainder:

Quality = 78 / 64 = 1

Remainder = 14

The remainder should be divided by 4. The quotient will be the Sub-Status and the remainder will be the limit:

SubStatus = 14/4 = 3

Limit = 2

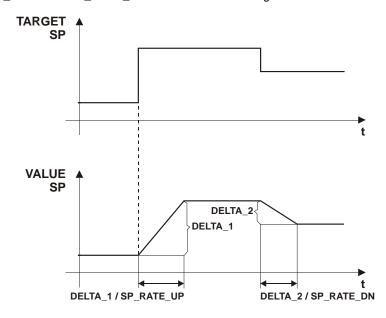
Process Variable Calculation

The process variable (PV) parameter reflects the value and status of the primary input value or calculated value based on multiple inputs. The PV parameter is the IN parameter after filtering (PID and AALM), or it reflects the value from the transducer after filtering (AI and AO-readback), or the combination of two input parameters for range extension (ARTH).

The PV parameter has a status, although it is a contained parameter. This status is a copy of the primary input status or the worst status when the PV is based on multiple inputs. The PV value reflects the value of the calculated input regardless the mode of the block, unless this input is not usable, then the PV holds the last usable value.

Optionally, a filter may be applied in the process value signal, whose time constant is PV_FTIME. Considering a step change to the input, this is the time in seconds to the PV reaches 63,2% of the final value. If the PV_FTIME value is zero, the filter is disabled.

Setpoint Calculation


a) SP limits: SP_HI_LIM and SP_LO_LIM

At first, the SP will be limited to a range specified by the SP_HI_LIM and SP_LO_LIM parameters **only in Auto mode**. However in the PID block, if the bit "Obey SP limits if Cas or Rcas" in CONTROL_OPTS parameter is true, then the setpoint value will be also restricted to setpoint limits in Cas and RCas mode.

b) SP rate limits: SP_RATE_UP and SP_RATE_DN

These parameters avoid bump in SP change, and they depend on the block type as well the mode to be effective. The SP rate limits are applied for the PID block in Auto mode, and AO block in Auto, Cas or Rcas modes.

When the block is in Auto mode and the user change the SP to a value greater than the current value, then the SP value ramps upward based on the SP_RATE_UP parameter. If the new setpoint is less than the current value, the SP value ramps downward based on the SP_RATE_DN. When the SP_RATE_DN and/or SP_RATE_UP is zero the rate limiting is disabled.

The below table summarizes the conditions for SP limits and SP rate limits.

Block type	Mode	Required configuration for SP limits (SP_HI_LIM/SP_LO_LIM)	Required configuration for SP rate limits (SP_RATE_UP/SP_RATE_DN)
	Auto	None	SP_RATE_UP / SP_RATE_DN different of zero
PID	Cas/Rcas	CONTROL_OPTS."Obey SP limits if Cas or Rcas" is true	Not apply
AO	Auto	None	SP_RATE_UP / SP_RATE_DN different of zero
AU	Cas/Rcas	Not apply	SP_RATE_UP / SP_RATE_DN different of zero.

c) SP tracking PV

Some control strategies require that the transition from a "manual" mode (Rout, Man, LO and Iman) to an "auto" mode (Auto, Cas, Rcas) must be done with error equals to zero, therefore SP must be equal to PV.

The CONTROL_OPTS of the PID block and the IO_OPTS of the AO block may be configured for SP tracking PV when the block is in a "manual" mode.

This option is summarized in the following table:

Bitstring	CONTROL_OPTS (PID)	IO_OPTS (AO)	Meaning
SP-PV Track in Man	X	X	The SP tracks the PV when the target mode is Man.
SP-PV Track in Rout	X		The SP tracks the PV when the actual mode is Rout.
SP-PV Track in LO or Iman	X	Х	The SP tracks the PV when the actual mode is LO or Iman.

Output Calculation

When the actual mode is AUTO, CAS or RCAS, the normal algorithm is executed. This calculation is specific for each function block type. If the mode is a "manual" mode, the output is just following a value provided by another block (LO, Iman), the user (Man) or a Control Application running on an interface device (Rout).

The output value is limited high and low by the OUT_HI_LIM and OUT_LO_LIM parameters in PID and ARTH blocks for all modes.

It is possible to disable the output limits in Manual mode in the PID block by setting "No OUT limits in Manual" bit in CONTROL_OPTS.

Cascade Control

There is a linked output and input pair involved in each of the different forms of cascade, as shown in the following table.

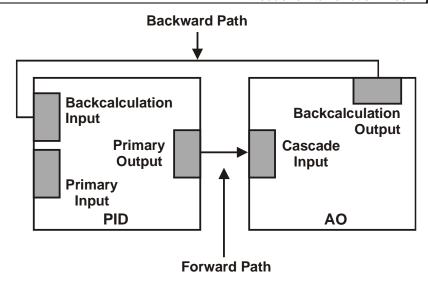

Mode	Forward	Backward
Cas	CAS_IN	BKCAL_OUT
RCas	RCAS_IN	RCAS_OUT
ROut	ROUT_IN	ROUT_OUT

Table 1 – Parameter Pairs

In a cascade, the upper control block provides an output value and status, which becomes the cascade input to the lower block.

The lower block in the cascade provides an output value, which is communicated to the upper block as back-calculation input.

Based on the following example, which is the most common form of cascade, it will be shown the process of cascade initialization.

There are four steps to complete a cascade initialization:

1. Not cascade mode – As the AO block is in Auto mode, the PID block is not calculating the output (OUT), it is just following the backward value (AO.BKCAL OUT -> PID.BKCAL IN).

PID
MODE_BLK.Target = Auto
MODE_BLK.Actual = IMan
OUT.Status = GoodC-Non-specific
AO
MODE_BLK.Target = Auto
MODE_BLK.Actual = Auto

BKCAL_OUT.Status = GoodC-Not Invited

2. Initialize – The user changes the target mode of AO block to Cas, then the AO block sets GoodC-IR in BKCAL_OUT. The value of BKCAL_OUT is the initial value for the PID starts to calculate.

The AO block waits for the PID to set GoodC-IA in OUT, which is linked to AO.CAS_IN (PID.OUT -> AO.CAS_IN).

PID MODE_BLK.Target = Auto MODE_BLK.Actual = IMan OUT.Status = GoodC-Non-specific

ΑO

MODE_BLK.Target = Cas MODE_BLK.Actual = Auto BKCAL_OUT.Status = GoodC-Initialization Request (IR)

3. Initialization complete - The AO block goes to Cas, because the PID block sent GoodC-IA.

PID
MODE_BLK.Target = Auto
MODE_BLK.Actual = IMan
OUT.Status = GoodC- Initialization Acknowledge (IA)
AO
MODE_BLK.Target = Cas
MODE_BLK.Actual = Cas
BKCAL OUT.Status = GoodC- Non-specific

4. Cascade complete – The PID block changes the status of OUT from GoodC-IA to GoodC-NS.

PID MODE_BLK.Target = Auto MODE_BLK.Actual = Auto OUT.Status = GoodC- Non-specific AO
MODE_BLK.Target = Cas
MODE_BLK.Actual = Cas
BKCAL_OUT.Status = GoodC- Non-specific

Notes:

- The remote cascade modes (Rcas and Rout) have a similar mechanism to the process of cascade initialization.
- The function blocks prepared to work as the upper block in the cascade have the BKCAL_IN parameter, as PID, SPLT, SPG and OSDL
- The function blocks prepared to work as the lower block in the cascade have the BKCAL_OUT parameter, as PID, AO, SPLT and OSDL.
- The upper blocks will be in Iman mode when the lower block is not in cascade, whose main reasons are:
 - Link failure in backward path (lower.BKCAL_OUT -> upper.BKCAL_IN)
 - Lower block can not execute in Cas: the target mode of lower block is not Cas, or there is any condition forcing the lower block to a higher priority mode as fault state (AO in LO), link failure in the forward path (OUT -> CAS_IN).
 - Tracking (PID in LO), link failure in the primary input (PID in Man), and others. (See details in the section Mode Parameter).
 - Control Application running on as interface device works similarly an upper block in the remote cascade modes (Rcas and Rout).

Mode Parameter

a) Mode types

The operation of the block is summarized for each mode type as follows:

Out of Service (O/S):

The block is not being evaluated. The output is maintained at last value or, in the case of output class function blocks, the output may be maintained at an assigned Fault State value – last value or configured Fault State value. Setpoint is maintained at last value.

Initialization Manual (IMan):

This mode means that the downstream block is not in cascade (Cas mode), therefore the normal algorithm must not be executed and the block output will just follow an external tracking signal (BKCAL_IN) coming from the downstream block. This mode cannot be requested through the target mode.

Local Override (LO):

It applies to control block that supports a track input parameter, when the control block is LO, its output is tracking the TRK_VAL input parameter.

The LO mode also applies to output block when it is in fault state. This mode cannot be requested through the target mode.

Manual (Man):

The block output is not being calculated, although it may be limited. The operator may set directly the outputs of the block.

Automatic (Auto):

The normal algorithm calculates the block output. If the block has a setpoint, it will be used a local value that may be written by an operator through an interface device.

Cascade (Cas):

The setpoint comes from another block over a link (CAS_IN), therefore the operator cannot change the setpoint. The normal algorithm calculates the block output based on that setpoint. In order to achieve this mode, the algorithm uses the CAS_IN input and BKCAL_OUT output to establish the cascade with the upstream block in a bumpless way.

Remote Cascade (RCas):

The block setpoint is being set by a Control Application running on an interface device to the RCAS_IN parameter. The normal algorithm calculates the block output based on that setpoint, so the block running in Rcas works similarly a "lower block" in cascade. In order to achieve this mode, the block algorithm uses the RCAS_IN and RCAS_OUT to **establish a relation like a cascade** with the interface device in a bumpless way. Therefore the Control Application works **similarly as an "upper block"**, but its algorithm is not synchronized to the schedule and neither does it use a link to transfer the setpoint to the block.

Remote Output (ROut):

The block output is being set by a Control Application running on an interface Device to the ROUT_IN parameter. In order to achieve this mode, the block algorithm uses the ROUT_IN and ROUT_OUT to **establish a relation like a cascade** with the interface device in a bumpless way. Therefore the Control Application works **similarly as an "upper block"**, but its algorithm is not synchronized to the schedule and neither does it use a link to transfer the output to the block. The block running in ROut works similarly a "lower block" in cascade.

Auto, Cas, and RCas are the "automatic" modes, which calculate the primary output using the normal algorithm. The "manual" modes are IMan, LO, Man, and ROut.

Mode type	Source of SP	Source of OUT
O/S	User	User
Iman	User	Other function block – following BKCAL_IN parameter
LO	PID / EPID / APID : User AO / DO : Fault state (last value or FSTATE_VAL)	PID / EPID / APID : Other function block – following TRK_VAL parameter AO / DO :Fault state (last value or FSTATE_VAL)
Man	User	User
Auto	User	Block algorithm
Cas	Other function block – following CAS_IN parameter	Block algorithm
Rcas	Control Application running on an interface device	Block algorithm
Rout	Block keeps last value	Control Application running on an interface device

b) Elements of MODE_BLK

The mode parameter (MODE_BLK) is defined in every function block. It is defined as having four elements:

- 1) Target This is the mode requested by the operator. Only one mode from those allowed by the permitted mode parameter may be requested, that check will be done by the device.
- **2) Actual** This is the current mode of the block, which may differ from the target based on operating conditions and block configuration, as input parameter status and bypass configuration, for example. Its value is *always* calculated as part of block execution, therefore the user can not write in this attribute.
- **3) Permitted** It defines the modes that are allowed for an instance of the block. The permitted mode is configured based on the application requirement. For example, if a PID block does not have link for CAS_IN, the Cas mode should not be permitted for that block. It is like a list of mode types selected from the supported modes.
- **4) Normal** This is the mode which the block should be set to during normal operating conditions. The normal attribute is used as a *reminder*. It does not affect the algorithm calculation.

Execution of a function or transducer block will be controlled through the mode parameter. The user sets the target mode, which indicates what mode of operation is desired for the block. Then, the algorithm evaluates if the block can be executed in the *requested mode* (target mode) *or the nearest higher priority mode possible*. The actual mode reflects the mode of block operation.

Other concepts of mode:

Retained target: When the target mode is O/S, MAN, RCAS or ROUT the target mode attribute may retain information about the previous target mode. This information may be used by the block in mode shedding and setpoint tracking. This feature is optional and the interface device is responsible to implement it.

Supported mode: Each *block type* has a set of mode types supported, it means that *the block definition specifies* in which modes the block may operate.

c) Priority of mode

The concept of priority is used when the block calculates the actual mode, and when determining if write access is allowed for a particular mode or other of higher priority.

Mode	Description	Priority
O/S	Out of Service	7 – highest
IMan	Initialization Manual	6
LO	Local Override	5
Man	Manual	4
Auto	Automatic	3
Cas	Cascade	2
Rcas	Remote Cascade	1
Rout	Remote Output	0 - lowest

Priority of the Mode

d) Mode shedding

Interface devices such as a host computer, distributed control system (DCS) controller, or programmable logic controller (PLC) may exist which not support the function blocks application architecture but have proprietary control applications running on them.

Such applications may adjust the values of the block setpoint (RCas mode) and/or primary output (ROut mode) parameters in a function block. When doing so, they provide the value of each parameter along with its status.

If a new value is not received by the function block within a specified "update time" (defined by SHED_RCAS and SHED_ROUT parameters of the Resource block), or a bad status is received, then the function block mode will be changed to a non-remote mode of higher priority.

The SHED_OPT parameter configures the desired behavior when shedding from a remote mode (Rcas and Rout); therefore **it does not include the Cas mode**. Also, it determines if the shed mode is maintained once the RCAS_IN or ROUT_IN parameter updating is recovered (no return – target mode receives the shed mode) or original mode will be restored when the cause of shedding has cleared (normal return – no change in target mode).

The shed option has the following enumeration:

- 0 = Undefined Invalid
- 1 = Normal shed, normal return Actual mode changes to the next lowest priority non-remote mode permitted but returns to the target remote mode when the remote computer completes the initialization handshake.
- 2 = Normal shed, no return Target mode changes to the next lowest priority non-remote mode permitted. The target remote mode is lost, so there is no return to it.
- 3 = Shed to Auto, normal return.
- 4 = Shed to Auto, no return Target mode changes to Auto on detection of a shed condition.
- 5 = Shed to Manual, normal return.
- 6 = Shed to Manual, no return Target mode changes to Man on detection of a shed condition.
- 7 = Shed to Retained target, normal return.
- 8 = Shed to Retained target, no return (change target to retained target).

e) Mode calculation

The actual mode will be calculated based on the following:

Each mode type has some conditions that force the actual mode to be of higher priority than the target mode.

Starting from the highest priority mode (O/S), it is analyzed its corresponding conditions. If they are present, then the actual mode will be this one, otherwise it is necessary to check the conditions for the next lower priority mode (Iman, LO, Man, Auto, Cas, Rcas and Rout) till the target mode, exclusive. For instance, if the target mode is Cas, it is necessary to check the conditions for O/S, IMan, LO, Man and Auto, in this order. If all those conditions are false, the actual mode will be the target mode.

Mode	Conditions
O/S	Resource block is in O/S (resource state is Standby)
0/3	- Enumerated parameter has an invalid value
lMan	BKCAL_IN.status is Bad
IIVIAII	BKCAL_IN.status is Good – Fault State Active, Not Invited or Initialization Request.
	Fault state is active (in an output function block)
LO	CONTROL_OPTS.Track Enable active and TRK_IN_D is active.
	If target is Man, then the CONTROL_OPTS.Track in Manual must be active.
	Target mode has just changed from O/S
Man	(Status attribute of primary input parameter (IN parameter) is Bad or Uncertain with option to treat Uncertain as Bad) and
	(Bypass not set).
	Target mode is RCas or ROut, and SHED_OPT=shed to Manual or shed to next
	Target mode is Cas and (CAS_IN.status=Bad or cascade initialization not completed)
Auto	Target mode is RCas and RCAS_IN.status=Bad and SHED_OPT=shed to Auto or shed to next
	Target mode is ROut and ROUT_IN.status=Bad and SHED_OPT = shed to Auto or shed to next.
	Actual mode last execution was Cas.
	Target mode is Cas and cascade initialization has just completed
Cas	Target mode is RCas and RCAS_IN.status=Bad and SHED_OPT=shed to next and cascade initialization has just completed
	Target mode is ROut and ROUT_IN.status=Bad and SHED_OPT=shed to next and cascade initialization has just completed
RCas	RCas cascade initialization has just completed or actual mode last execution was RCas.
ROut	ROut cascade initialization has just completed or actual mode last execution was ROut.

When the actual mode is different from the target, a good suggestion to find the cause is an analysis of the corresponding conditions for the actual mode. The most frequent causes are shown below.

Mode	Frequent cause
O/S	Check the Resource block mode and all enumerated parameters
	Check the BKCAL_IN.status:
lman	Bad – No Comm : link failure in backward path (BKCAL_OUT -> BKCAL_IN)
e.r	NI : lower block can not execute in Cas (check the target mode of lower block as well fault state condition) or link failure in forward path (OUT -> CAS_IN)
	Check:
LO	Value and status of TRK_IN_D, TRK_VAL and CONTROL_OPTS (Track Enable, Track in Manual)
	Output block : status of CAS_IN and the delay time for fault state established by FSTATE_TIME
	Status of IN
Man	If the target is Cas, check the links with the upper block in backward path (BKCAL_OUT -> BKCAL_IN) and forward path (OUT -> CAS_IN)
	If the block is not reaching the target mode Rcas or Rout, compare the updating rate of RCAS_IN and ROUT_IN by a Control Application to SHED_RCAS and SHED_ROUT.
	If the target is Cas, check the links with the upper block in backward path (BKCAL_OUT -> BKCAL_IN) and forward path (OUT -> CAS_IN)
Auto	If the block is not reaching the target mode Rcas or Rout, compare the updating rate of
	RCAS_IN and ROUT_IN by a Control Application to SHED_RCAS and SHED_ROUT.
Cas	If the block is not reaching the target mode Rcas or Rout, compare the updating rate of RCAS_IN and ROUT_IN by a Control Application to SHED_RCAS and SHED_ROUT.

f) Cascade initialization

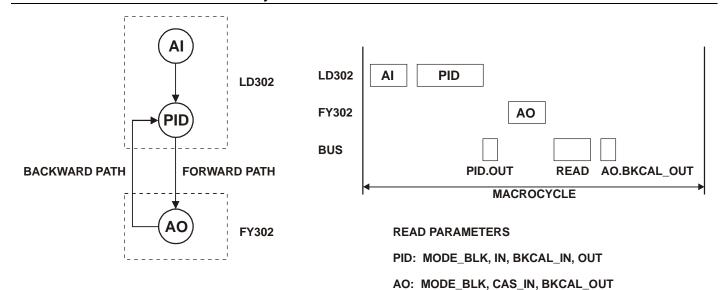


Fig.1 - Example to analyze the cascade initialization

The following table shows the sequence of status exchange between the PID and AO blocks for cascade initialization, and a link failure between PID.OUT and AO.CAS_IN (forward path) after execution 8.

PID parameters

Execution	1	2	3	4	5	6	7	8	9	10	11
Target	O/S	Auto									
IN	Bad	GNC	GNC	GNC	GNC	GNC	GNC	GNC	GNC	GNC	GNC
BKCAL_IN	Bad	Bad-O/S	NI	IR	GC	GC	GC	GC	NI	NI	NI
Actual	O/S	Iman	IMan	IMan	Auto	Auto	Auto	Auto	IMan	IMan	IMan
OUT	Bad-O/S	GC	GC	IA	GC						

AO parameters

Execution	1	2	3	4	5	6	7	8	9	10	11
Target	O/S	Cas									
CAS_IN	Bad	GC	GC	IA	GC	GC	GC	Bad	Bad	Bad	Bad
Actual	O/S	Man	Auto	Cas	Cas	Cas	Cas	LO	LO	LO	LO
BKCAL_OUT	Bad-O/S	NI	IR	GC	GC	GC	GC	NI	NI	NI	NI

Meaning of status:

GNC - Good Non-Cascade - Non Specific

GC - Good Cascade - Non Specific

IA - Good Cascade - Initialization Acknowledge

IR - Good Cascade - Initialization Request

NI - Good Cascade - Not Invited

Bad – Bad – any sub-status

The above sequence for cascade initialization applies not only for the Cas mode, but also for Rcas and Rout modes.

g) Example

The mode configuration for the control loop of the figure 1.

Introduction to Function Block Application

	Supported	Target	Actual	Permitted	Normal
Al	O/S,Man,Auto	Auto	=	O/S,Auto	Auto
PID	O/S,Iman,LO,Man,Auto,Cas,Rcas,Rout	Auto	-	O/S,Man,Auto	Auto
AO	O/S,Iman,LO,Man,Auto,Cas,Rcas	Cas	=	O/S,Man,Auto,Cas	Cas

h) Specific information for driver developers

Internally, the each mode attribute is assigned within the bitstring in the following manner:

	Hex value	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
O/S	0x80	1	0	0	Х	Х	Х	Х	Х
Iman & LO	- Not Valid Target Modes					des			
Man	0x10	0	0	0	1	0	Х	Х	Х
Auto	0x08	0	0	0	0	1	0	0	0
Cas	0x0c	0	0	0	0	1	1	0	0
Rcas	0x0a	0	0	0	0	1	Х	1	0
Rout	0x09	0	0	0	0	1	Х	0	1

Where: X = indicates the bit setting is retained from the previous target mode.

Target and Normal Mode Bitstring

	Hex value	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
O/S	0x80	1	0	0	0	0	0	0	0
Iman	0x40	0	1	0	0	0	0	0	0
LO	0x20	0	0	1	0	0	0	0	0
Man	0x10	0	0	0	1	0	0	0	0
Auto	0x08	0	0	0	0	1	0	0	0
Cas	0x04	0	0	0	0	0	1	0	0
Rcas	0x02	0	0	0	0	0	0	1	0
Rout	0x01	0	0	0	0	0	0	0	1

Actual Mode Bitstring

Block	Permitted modes	Hex value	o/s	-	-	Man	Auto	Cas	Rcas	Rout
Al	O/S,Auto	0x88	1	0	0	0	1	0	0	0
PID	O/S,Man, Auto	0x98	1	0	0	1	1	0	0	0
АО	O/S,Man, Auto,Cas	0x9c	1	0	0	1	1	1	0	0

Permitted Mode Bitstring

(Example for the loop control in the previous figure)

The retained target mechanism is suitable to work with toggle switch in the interface device following the rules:

A/M toggle switch:

"Automatic mode" \rightarrow Man mode: Bit #4 <- 1 and Bit #3 \leftarrow 0 Man mode \rightarrow "automatic mode": Bit #4 <- 0 and Bit #3 \leftarrow 1

Cascade/Local toggle switch:

Cascade \rightarrow Local: Bit #2 \leftarrow 0 Local \rightarrow Cascade: Bit #2 \leftarrow 1

Remote/Non-remote setpoint toggle switch: Remote \rightarrow Non-remote: Bit #1 \leftarrow 0 and Bit #0 \leftarrow 0 Non-remote \rightarrow Remote: Bit #1 \leftarrow 1 and Bit #0 \leftarrow 0

Remote/Non-remote output toggle switch: Remote \rightarrow Non-remote: Bit #1 \leftarrow 0 and Bit #0 \leftarrow 0 Non-remote \rightarrow Remote: Bit #1 \leftarrow 0 and Bit #0 \leftarrow 1

Target mode	Rule for toggle	Value retained	Possible retained modes	Target + Retained modes	
	Bit #7 ← 0	000xxxxx	00010000 (0x10) : Man	10010000 (0x90) : Man	
			00001000 (0x08) : Auto	10001000 (0x88) : Auto	
O/S: 100xxxxx			00001100 (0x0c) : Cas	10001100 (0x8c) : Cas	
			00001010 (0x0a) : Rcas	10001010 (0x8a) : Rcas	
			00001001 (0x09) : Rout	10001001 (0x89) : Rout	
	Bit #4 ←0 and Bit #3 ←1	00001xxx	00001000 (0x08) : Auto	00010000 (0x10) : Auto	
M 00040			00001100 (0x0c) : Cas	00010100 (0x14) : Cas	
Man: 00010xxx			00001010 (0x0a) : Rcas	00010010 (0x12) : Rcas	
			00001001 (0x09) : Rout	00010001 (0x11) : Rout	
Page 00001v10	Bit #1 ←0 and Bit #0 ←0	00001,000	00001000 (0x08) : Auto	00001010 (0x0a) : Auto	
Rcas: 00001x10		00001x00	00001100 (0x0c) : Cas	00001110 (0x0e) : Cas	
Pout: 00001v01	Dit #4	0000400	00001000 (0x08) : Auto	00001001 (0x09) : Auto	
Rout: 00001x01	Bit #1 ←0 and Bit #0 ←0	00001x00	00001100 (0x0c) : Cas	00001101 (0x0d) : Cas	

Scaling Parameters

The scaling parameter defines the operating range and the engineering units associated with a parameter. It also defines the number of digits to the right of the decimal point, which should be used by an interface device in displaying that parameter.

Scaling information is used for two purposes. Display devices need to know the range for bar graphs and trending, as well as the units code. Control blocks need to know the range to use internally as percent of span, so that the tuning constants may remain dimensionless.

The PID blocks take the error and convert it to percent of span using the PV_SCALE. The algorithm operates on percent of span to produce an output in that form. This is converted back to a number with engineering units by using the range of OUT_SCALE.

The AI block has the XD_SCALE parameter to define the engineering units expected from the transducer.

The AO block uses the XD_SCALE to convert the SP value to the engineering unit expected by the output transducer block, which is also the engineering unit of the readback value.

The following fields form the scale:

- Engineering Units at 100% of scale The value that represents the upper end of range in engineering unit;
- Engineering Units at 0% of scale The value that represents the lower end of range in engineering unit;
- Units Index Device Description units code index for the engineering unit.
- Decimal Point The number of digits to the right of the decimal point which should be used by an interface device in displaying the specified parameter.

Example Using Scale Parameter

The PID algorithm works internally with values in percent of span. Therefore the PID block converts the error to percentage (PV_SCALE), it calculates the output in percentage, and then it converts to engineering unit of output (OUT_SCALE).

1. The PID takes the input IN and SP and converts to percentage of the PV_SCALE:

```
VALUE% = (VALUE - EU_0) * 100/ (EU_100 - EU_0) [PV_SCALE]
```

PV_SCALE: EU at 100% = 20 EU at 0% = 4 Units Index = mA Decimal point = 2

SP = 15 mA PV = 10 mA

The values of SP and PV in percentage are: SP% = (15-4) * 100/(20-4) = 68.75%

$$PV\% = (10 - 4) * 100/(20 - 4) = 37.50\%$$

2. The PID algorithm calculates the error in percentage. If it is configured the reverse action, the error is the difference between SP% and PV%.

```
Error% = SP% - PV % = 31.25%
```

3. The PID algorithm applies the Error% to the calculation of the P, I and D terms. If only the proportional term is enabled, the value of the output is:

GAIN = 1.0 RESET = +INF RATE = 0.0 OUT% = 31.25% 4. The output value is converted from percentage to engineering units of the OUT_SCALE: OUT = OUT% /100 * (EU_100 - EU_0) + EU_0 [OUT_SCALE]

OUT_SCALE: EU at 100% = 15 EU at 0% = 3 Units Index = psi Decimal point = 2

The output value of this example is: OUT = 31.25/100 * (15 - 3) + 3 = 6.75 psi

Modbus Scale Conversion

The Modbus function blocks can read and write digital and analogical data of other Modbus slave or master devices. For each configured analogical point, which for Modbus reading or writing, it is associated a scale conversion parameter. The parameters and blocks which have Modbus conversion scale are: MBCM.IN_x, MBCS.IN_x, MBCS_OUT.x, MBSM.PVALUE_x, which x=1, 2, until the point limit of that block.

The scale conversion for the Modbus protocol has two purposes:

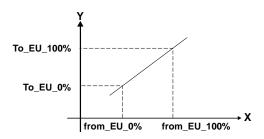
- Conversion from the Fieldbus analogical value to Modbus value expressed in Engineering Units.
- Conversion from the Modbus analogical value to the Fieldbus value in Engineering Units.

The scale parameters are defined in the data structures DS_256, DS_257, DS_258, and DS_259 (see the item "Data Structure") and they are composed by the following fields:

- FROM_EU_100% defines the higher input unit value (actual data unit).
- FROM_EU_0% defines the lower input unit value (actual data unit).
- TO_EU_100% defines the higher output unit value (desired data unit).
- TO_EU_0% defines the lower output unit value (desired data unit).
- Data Type data type which it desires to convert from or to Modbus (in the Fieldbus the data always will be float). The table with the supported data type is below:

Number of Data Type	Data Type				
1	Float				
2	Unsigned8				
3	Unsigned16				
4	Unsigned32				
5	Integer8				
6	Integer16				
7	Integer32				
8	Swapped.Float				
9	Swapped.Unsigned8				
10	Swapped.Unsigned16				
11	Swapped.Unsigned32				
12	Swapped.Integer8				
13	Swapped.Integer16				
14	Swapped.Integer32				

Note


In despite of there are different data structures which have scale conversion, they follow the same conversion procedure.

Procedure to handle the conversion from FF parameter to Modbus variable

- Load INx_VALUE.
- Calculate Y = (A * INx_VALUE + B).
- Convert Y to DATA_TYPE_IN, generating MOD_VAR_IN.
- Write MOD_VAR_IN.

Procedure to handle the conversion from Modbus variable to FF parameter:

- Read MOD_VAR_OUT.
- Convert MOD VAR OUT to float, generating Y
- Calculate OUTx_VALUE = (A * Y + B).
- Store OUTx_VALUE.

Where:

A = (To_EU_100% - To_EU_0%)/(From_EU_100% - From_EU_0%)

B = To_EU_0% - A*From_EU_0%; IN_VALUE, OUT_VALUE: FF parameters

MOD_VAR_IN, MOD_VAR_OUT: Modbus variables

Y: auxiliary float variable

Below, there are examples using the Modbus scale conversion.

1) Conversion from Modbus to Fieldbus

It considers a Modbus Slave device which has an analogical value of temperature in percentage (0-10000) with the data type Integer 2 bytes. It desired to use the value in Fieldbus in Celsius degree (0-500). It uses the Master Control Block Modbus (MBCM).

A) In the MBCM block, the scale is configured (OUT_1.SCALE_LOC_OUT_1) of the following form:

- FROM EU 100% = 10000
- FROM 0% = 0
- TO_EU_100% = 500
- TO_EU_0% = 0
- DATATYPE = Integer16

B) The MBCM block reads the Modbus data from the slave and stores in MOD_VAR_OUT. Thus, it converts the Y value. For last, it calculates the OUT output using the equation OUT = A*Y+B. Using the values from the example above and considering the actual value of temperature is 6000, it has:

And following the equations showed above:

The OUT output value for this example will be:

$$OUT = 300 [^{\circ}C]$$

2) Conversion from Fieldbus to Modbus

It considers the DFI is the Modbus slave equipment and it desires to become available one temperature analogical value from one TT302, range 0-500 [°C] for a Modbus master in the range 4-20 [mA] with the data type integer 2 bytes. Using the Modbus Block Control Slave (MBCS).

A) In the MBCS block, the scale is configured (IN_1.SCALE_CONV_IN_1) of the following form:

- FROM_EU_100% = 500
- FROM_0% = 0
- TO_EU_100% = 20
- TO_EU_0% = 4
- DATATYPE = Integer16

B) The MBCS block reads the data from the Fieldbus in the IN input and stores in IN_VALUE. It calculates the Y value following the equation $Y = A * IN_VALUE + B$. Thus, it converts the value to the DATATYPE specified and saves in MOD_VAR_IN which it will be the value to be sent to the Modbus.

Using the values from the example above and considering the actual value of temperature is 300, it has:

And following the equations showed above:

The value of the Modbus variable read (after the conversion to integer) for this example will be:

$$OUT = 14 [mA]$$

Fault State Handling

A) Definition

The Fault State is a special state that allows the output block to do safe action when it has been detected an abnormal situation or the user set to Fault State in the Resource block.

The abnormal situation occurs to there is an unusable input (bad sensor, for example) or the loss of the communication between function blocks longer than a specified time (FSTATE_TIME).

The blocks that support cascade control (as PID, OSDL and SPLT) propagate the fault state status forward to the output block.

When the condition that activated the Fault State is normalized, the Fault State is cleared and the block returns to the normal operation.

B) Generate the Initiate Fault State status (The fault was detected by the own block)

Blocks like PID, OSDL and SPLT may be configured to send an Initiate Fault State (IFS) status when they detect an unusable input. The bit "IFS if bad IN" and/or the bit "IFS if bad CAS_IN" in the STATUS_OPTS or OSDL_OPTS parameters must be true to generate an IFS status when the corresponding input is unusable.

C) Propagate the Initiate Fault State status (The fault occurred in the upstream block)

The blocks that support the cascade control have special handling to propagate the fault to the downstream blocks till the output block.

When the block, that is in cascade mode (Cas, RCas), receives an Initiate Fault State (IFS) status, then this status will be reported to forward path. For example, it considers a PID block that is receiving a "Good Cascade IFS" status in CAS_IN input. If the target mode of the PID is Cas, then the IFS status will be the status of OUT, replacing the normal status. Otherwise, the IFS status will not be propagated forward.

D) Using the Resource Block to activate the Fault State

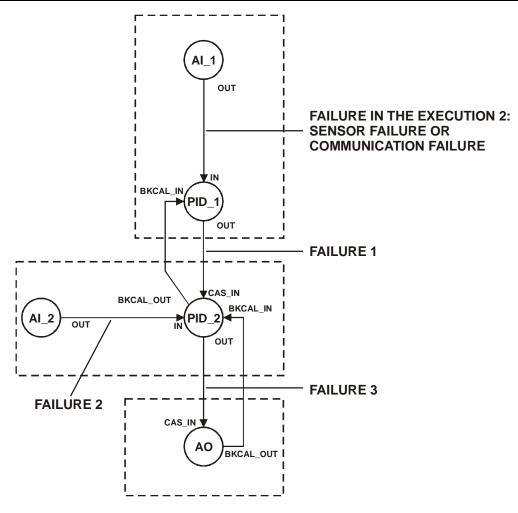
The Fault State of the Resource block forces all output function blocks into the device to go immediately to the fault state condition. The Resource block has some parameters that define the fault state behavior:

- FEATURES_SEL The "Fault State supported" bit is used to enable the Fault State characteristic into the Resource block. The default value is disabled.
- FAULT_STATE It only indicates the Fault State in the Resource block, not in individual output block. For example, if an AO block is in Fault State because its CAS_IN input is bad, the FAULT_STATE parameter will not be active.
- SET_FSTATE The user may force FAULT_STATE to active by setting this parameter to On.
- CLEAR_FSTATE The user may force FAULT_STATE to clear by setting this parameter to On.

Fault State Active

When the Output Function Blocks detects an abnormal condition, the block goes to a fault state. The abnormal conditions are:

- Loss of communication to CAS IN for a time that exceeds FSTATE TIME;
- IFS status in the CAS_IN input when the target mode is Cas, for a time that exceeds FSTATE_TIME;
- IFS status in the RCAS_IN when the target mode is Rcas, for a time that exceeds FSTATE_TIME;
- The FAULT_STATE parameter of the Resource block is Active because the user set to on the SET_FSTATE parameter and the bit "Fault State supported" in the FEATURES_SEL is true.


When the output block is in the Fault State the output may retain the last value or goes to the preset value determined by the FSTATE_VAL. The default is retaining the last value. The output goes to the preset value if the bit "Fault State to value" in the IO_OPTS is true.

When the Fault State is active then the actual mode of the output block goes to Local Override (LO). In the backward path, the block sends the Not Invited (NI) status to indicate that the block is in "Fault State".

Optionally, the target mode of the output block will be changed to Manual by the block algorithm when the Fault State is active. In order to set this characteristic, the "Target to Man if Fault State activated" bit in IO_OPTS needs to be true.

Examples

The following control loop must be considered for the examples below. The below tables show the sequence of status exchange between the PID_1

The Master, PID_2 Slave and AO blocks are in a fault and normal condition.

The status of PID_1.IN becomes bad in the execution 2, which may be due to a Bad-Sensor Failure detected by the AI_1 or a communication failure between AI_1.OUT and PID_1.IN. The PID_2 Slave only propagates the status forward. The AO block receives the IFS status and active the Fault State. In the safety condition the preset value of the FSTATE_VAL is used to the output of the AO block. After the execution 6, the bad status in the IN of the PID master is cleared and the loop returns to normal operation.

PID 1 - Master STATUS _OPTS = "IFS if Bad IN"

Execution	1	2	 4	5	6	7	8	9	10	11
Target	Auto									
IN	GNC	Bad	 Bad	Bad	Bad	Bad	GNC	GNC	GNC	GNC
BKCAL_IN	GC	GC	 GC	GC	NI	NI	NI	NI	NI	IR
Actual	Auto	Man	 Man	Man	Iman	Iman	Iman	Iman	Iman	Iman
OUT	GC	IFS	 IFS	IFS	IFS	IFS	GC	GC	GC	IA

PID 2 - Slave

Execution	1	2	 4	5	6	7	8	9	10	11
Target	Cas									
CAS_IN	GC	IFS	 IFS	IFS	IFS	GC	GC	GC	IA	GC
BKCAL_IN	GC	GC	 GC	NI	NI	NI	IR	GC	GC	GC
Actual	Cas	Cas	 Cas	Iman	Iman	Iman	lman	Auto	Cas	Cas
OUT	GC	IFS	IFS	IFS	IFS	GC	IA	GC	GC	GC
001				100	100	100	100			
BKCAL_OUT	GC	GC	 GC	NI	NI	NI	NI	IR	GC	GC

AO

FSTATE_VAL = 100 FSTATE_TIME = 2 sec IO_OPTS = "Fault State to value" PV_SCALE (E0%-E100%)=0-100 XD_SCALE (E0%-E100%)= 4-20

2 sec

Execution	1	2	3	4	5	6	7	8	9	10	11
Target	Cas										
CAS_IN	GC	IFS	IFS	IFS	IFS	IFS	IFS	GC	IA	GC	GC
CAS_IN					100	100	100	100	100		
BKCAL IN	GC	IA	GC	GC							
BRCAL_IN				100	100	100	100	100	100		
Actual	Cas	Cas	Cas	LO	LO	LO	LO	Auto	Cas	Cas	Cas
OUT	GC	GC	GC	GC							
001			GC	20	20	20	20	20	20		
BKCAL_OU T	GC	GC	GC	NI	NI	NI	NI	IR	GC	GC	GC

Other link failures in the forward path could force the AO into Fault State since the configuration is as it follows:

Failure 1) PID_1.OUT to PID_2.CAS_IN: PID_2.STATUS_OPTS = "IFS if Bad CAS_IN" Failure 2) AI_2.OUT to PID_2.IN: PID_2.STATUS_OPTS = "IFS if Bad IN"

Failure 3) PID_2.OUT to AO.CAS_IN: No configuration is required for the AO block to force it to Fault State.

Note:

- FSTATE_VAL has the same engineering unit of SP. Therefore it is using the PV_SCALE, not the XD_SCALE.
- When the Resource block forces all output blocks to Fault State, the FSTATE_TIME is not used.

Alarms and Events – Alert Processing

Alarms and events, known as alerts, represent state changes within function block applications. In detection of a significant event, a function block may report this event to an interface device or other field devices.

Alarms refer not only to the comparison between a variable and a limit, but also what is called block alarm, that is used to report errors found in the software and/or hardware during block execution.

For alarms, both entering and exiting alarm condition are defined as an alert state, which will cause a report message to be published onto the network. The time at which the alert state was detected is included as a time stamp in the alert message. The reporting of alerts may be individually suppressed by setting the corresponding priority.

Update event is a mechanism used to inform an interface device that a static parameter was changed so the parameter is read only in this case. It is a much optimized way to keep track of such kind of parameters without doing polling, because these parameters are changed very rarely compared with dynamic parameters.

a) Alarm parameter (X_ALM parameter)

The alarm parameter is provided in a block to capture the dynamic information associated with an alarm. The information contained in the alarm parameter is transferred to an alert object when the alarm is reported. The following fields form the alarm parameter:

- Unacknowledged
- Alarm state
- Time stamp
- Subcode
- Value

Each one of these fields is explained below.

Unacknowledged

When it is detected a positive transition of alarm state (entering in alarm active), it will be set to Unacknowledged. This field is set to Acknowledged when the plant operator acknowledges the alarm through the interface device, which is responsible for alarm management.

It is possible to configure the auto-acknowledgement feature for each type of alarm for the block through the ACK_OPTION parameter. If a positive transition of alarm type happens and the corresponding bit in the ACK_OPTION is true, then it will not be required an operator plant acknowledgement.

The other form to auto-acknowledge the alarm notice is configuring the alert-priority of the respective alarm to 0, 1 or 2. The alert-priority will be discussed later.

Unacknowledged will have the following enumerations:

- 0 = Undefined
- 1 = Acknowledged
- 2 = Unacknowledged

Alarm state

This field gives an indication of whether the alert is active and whether it has been reported. The Alarm State will have the following bit enumeration:

- 1 Clear-Reported
- 2 Clear-Not Reported
- 3 Active-Reported
- 4 Active-Not Reported

The alarm state is cleared when the block goes to Out of service mode.

Time stamp

Time stamp is the time when the change in alarm state was detected that is unreported. This value will be maintained constant until alert confirmation has been received.

Sub code

This field contains an enumeration specifying the cause of the alert to be reported.

Value

The value of the associated parameter at the time the alert was detected.

b) Alarm limit (X_LIM parameter)

An analog alarm occurs when a value meets or exceeds a limit. For a high alarm, an alarm is true when the analog value is greater than the limit. The status of the alarm remains true until the value drops below the limit minus the alarm hysteresis.

The alarm type can be disabled setting its respective alarm limit parameter to +/- infinity, which is the default of all alarm limits.

The analog parameter compared to alarm limit depends on the block type: PID: PV and (PV-SP), regardless of CONTROL_OPTS.Direct acting Analog alarm: PV

AI: OUT

Setpoint generator: BKCAL_IN - OUT

c) Alarm hysteresis (ALARM_HYS parameter)

Amount the PV or OUT must return within the alarm limits before the alarm condition clears. Alarm Hysteresis is expressed as a percent of the PV/OUT span.

The span used depends on the block type:

PID: PV SCALE

AI, Setpoint generator, Analog alarm: OUT_SCALE

d) Alert Priority (X_PRI parameter)

The alert priority is a parameter, which may be used to configure the priority value assigned to an alarm or event.

The Alert Priority can be:

0-1 – The associated alert is not sent as a notification. The priority is above 1, and then the alert must be reported. This priority is auto-acknowledged.

2 – Reserved for alerts that do not require the attention of a plant operator. Block alarm and update event have this priority. This priority is auto-acknowledged.

3-7 - Advisory Alarms. In this priority is necessary to send an acknowledged.

8-15 – Critical Alarms. In this priority is necessary to send an acknowledged.

e) Alert key (ALERT_KEY parameter)

It is an identification number of the plant unit. This information may be used in the host for sorting alarms, etc.

f) Alarm Summary (ALM_SUM parameter)

The parameter Alarm Summary summarizes the status of up to 16 process alarms of the same block. It has four attributes:

- Current Alarms the Active status of each alarm.
- Unacknowledged the Unacknowledged status of each alarm.
- Unreported the Unreported status of each alarm.
- Disabled it allows Enable/Disable each type of alarm.

g) ACK_OPTION parameter

Selection of whether alarms associated with the block will be automatically acknowledged.

Bit = 0 -> auto-acknowledgment disabled

Bit = 1 -> auto-acknowledgment enabled

D:4	Decembrican	Meaning			
Bit	Description	Function Blocks	Resource Block		
0	Unack Alarm1	Discrete alarm	Write Alm		
1	Unack Alarm2	High High alarm			
2	Unack Alarm3	High alarm			
3	Unack Alarm4	Low Low alarm			
4	Unack Alarm5	Low alarm			
5	Unack Alarm6	Deviation High alarm			
6	Unack Alarm7	Deviation Low alarm			
7	Unack Alarm8	Block alarm	Block alarm		
8	Unack Alarm9	Not used			
9	Unack Alarm10	Not used			
10	Unack Alarm11	Not used			
11	Unack Alarm12	Not used			
12	Unack Alarm13	Not used			
13	Unack Alarm14	Not used			
14	Unack Alarm15	Not used			
15	Unack Alarm16	Not used			

Association of bit number to alarm type

The correspondent bits for each type of alarm in the ACK_OPTION are the same of that defined for ALARM_SUM except for the Resource block. The ACK_OPTION of the Resource block has a different association of bit number to alarm type from the previous table; its special meaning is described below:

Unack Alarm1 – Writes have been enabled (WRITE_ALM)

Unack Alarm8 - Block Alarm (BLOCK_ALM)

h) FEATURES_SEL parameter

It is a resource block parameter that has an element to enable/disable alert report for the whole resource, "report supported".

i) CONFIRM_TIME parameter

A reply is required that confirms receipt of the alert notification. If the reply is not received within a time-out period (CONFIRM_TIME), the alert will be re-transmitted. It is a resource block parameter, so it is valid for all alert of that resource.

Therefore the alarm parameter is a structured object, which is defined in conjunction with other parameters:

- Enable / disable alarm evaluation:

ALARM_SUM: enable/disable each alarm type for a specific block.

X_LIM: it is possible to disable the alarm evaluation by setting the limit to +INF or -INF.

- Enable / disable alarm report:

FEATURES_SEL: setting the bit "report supported" enables alarm report for the whole resource X_PRI: besides configuring the FEATURES_SEL, it is necessary to set the priority of alarm greater than or equal to 2 to enable the alarm report.

- Auto-acknowledgment:

X_PRI: the corresponding alarm will be auto-acknowledged if the alarm priority is 0, 1 or 2 ACK_OPTION: this parameter makes possible to enable/disable auto-acknowledgment for each alarm type, regardless the configuration of X_PRI.

The information contained in the alarm parameter is transferred to an alert object when the alarm is reported (if it is enabled) to an interface device. As an example, the following parameters are used to configure the Low Low Alarm of the PID block: LO_LO_PRI (alarm priority), LO_LO_LIM (limit parameter) and LO_LO_ALM (alarm parameter), ALARM_SUM, ACK_OPTION.

Summarizing, the function block detects the alarm condition. The communication stack is responsible to send the alert report to the interface device, which must reply to device, otherwise the alert report will be re-transmitted after a timeout defined by CONFIRM_TIME. The alarm configuration (ACK_OPTION and priority) may require that a plant operator acknowledge it even though the condition has cleared.

j) Example of analog alarm

It follows an example of AI block alarm configuration, which illustrates how is the alarm processing as well the corresponding alert report.

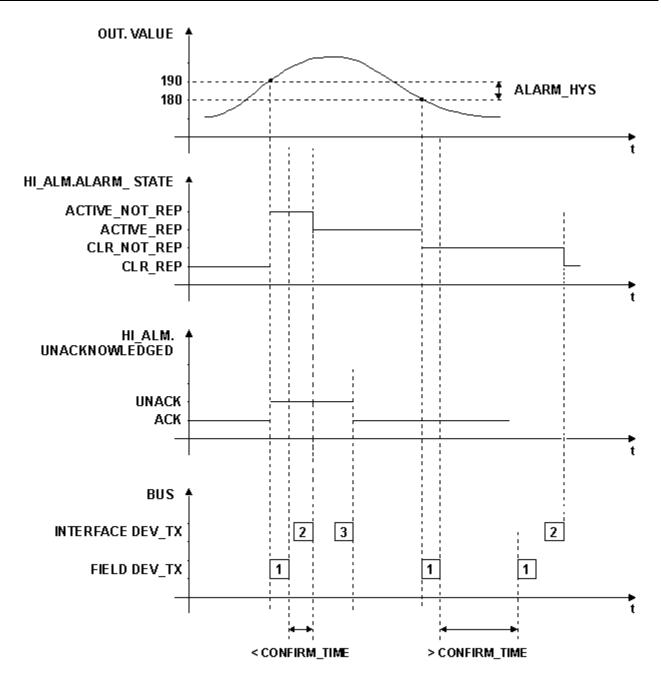
RS parameter:

FEATURES_SEL = Reports supported CONFIRM_TIME = 640 000 (20 seconds, multiple of 1/32 milliseconds)

Al parameters:

ALERT_KEY = 12 (this value could be related to a boiler, for example, therefore any alert received by interface device with this alert key means an alert in that boiler)

OUT_SCALE.EU at 100% = 200 OUT_SCALE.EU at 0% = 0


HI_LIM = 190 HI PRI = 4

ALARM HYS = 5%

ALARM_SUM.DISABLED = Discrete, HiHi, LoLo, Lo, DevHi, DevLo, BlockAlm

 $ACK_OPTION = 0x00$

Only the high alarm is enabled in ALARM_SUM.DISABLED and it is disabled the auto-acknowledgement (HI_PRI=4 and bit reset in ACK_OPTION), therefore it is necessary an operator plant intervention.

MESSAGE 1: ALERT NOTIFY

MESSAGE 2: ALERT NOTIFY - CONFIRMATION

MESSAGE 3: ALERT ACK (OPERATOR PLANT INTERVENTION)

Fig. 2 – Alert processing

k) Block alarm (BLOCK_ALM parameter)

The block alarm is used for all configuration, hardware, connection failure or system problems in the block. These problems detected by the block algorithm are registered in the BLOCK_ERR parameter, which is a bit string, so that multiple errors may be shown.

Block error conditions is defined (0= inactive, 1 = active) as follows:

Bit	Description
0	Other (LSB)
1	Block Configuration Error
2	Link Configuration Error
3	Simulate Active
4	Local Override
5	Device Fail Safe Set
6	Device Needs Maintenance Soon
7	Input Failure/ process variable has BAD status
8	Output Failure
9	Memory Failure
10	Lost Static Data
11	Lost NV Data
12	Readback Check Failed
13	Device Needs Maintenance Now
14	Power-up
15	Out-of-Service (MSB)

The cause of the alert is entered in the Subcode field of BLOCK_ALM, for example, value 3 means Simulate Active. The first condition to become active will set to Active the Alarm State attribute, if other conditions also become active, no alert will be sent. When all conditions become inactive, then an alert with Clear will be reported.

Block alarm has a fixed priority of 2, therefore it is auto-acknowledged (no operator plant intervention is required).

I) Update Event (UPDATE_EVT parameter)

The update event parameter is provided in a block to capture the dynamic information associated with a write to a static parameter within the block. An update alert object transfers the information contained in the update event parameter when the alert is reported.

The index of the changed parameter (relative to the start of the function block in the OD) and the new static revision level (ST_REV) are also included in the alert message.

Update event has a fixed priority of 2, therefore it is auto-acknowledged (no operator plant intervention is required).

Simulation

All input and output class function blocks have a SIMULATE or SIMULATE_D or SIMULATE_P parameter, which has a pair of status and values, and an enable switch. This parameter acts as a switch at the interface between the I/O function block and the associated transducer block or hardware channel.

Enable simulation

The simulate jumper must be ON to enable simulation in the SIMULATE_D or SIMULATE_P) parameter.

The BLOCK_ALM and BLOCK_ERR parameters will show the simulation condition (enable or disable). Such parameters in the Resource Block (RS) will indicate the condition of simulate jumper, while in the Input/Output Function Blocks they will indicate the enable switch condition in the SIMULATE (SIMULATE_D or SIMULATE_P) parameter.

Simulation disabled

When disabled, the SIMULATE. Simulate Value and Status will track SIMULATE. Transducer Value and Status in order to provide a bumpless transfer from disabled to enabled. The parameter will always initialize to disabled and will be stored in dynamic memory.

Input Function Block (AI, DI, PUL)

The SIMULATE. Transducer Status and SIMULATE. Transducer Value come from the transducer block or input channel, and contain what will be sent to the input block if the switch is off (disabled). The SIMULATE. Simulate Value and SIMULATE. Simulate Status are presented to the input block when the enable switch is on, and the transducer block or input channel is ignored. The status can be used to simulate transducer faults. The transducer value and status will always be written with transducer data at each evaluation of the input function block.

Simulation condition	Action				
Enable	SIMULATE.Simulate Value and Status -> PV (after scaling, linearization and filtering)				
Disable	SIMULATE.Transducer Value and Status -> PV (after scaling, linearization and filtering) and SIMULATE.Simulate Value and Status				

Output Function Block (AO, DO)

The SIMULATE.Simulate Value and SIMULATE.Simulate status become the READBACK value and status when the enable switch is on, and the transducer block is ignored. The status can be used to simulate transducer faults. The transducer attribute value and status reflect the transducer readback value and status when simulation is enabled and the transducer maintains last output and ignores the OUT of the Output block.

Simulation condition	Action				
Enable	SIMULATE.Simulate Value and Status -> READBACK				
Disable	SIMULATE.Transducer Value and Status -> READBACK and SIMULATE.Simulate Value and Status				

I/O Mapping Forms

The Smar HSE controllers may be classified according to I/O mapping form:

- a) Numeric Mapping that uses the HC block and CHANNEL parameter.
- b) ROM Mapping (Remote Operations Management) that uses the ABC block, VAR_NAME and CHANNEL_TAG.

Numeric Mapping

HC Block (Hardware Configuration Transducer)

Hardware configuration (definition of I/O module types in the corresponding rack/slot positions) through the HC block (Hardware Configuration Transducer).

There is status indication in the MODULE_STATUS_Rx parameters if the I/O module was found during the scan of I/O points.

CHANNEL parameter configuration

Addressing of group or I/O point by the transducer block, input function block or output function block through CHANNEL parameter, which has a numeric value.

The CHANNEL parameter configuration depends on the device features as it follows:

a) Fixed I/O device: This type of device has a fixed number of I/O. All Smar field devices belong to this class.

The channel is numbered from 1 to the maximum number of I/O.

The DC302 has specific rules to set the CHANNEL parameter as it follows:

- DI and DO Blocks: group A has inputs numbered from 1 to 8 and group B has inputs numbered from 9 to 16.

- MDI and MDO Blocks: the whole group A is selected setting CHANNEL to 1, and group B to 2.
- **b)** Configurable I/O device: The user may configure the number of I/O modules as well the I/O type (input or output, discrete, analog, pulse...). The DFI302 is the only device classified as a configurable I/O device.

All I/O modules have the I/O points arranged as it follows:

Level	Range
Rack (R)	0-14
Slot (S)	0-3
Group (G)	0-1
Point (P)	0-7
	9 – whole group

- Rack (R): Each rack has four slots. The rack is numbered from 0 (first rack) till 14 (last rack). Therefore a single I/O point in the DFI302 may be identified by specifying the rack (R), slot (S), group (G) and point (P). As the CHANNEL parameter in the multiple I/O blocks (MIO) must specify the whole group (8 points), the point must be 9, which mean the whole group.
- Slot (S): One slot supports one I/O module, and it is numbered from 0 (first slot in the rack) till 3 (last slot in the rack).
- Group (G): Ordinal number of group in the specified I/O module, it is numbered from 0 (first group) till number of groups minus 1. The I/O points are arranged in groups of 8 points, regardless how they are grouped for electrical isolation.

If the I/O type is "8- discrete input/4- discrete output", the inputs belong to the group 0 and the outputs belong to the group 1.

- Point (P): Ordinal number of I/O point in a group, it is numbered from 0 (first point) to 7(last point in the group), and 9 means the whole group of points. The whole group may have 4 or 8 points of I/O.

The value in the CHANNEL parameter is composed by those elements in the following form: RRSGP.

For example, a CHANNEL parameter equals to 1203, it means rack 1, slot 2, group 0 and point 3. If CHANNEL parameter of a MAI block is 10119, it means rack 10, slot 1, group 1 and point 9 (whole group).

Before setting the CHANNEL parameter, it is recommended to configure the hardware in the HC block. Because the write check will verify if the I/O type configured in the HC block is suitable for block type. Therefore setting the CHANNEL parameter of AI block to access an I/O type different of analog input will be rejected.

ROM Mapping

Configuration through the ABC block (Component Association Transducer)

In the ROM mapping, all I/O modules require a type of specific transducer block, for example, the DF46 module requires the configuration of its transducer block.

In the hardware configuration through the ABC transducer block, the user defines the expected I/O module type and the expected tag of the transducer block corresponding for each rack/slot, which will be verified by the controller when scanning the I/O points.

The expected I/O module type will be compared with the module ID, while the expected transducer block tag will be compared with transducer blocks' tags of configuration.

The result of this verification will be indicated in the ELEM_STAT_x.Element Mismatch parameter. When the ABC block in the ELEM_STAT_x.Element Mismatch parameter indicates "Matched", it means that the corresponding transducer block is reflecting the configuration and the I/O points' values.

Example:

If the configuration is:

ABC.ELEM_EXPD_R1_S1.Expected Tag = "WH99_SN1-FY100"

ABC.ELEM_EXPD_R1_S1.Expected Type = DF46

Tag of DF46 transducer block = "WH99_SN1-FY100"

In this case the ABC.ELEM_STAT_R1_S1.Element Mismatch will indicate "Matched" only if:

- The Expected Tag of rack 1 and slot 1 matches with transducer block tag, as in the example above.
- The expected type, the transducer block type found and the module ID match.

If the indication is "Matched", the DF46 transducer block whose tag is "WH99_SN1-FY100" will reflect the configuration and the output point values of the module that is in the rack 1 and slot 1.

Point mapping throught the VAR_NAME and CHANNEL_TAG

The addressing of I/O point by the transducer block or function block is done throught the VAR NAME and CHANNEL TAG.

The I/O transducer blocks have VAR_NAME (tag) for each point and the function blocks of input or output also have CHANNEL_TAG (tag) for each point.

When the VAR_NAME and CHANNEL_TAG match, thus this I/O point will be reflected in the corresponding function block.

Example:

Continuing the previous example and if the configuration is:

DF46 transducer block whose tag is "WH99_SN1-FY100" with parameter VAR_NAMES4[2] = "FY110"

ROMAO.CHANNEL_TAG = "FY110"

As the VAR_NAME matchs with the CHANNEL_TAG, so this ROMAO block will can execute in mode different from O/S and will reflect the configuration and the output point value that is in the rack 1 slot 1 on the second point of DF46 module.

Configuration of VAR_NAME parameter

The following verifications and procedures are performed when the VAR_NAME parameter is configured:

- 1- Check if the VAR_NAME value, that will be configured, is unique in the controller scope.
- 2- Reject the writting if the current VAR_NAME is associated to a function block and the point is Auto.
- 3- Accept the writting if the current VAR_NAME is associated to a function block, but the point is in manual and undone the association with the CHANNEL TAG.
- 4- After writting the new value in the VAR_NAME, it will look for a CHANNEL_TAG equals to this new value. If it is an input point it will look for up to 2 equal CHANNEL_TAGs and with types compatible.

Configuration of CHANNEL_TAG parameter

The following verifications and procedures are performed when the CHANNEL_TAG parameter is configured:

- 1- If the current CHANNEL_TAG is associated to some VAR_NAME, the association is undone.
- 2- After writting the new value in the CHANNEL_TAG, automatically is verified if there is an equal, compatible type and available VAR_NAME (the physical I/O point can be associated to up to two function blocks, and the physical output point can be associated to just one function block).

Mapping in the WirelessHART Gateway

In case of the DF99 and DF100 controllers, which are *Wireless*HART gateway, the TBHG block (Transducer for HART Gateway) has live list function, indicating the *Wireless*HART field devices that are configured for the gateway network.

In addition, the TBHG block indicates if the device on the live list is associated to some TBWH (Transducer for *Wireless*HART device) block that occurs when the device tag and TBWH tag matches. Occuring this association, the corresponding TBWH block will reflect the configuration and the I/O point values of that device.

As well as the transducer blocks of I/O modules, the TBWH block also has a VAR_NAME for each point, which can be associated to a function block through the procedure described above for VAR_NAME and CHANNEL_TAG.

Example

Tag of TT400 WirelessHART = "TIT2020"

Tag of TBWH transducer block = "TIT2020"

In this case the TBHG block will indicate in the LIVE_LIST_ST parameter the status "Commissioned".

TBWH.VAR_NAMES9[1] = "TIT2020_1" MAI16.CHANNEL_TAG[3] = "TIT2020_1"

As the VAR_NAME matches with the CHANNEL_TAG, so this MAI16 block will indicate zero in MAP_MM_16.Point 3, it means that the CHANNEL_TAG[3] is associated to a VAR_NAME. In addition, this input value will be indicated in MAI16.OUTM_16.Status 3 and MAI16.OUTM_16.Value 3.

Block Instantiation

Before explaining block instantiation it is better to clarify some concepts:

Block type: It is an algorithm to process the input parameters based on the configuration in the contained parameters, then it generates the outputs. It includes also method to write/read the parameters, DD and others. Indeed all this information are stored in Flash memory of device, therefore one device type has a predefined set of block type available in its firmware.

Block (block instance): It is a block type associated to a database where the block parameters are stored (RAM and non-volatile memory).

Action Object: Through the action object, a block may be instantiated (created) or deleted. Before instanting a block, it will be checked if the device supports the specified block type as well if there is available RAM and non-volatile memory to store the parameters.

All Smar devices support block instantiation and the Block Library (set of block type) for each type of device is shown in the item "Block type availability and initial block set".

Order of Parameters during Download

Some block parameters have a write check based on the value of others parameters. Such relationships are shown in the block parameter table of each block type in the columns "Valid Range" and "Store/Mode".

It follows the most common parameter relationship used in write check:

- It is required a mode to write the parameter.
- The valid range depends on a scale parameter
- For configurable I/O device, the CHANNEL parameter depends on the hardware configuration in the HC block.

Due to these relationships between parameters in the write check, some times it is necessary to take care about the order of parameters during a download of configuration.

The Smar configuration tool **Syscon** always sends the command to write in the MODE_BLK parameter as last one for that block, it is enough to avoid a lot of problems in the download. The user must observe the other cases and may change the parameter order easily using drag and drop in **Syscon**.

Data Type and Data Structure Definition

In this section are defined every data structure and data types used in the system.

Object Index	Data Type	Description
1	Boolean	True or false
2	Integer8	1 byte
3	Integer16	2 bytes
4	Integer32	4 bytes
5	Unsigned8	1 byte
6	Unsigned16	2 bytes
7	Unsigned32	4 bytes
8	FloatingPoint	*
9	VisibleString	They are one byte per character, and include the 7 bit ASCII character set.
10	OctetString	Octet strings are binary.
11	Date	Date and hour – 7 bytes
12	TimeofDay	Time in millisecond elapsed in the day – 6 bytes
13	TimeDifference	Time difference – 6 bytes
14	BitString	*
		Integer – 8 bytes
21	TimeValue	It represents the date/hour to synchronize the clock.

- Date
- Date (3 bytes) Format#Year#Month#(Week Day and Month Day)
- o Hour (4 bytes) Format: HH#MM#MSEG
- TimeofDay
- o Time (4 bytes) It counted in milliseconds from the Zero hour of the day.
- o Date (3 bytes) It counted in days related to the January, 1, 1984.
- TimeDifference: The structure is the same of the TimeofDay.
- TimeValue: It used to represent Date and Hour to synchronize the clock. It is an integer with 8 bytes in the base of 1/32 milliseconds.

Block Structure – DS-64

This data structure consists of the attributes of a block.

E	Element Name	Data Type	Size
1	Block Tag	VisibleString	32
2	DD Memberld	Unsigned32	4
3	DD ItemId	Unsigned32	4
4	DD Revision	Unsigned16	2
5	Profile	Unsigned16	2
6	Profile Revision	Unsigned16	2
7	Execution Time	Unsigned32	4
8	Period of Execution	Unsigned32	4
9	Number of Parameters	Unsigned16	2

E	Element Name	Data Type	Size
10	Next FB to Execute	Unsigned16	2
11	Starting Index of Views	Unsigned16	2
12	NumberofVIEW_3	Unsigned8	1
13	NumberofVIEW_4	Unsigned8	1

Value & Status - Floating Point Structure - DS-65

This data structure consists of the value and status of floating point parameters that are Inputs or Outputs.

E	Element Name	Data Type	Size
1	Status	Unsigned8	1
2	Value	Float	4

Value & Status - Discrete Structure - DS-66

This data structure consists of the value and status of discrete value parameters.

E	Element Name	Data Type	Size
1	Status	Unsigned8	1
2	Value	Unsigned8	1

Scaling Structure – DS-68

This data structure consists of the static data used to scale floating point values for display purposes.

Е	Element Name	Data Type	Size
1	EU at 100%	Float	4
2	EU at 0%	Float	4
3	Units Index	Unsigned16	2
4	Decimal Point	Integer8	1

Mode Structure – DS-69

This data structure consists of bit strings for target, actual, permitted, and normal modes.

E	Element Name	Data Type	Size
1	Target	Bitstring	1
2	Actual	Bitstring	1
3	Permitted	Bitstring	1
4	Normal	Bitstring	1

Access Permissions – DS-70

This data structure consists of access control flags for access to block parameters.

Е	Element Name	lement Name Data Type	
1	Grant	Bit String	1
2	Deny	Bit String	1

Alarm Float Structure - DS-71

This data structure consists of data that describes floating point alarms.

E	Element Name	Data Type	Size
1	Unacknowledged	Unsigned8	1
2	Alarm State	Unsigned8	1
3	Time Stamp	Time Value	8
4	Subcode	Unsigned16	2
5	Value	Float	4

Alarm Discrete Structure – DS-72

This data structure consists of data that describes discrete alarms.

E	Element Name	Data Type	Size
1	Unacknowledged	Unsigned8	1
2	Alarm State	Unsigned8	1
3	Time Stamp	Time Value	8
4	Subcode	Unsigned16	2
5	Value	Unsigned8	1

Event Update Structure – DS-73

This data structure consists of data that describes a static revision alarm.

E	Element Name	Data Type	Size
1	Unacknowledged	Unsigned8	1
2	Update State	Unsigned8	1
3	Time Stamp	Time Value	8
4	Static Revision	Unsigned16	2
5	Relative Index	Unsigned16	2

Alarm Summary Structure - DS-74

This data structure consists of data that summarizes 16 alerts.

Е	Element Name	Data Type	Size
1	Current	Bit String	2
2	Unacknowledged	Bit String	2
3	Unreported	Bit String	2
4	Disabled	Bit String	2

Simulate - Floating Point Structure - DS-82

This data structure consists of simulate and transducer floating point value and status and a simulate enable/disable discrete.

E	Element Name	Data Type	Size
1	Simulate Status	Unsigned8	1
2	Simulate Value	Float	4
3	Transducer Status	Unsigned8	1
4	Transducer Value	Float	4
5	Simulate En/Disable	Unsigned8	1

Simulate - Discrete Structure - DS-83

This data structure consists of a simulator, and discrete value and status transducer, and a discrete enable/disable simulator.

Е	Element Name	ne Data Type	
1	Simulate Status	Unsigned8	1
2	Simulate Value	Unsigned8	4
3	Transducer Status	Unsigned8	1
4	Transducer Value	Unsigned8	4
5	Simulate En/Disable	Unsigned8	1

Test Structure – DS-85

This data structure consists of function block test read/write data.

E	Element Name	DataType	Size
1	Value1	Boolean	1
2	Value2	Integer8	1
3	Value3	Integer16	2
4	Value4	Integer32	4
5	Value5	Unsigned8	1
6	Value6	Unsigned16	2
7	Value7	Unsigned32	4
8	Value8	FloatingPoint	4
9	Value9	VisibleString	32
10	Value10	OctetString	32
11	Value11	Date	7
12	Value12	Time of Day	6
13	Value13	Time Difference	6
14	Value14	Bitstring	2
15	Value15	Time Value	8

Bitstring32 Alarm - DS-87

E	Element Name	Data Type	Size	Description
1	Unacknowledged	Unsigned8	1	
2	Alarm State	Unsigned8	1	
3	Time Stamp	Time Value	8	
4	Subcode	Unsigned32	4	Bitstring value of the associated *_Active parameter or'ed with the complement of the associated *_MASK parameter.
5	Value	Unsigned8	1	Bit Number from *_ACTIVE

Simulation - Field Diagnostics - DS-89

Е	Element Name	Data Type	Size	Description
1	Diagnostic Simulate Value	Bitstring	4	Value used for diagnostic when the simulation is enabled.
2	Diagnostic Value	Bitstring	4	Diagnostic detected by equipment
3	Enable	Unsigned8	1	Enable/disable the simulation

BitString Structure – DS-158

This data structure consists of the one status and one parameter of 64 discrete value bits.

E	Element Name	Data Type	Size
1	Reserved	OctetString	3
2	Status	Unsigned8	1
3	Value	Bitstring	8

Discrete Structure – DS-159

This data structure consists of one status and eight discrete value parameters.

E	Element Name	Data Type	Size
1	Status	Unsigned8	1
2	Value1	Unsigned8	1
3	Value2	Unsigned8	1
4	Value3	Unsigned8	1
5	Value4	Unsigned8	1
6	Value5	Unsigned8	1
7	Value6	Unsigned8	1
8	Value7	Unsigned8	1
9	Value8	Unsigned8	1

Discrete Structure – DS-160

This data structure consists of one status and sixteen discrete value parameters.

E	Element Name	Data Type	Size
1	Status	Unsigned8	1
2	Value1	Unsigned8	1
3	Value2	Unsigned8	1
4	Value3	Unsigned8	1
5	Value4	Unsigned8	1
6	Value5	Unsigned8	1
7	Value6	Unsigned8	1
8	Value7	Unsigned8	1
9	Value8	Unsigned8	1
10	Value9	Unsigned8	1
11	Value10	Unsigned8	1
12	Value11	Unsigned8	1
13	Value12	Unsigned8	1
14	Value13	Unsigned8	1
15	Value14	Unsigned8	1
16	Value15	Unsigned8	1
17	Value16	Unsigned8	1

Float Structure – DS-174

This data structure consists of status and float value of sixteen analog parameters and one general status.

Е	Element Name	Data Type	Size
1	Reserved	OctetString	3
2	OverallStatus	Unsigned8	1
3-18	Status	Unsigned8	1
19-34	Value	Float	4

HART Equipment Information - DS-175

E	Element Name	Data Type	Size	Range	Description
1	HART Version	Unsigned8 – (5)	1		
2	NumOfProcessVariables (*)	Unsigned8 – (5)	1	0 to 8	Maximum number of digital variables accessed by equipment, from HART_PV up to HART_8V.
3	Reserved	Unsigned8 – (5)	1		
4	HART DeviceRevision	Unsigned8 – (5)	1		
5	HART DeviceType	Unsigned16- (6)	2		
6	HART Manufacturer Id	Unsigned16 – (6)	2		
7	HART Distributor ID	Unsigned16- (6)	2		
8	Analog Disable (*)	Unsigned8 – (5)	1	0=Used 1=Unused	
9	HART Device Profile	Unsigned8 – (5)	1		

Expected Element - DS-176

Е	Element Name	Data Type	Size		Description
1	Expected Tag	VisibleString [32]	32	RW	Transducer block module tag or HART equipment tag.
2	Expected Type	Unsigned32	4	RW	Expected module type.
3	Expected Minimum Version	Unsigned8	1	RW	Smar equipment does not use
4	Next Redundancy Position	Unsigned8	1	RW	Smar equipment does not use
5	Expected Disable	Boolean	1	RW	0 : mismatch alarm enabled 1 : mismatch alarm disabled

Actual Element - DS-177

Е	Element Name	Data Type	Size		Description
1	Actual Tag	VisibleString [32]	32	RO	Transducer block module tag or HART equipment tag.
2	Actual Type	Unsigned32	4	RO	Actual module type.
3	Actual Manufacturer Identification	Unsigned32	4	RO	Smar equipment does not use
4	Actual Version	Unsigned8	1	RO	Smar equipment does not use

Element Status - DS-178

E	Element Name	Data Type	Size		Description
				RO	0: Unknown
1	Element Mismatch	Unsigned8	1		1: Matched
					2: Mismatched
				RO	0: Not Responding (field device)
					1: Empty (component)
2	Element Status	Unsigned8	1		2: Failed (component, field device)
					3: Off-line
					4: On-line (component, field device)
				RW	0: Unknown
					1: Off-line
					2: Synchronizing
3	Redundancy Status	Unsigned8	1		3: Secondary
3	Redundancy Status	Orisignedo	'		4: Primary
					8: Go Off-line
					9: Go Secondary
					10: Go Primary
				RO	Bit 0 : Fail
4	Element FD Status	Bitstring	1		Bit 1 : Maint
4	Liement FD Status	Distilly	'		Bit 2 : Off-spec
					Bit 3 : Check

Threshold Analog I/O - DS-179

Е	Element Name	Data Type	Size	Default	Disable
1	OVERRNG_BAD	Float	4	20.6	+INF
2	OVERRNG_UNC	Float	4	20.45	+INF
3	UNDERRRNG_UNC	Float	4	3.85	-INF
4	UNDERRNG_BAD	Float	4	3.75	-INF
5	OVERRNG_LIM	Float	4	21.0	+INF
6	UNDERRNG_LIM	Float	4	3.9	-INF

Elements 1-4: used only by the analog input transducer block to determine the input status Elements 5-6: used only by the analog output transducer block for limiting the output value

Information of HART Burst Control - DS-183

Е	Element Name	Data Type	Size	Description
1	Publish Control	Unsigned8	1	0 : Off 1 : Enable Publish on token- passing data link layer only (wired) 2 : Enable Publish on TDMA data- link layer only (wireless) 3 : Enable Publish on TDMA and token-passing data-link layers
2	HART Command Expansion	Unsigned8	1	250 : unused slot
3	Device variable code 0	Unsigned8	1	250 : unused slot
4	Device variable code 1	Unsigned8	1	250 : unused slot
5	Device variable code 2	Unsigned8	1	250 : unused slot
6	Device variable code 3	Unsigned8	1	250 : unused slot
7	Device variable code 4	Unsigned8	1	250 : unused slot
8	Device variable code 5	Unsigned8	1	250 : unused slot
9	Device variable code 6	Unsigned8	1	250 : unused slot
10	Device variable code 7	Unsigned8	1	250 : unused slot
11	Publish data message ref	Unsigned8	1	
12	Max publish count	Unsigned8	1	
13	HART Command Number	Unsigned16	2	
14	Reserved	Unsigned16	2	
15	Minimum update period (sec)	Float	4	
16	Maximum update period (sec)	Float	4	
17	Trigger mode	Unsigned8	1	0 : Continuous or Normal 1 : Window or Delta Save 2 : High 3 : Low 4 : On Change
18	Device variable classification	Unsigned8	1	
19	HART unit	Unsigned8	1	
20	Reserved	Unsigned8	1	
21	Trigger level	Float	4	

Indication Alarm of Foreign Protocol - DS-184

Е	Element Name	Data Type (Index)	Size
1	Unacknowledged	Unsigned8 – (5)	1
2	Alarm State	Unsigned8 – (5)	1
3	Time Stamp	Time Value - (21)	8
4	Response Code	Unsigned16 - (6)	2
5	Response Message	Octet String – (10)	256
			Total 268

Unacknowledged =

0=Undefined

1=Acknowledged

2=Unacknowledged

Alarm State=

0=Undefined

1=Update - reported

2=Update - not reported

Response Code

0=Undefined

1=Successful

2=Foreign Protocol Communications Timed-Out

3=Foreign Protocol Communications Failure: Tag Not Found

4=Foreign Protocol Communications Failure: Unrecoverable Errors

5=Foreign Protocol Communications Failure: Interface Not Responding

Manufacturer Specific Data Structure

In this section are defined manufacturer specific data structure used in the system.

Scaling Conversion Structure - DS-256

This data structure consists of data used to generate constants A and B in equation Y= A*X + B.

E	Element Name	Data Type	Size
1	From EU 0%	Float	4
2	From EU 100%	Float	4
3	To EU 0%	Float	4
4	To EU 100%	Float	4
5	Data Type	Unsigned8	1

Scaling Conversion Structure with Status - DS-257

This data structure consists of data used to generate constants A and B in equation Y = A*X + B plus the output status.

E	Element Name	Data Type	Size
1	From EU 0%	Float	4
2	From EU 100%	Float	4
3	To EU 0%	Float	4
4	To EU 100%	Float	4
5	Data Type	Unsigned8	1
6	Output Status	Unsigned8	1

⁻ Ouput Status: This status can be set in two ways: by Modbus master or by status chosen by user. In the first case the Modbus master sends the value and status (i.e., two different Modbus variables). In the second case the master sends only the value.

For more details consult the description in the MBCS block (Section 2).

Scaling Locator Structure - DS-258

This data structure consists of data used to generate constants A and B in equation Y = A*X + B plus the addresses in a slave device.

E	Element Name	Data Type	Size
1	From EU 0%	Float	4
2	From EU 100%	Float	4
3	To EU 0%	Float	4
4	To EU 100%	Float	4
5	Data Type	Unsigned8	1
6	Slave Address	Unsigned8	1
7	Modbus Address of Value	Unsigned16	2

• Slave Address: It informs the slave address which is required to reference to the PVALUEn parameter. For example, it suppose there is one LC700 with device address equal 3 and In this equipment is required to monitor one specific variable. Thus, this Slave Address is 3.

• Modbus Address of Value: It informs the Modbus address of variable which it will be monitored. In the example of the last element, it supposes the Modbus address of the monitored variable was 40032. Thus, element must receive this address.

Scaling Locator Structure with Status- DS-259

This data structure consists of data used to generate constants A and B in equation Y = A*X + B plus the addresses in a slave device.

Е	Element Name	Data Type	Size
1	From EU 0%	Float	4
2	From EU 100%	Float	4
3	To EU 0%	Float	4
4	To EU 100%	Float	4
5	Data Type	Unsigned8	1
6	Slave Address	Unsigned8	1
7	Modbus Address of Value	Unsigned16	2
8	Modbus Address of Status	Unsigned16	2

- Slave Address: It informs the slave address which is required to reference to the PVALUEn parameter. For example, it suppose there is one LC700 with device address equal 3 and In this equipment is required to monitor one specific variable. Thus, this Slave Address is 3;
- Modbus Address of Value: It informs the Modbus address of variable which it will be monitored. In the example of the last element, it supposes the Modbus address of the monitored variable was 40032. Thus, element must receive this address.
- Modbus Address of Status: In this parameter, the user informs the Modbus address which the status will be read or write. Each input and output has one correspondent status. The status interpretation follows the Foundation Fieldbus Default (See the item "Parameter Status" for more details).

Modbus Variable Locator Structure - DS-260

This data structure consists of data indicating the addresses in a slave device.

E	Element Name	Data Type	Size
1	Slave Address	Unsigned8	1
2	Modbus Address of Value	Unsigned16	2

- Slave Address: It indicates the Slave Address which the required variable to be monitored is located. For example, if in an application one LC700 was adjusted with Device Address 1, the Slave Address must be 1.
- Modbus Address Value: It writes the Modbus address of the variable which will be monitored in the MBSM block. It supposes the user needs to monitor the variable with MODBUS Address 40001 located in one Slave I/O module with Device Address 1. Thus, the Modbus Address of Value must be 40001.

Modbus Variable Locator Structure with Status- DS-261

This data structure consists of data indicating the addresses in a slave device.

E	Element Name	Data Type	Size
1	Slave Address	Unsigned8	1
2	Modbus Address of Value	Unsigned16	2
3	Modbus Address of Status	Unsigned16	2

FF Parameter ID Structure - DS-262

This data structure consists of data informing the position of the FF parameter requested.

E	Element Name	Data Type	Size
1	Block Tag	VisibleString(32)	32
2	Relative Index	Unsigned16	2
3	Sub Index	Unsigned8	1

- Block Tag: It informs the Block Tag that contains the variable which is required to visualization. For example, the user needs to monitor the gain value from the PID block. Thus, it inserts the PID Tag Block which contained the gain parameter required to be visualized in the Modbus Master.
- Relative Index: It is the parameter index of a function block which it desired to monitor. (See the function block parameter tables). Thus, it inserts the relative index to the desired parameter to be monitored. In the case above, to monitor the gain parameter from the ID relative block, the relative index is 23.
- Sub Index: The Sub Index is used for parameters which posses structure. In this case, it is necessary to indicate which structure element is being referred.

Slave Address Structure - DS-263

This data structure consists of data informing the IP address and the Modbus address of the slaves.

E	Element Name	Data Type	Size
1	IP Slave1	VisibleString(16)	16
2	IP Slave2	VisibleString(16)	16
3	IP Slave3	VisibleString(16)	16
4	IP Slave4	VisibleString(16)	16
5	IP Slave5	VisibleString(16)	16
6	IP Slave6	VisibleString(16)	16
7	IP Slave7	VisibleString(16)	16
8	IP Slave8	VisibleString(16)	16
9	Slave Address1	Unsigned8	1
10	Slave Address2	Unsigned8	1
11	Slave Address3	Unsigned8	1
12	Slave Address4	Unsigned8	1
13	Slave Address5	Unsigned8	1
14	Slave Address6	Unsigned8	1
15	Slave Address7	Unsigned8	1
16	Slave Address8	Unsigned8	1

BLOCK LIBRARY

This chapter describes in detail the library of Smar FOUNDATION fieldbus functional blocks, structured as described below.

First two tables are shown, which describe the general characteristics of each block grouped according to the class:

- Description of Block Types: Describes each block available in blocks library.
- Block Type Availability and Initial Block Set: Shows the supported blocks for each device Smar and the pre-instantiated values.

Subsequently, each function block is detailed. For each block, the following information are supplied:

- Overview: general description of the block;
- Description: describes all the characteristics of the block;
- BLOCK_ERR: indicates the possible signals of the BLOCK_ERR parameter and the possible causes. For more details see the section "Alarms and Events Alert Processing and Simulation" in the Chapter 1:
- Supported Modes: indicates the block supported modes. For more details see the section "Mode Parameter" in the Chapter 1;
- Parameters: table with all the parameters of the block. For each parameter the following characteristics are detailed:

	[6.13.1.1.13]
ldx	Relative index of the parameter.
Parameter	Parameter tag (the same of the block device description (DD)).
- · -	Supported data type: Name – Simple variable or array.
Data Type	DS-n – Data structure (Record) of index n.
(Length)	The value between parentheses represents the size in bytes of the parameter. For more details see the section "Data Type and Data Structure Definition" in the Chapter 1.
Valid Range/Options	Determine the valid range of values or the options that can be written in the
valid Kange/Options	parameter.
Default Value	Parameter value when the block is initialized the first time.
Units	Represents the parameter unit. All parameters with the same unit have the same relation within the block. The units can be PV, OUT, FF, TRK and XD. For example, the SP and PV parameters of PID block have the same PV unit, i.e., both have the same range of PV_SCALE. The units Sec (seconds), % (percent) and On/Off (discrete state) are constant units. "None" is used for numbers that don't have specific units, and "na" is used for bit strings where units don't apply.
Store/ Mode	 This column has two information: The "store" where the parameter is stored: Static, Non-volatile or Dynamic. See Parameter Storage in chapter 1; and The "mode" minimum to change the parameter. It can be: "No mode" - indicates that the parameter don't depend on the mode to be change; "RO" (Read-Only) – indicates that the parameter is read only; "Auto", "Man" or "OOS" – indicates the minimum Target mode that the block must be to change the parameter. The minimum means that if the block is in a mode with priority higher than the minimum, it is possible to change. For example, the OOS mode is the mode with higher priority. Therefore in OOS mode is possible to change all the parameters. The MAN mode has priority in relation to the Auto mode, and so forth. For more information about the priorities of the modes, see the table in the section "Mode Parameter" item c, chapter 1.
Description	A brief description of each parameter of the block and its use.

Description of Block Types

BLOCK CLASS	BLOCK TYPE	MAPPING [1]	DESCRIPTION
DESCURCE	RS	-	RESOURCE – This block contains data that is specific to the hardware that is associated to the resource.
RESOURCE -	RS2	-	RESOURCE – This block contains data that is specific to the hardware that is associated to the resource with Field Diagnostics parameters.
	DIAG	-	DIAGNOSTICS TRANSDUCER – It provides online measurement of block execution time, check of links between blocks and other features
	TEMP		DF45 TEMPERATURE TRANSDUCER – This is the transducer block for the module DF45, an eight low level input module for RTD, TC, mV and Ohm.
	НС	NUM	HARDWARE CONFIGURATION TRANSDUCER – It configures the module type for each slot in the DFI302.
	TRDRED	-	REDUNDANCY TRANSDUCER - This block provides information about redundant devices. It allows verify the actual status and data related to the devices that work in redundancy.
TRANSDUCER BLOCKS	ABC	ROM	ASSOCIATION BLOCK FOR COMPONENT – It configures the module type for each slot using the ROM technology.
	TB8BI	ROM	TB8BI –Generic term for all transducers of modules with 8 digital inputs.
	ТВ8ВО	ROM	TB8BO –Generic term for all transducers of modules with 8 digital outputs.
	TB8AI	ROM	TB8AI –Generic term for all transducers of modules with 8 analog inputs.
	TB4AO	ROM	TB4AO –Generic term for all transducers of modules with analog outputs.
-	ТВНС	ROM	TRANSDUCER BLOCK FOR HART GATEWAY – Transducer block for WirelessHART gateway.
	твwн	ROM	TRANSDUCER BLOCK FOR WIRELESSHART – HSE WIO transducer block used to map each HART and <i>Wireless</i> HART field device.
	Al	NUM	ANALOG INPUT – This block takes the analog input data from the analog input signal and it makes available to other function blocks. It has scaling conversion, filtering, square root, low cut and alarm processing.
	EAI	NUM	ENHANCED ANALOG INPUT – This block has all the parameters of the Al block. It has an additional feature for alarm output (OUT_ALM parameter) to be used in control logic.
	DI	NUM	DISCRETE INPUT – This block takes the discrete input data from the discrete input signal, and it makes available to other function blocks. It has option to invert, filtering and alarm processing.
INPUT	MAI	NUM	MULTIPLE ANALOG INPUT — It provides a way to receive 8 analog variables from other modules or physical inputs.
FUNCTION BLOCKS	MDI	NUM	MULTIPLE DISCRETE INPUT — It provides a way to receive 8 discrete variables from other modules or physical inputs.
	PUL	NUM	PULSE INPUT – It provides an analog value that represents a totalization of pulses in a physical discrete input.
	ROMAI	ROM	ROMAI ANALOG INPUT - This block has all characteristics of the standard AI block in addition the features related to alarm and IO mapping via CHANNEL_TAG.
	MAI16	ROM	MULTIPLE ANALOG INPUTS 16 – It provides to the FOUNDATION fieldbus network 16 analog input variables in a single output parameter.
	MBI64	ROM	MULTIPLE BINARY INPUTS 64 – It provides to the FOUNDATION fieldbus network 64 input binary variables in a single output parameter.
CONTROL AND	PID	-	PID CONTROL – This standard block has a lot of valuables features as setpoint treatment (value and rate limiting), filtering and alarm on PV, feedforward, output tracking and others.
CONTROL AND CALCULATION FUNCTION	EPID	-	ENHANCED PID – It has all the standard features plus: bumpless or hard transfer from a "manual" mode to an "automatic" mode and bias.
BLOCKS	APID	-	ADVANCED PID – It has all the standard features plus: bumpless or hard transfer from a "manual" mode to an "automatic" mode, bias. Adaptative gain, PI sampling, dead band for error, special treatment for error, ISA or parallel algorithm.

ARTH	-	ARITHMETIC – This calculation block provides some pre-defined equations ready for use in applications as flow compensation, HTG, ratio control and others.
SPLT	-	SPLITTER – This block is used in two typical applications: split ranging and sequencing. It receives the output of PID block, which is processed according to the selected algorithm, and then it generates the values for the two analog output blocks.
CHAR	-	SIGNAL CHARACTERIZER — It has capability for two signal characterization based on the same curve. The second input has an option for swapping "x" to "y", providing an easy way to use the inverse function, which may be used in signal characterization of readback variables.
ECHAR	-	ENHANCED SIGNAL CHARACTERIZER – It has all the characteristics of the CHAR block, and allows cascade operation.
INTG	-	INTEGRATOR – It integrates a variable in function of the time. There is a second flow input that may be used for the following applications: net flow totalization, volume/mass variation in vessels and precise flow ratio control.
AALM	-	ANALOG ALARM – This alarm block has dynamic or static alarm limits, hysteresis, and temporary expansion of alarm limits on step setpoint changes to avoid nuisance alarms, two levels of alarm limits and delay for alarm detection.
EAALM	-	ENHANCED ANALOG ALARM – It has all characteristics of the AALM block, and also provides one output when the input has not usable status and it allows the inversion of the outputs.
ISEL	-	INPUT SELECTOR – This block has four analog inputs that may be selected by an input parameter or according to a criterion as first good, maximum, minimum, middle and average.
SPG	-	SETPOINT RAMP GENERATOR – This block generates setpoint following a profile in function of the time. Typical applications are temperature control, batch reactors, etc.
ESPG	-	ENHANCED SETPOINT RAMP GENERATOR – It has an extra parameter to identify the step or segment of the profile in the float format.
TIME	-	TIMER and Logic – This block has four discrete inputs that are processed by combination logic. The selected timer processing type operates on the combined input signal to produce a measurement, delay, extension, pulse or debounce.
LLAG	-	LEAD-LAG – This block provides dynamic compensation of a variable. It is used normally in a feed forward control.
	-	OUTPUT SELECTOR / DYNAMIC LIMITER – It has two algorithms:
OSDL		Output selector – selection of output by a discrete input
0022		Dynamic limiter – this algorithm was developed specially for double cross limit in combustion control.
DENS	-	DENSITY – This block has a special algorithm to calculate the density in different types of engineering units: plato degree, INPM and others.
CTRW	-	CONSTANT AND CONTAINED RW - The Constant function block generates constant values to use in input parameters of other blocks. It can also read/write in contained parameters of other blocks into the same device.
FFET	-	FLIP-FLOP AND EDGE TRIGGER – It can be configured to work as SR flip-flop, RS flip-flop, D-LATCH and EDGE TRIGGER (rising, falling or bidirectional)
AEQU	-	ADVANCED EQUATIONS - This block was specially designed to support specific calculations.
PRED	-	SMITH PREDITOR —This block becomes available the following functions as Delay, Bypass and Smith Predictor.
TF	-	TRANSFER FUNCTION – This block is intended to represent systems up to 2nd order, using the coefficients A, B, C, D, E and F.
LCF	-	LIQUID CORRECTION FACTORS – This block calculates the correction factors (CTL, CPL and BSW in operation temperature) for liquid measurement.
FMTH	-	FLEXIBLE MATHEMATICAL – This block allows execute mathematical expressions generated by the user with inputs, outputs and auxiliary variables, and also including conditional expressions.

		T	
	ADT	-	ANALOG DATA TRANSFER - This block obtains the analog values and status from the inputs and makes available for the outputs. Optionally the block can be configured to generate in its outputs constant values to be used in the inputs of other blocks.
	DDT	-	DISCRETE DATA TRANSFER - This block obtains the discrete values from the inputs and makes available for the outputs. Optionally the block can be used to make available the constants for the outputs.
FLEXIBLE FUNCTION	FFB_1131	-	FFB_1131 – It has as main purpose to interconnect the ladder logic (usually used for discrete control strategies) and continuous control system, configured through function blocks.
BLOCK 1131	FFB2_1131	-	FFB2_1131 – It has as main purpose to interconnect the ladder logic (usually used for discrete control strategies) and continuous control system, configured through function blocks.
	MBCF	-	MODBUS CONFIGURATION – This transducer block is used to configure general features related to Modbus gateway.
	MBCS	-	MODBUS CONTROL SLAVE – When the device is working as gateway between Foundation Fieldbus and Modbus (slave device), this block may be used to exchange control data between both protocols.
MODBUS FUNCTION BLOCKS	MBSS	-	MODBUS SUPERVISION SLAVE – When the device is working as gateway between Foundation Fieldbus and Modbus (slave device), this block may be used to convert Foundation Fieldbus parameters into Modbus variables. Such variables will be available to the supervisory with a Modbus driver.
	МВСМ	-	MODBUS CONTROL MASTER – When the device is working as gateway between Foundation Fieldbus and Modbus (master device), this block may be used to exchange control data between both protocols.
	MBSM	-	MODBUS SUPERVISION MASTER – When the device is working as gateway between Foundation Fieldbus and Modbus (master device), this block may be used to convert Modbus variables into Foundation Fieldbus parameters. Such parameters will be available to the supervisory with a Foundation Fieldbus driver (OPC).
	АО	NUM	ANALOG OUTPUT – The AO block provides an analog value to generate an analog output signal. It provides value and rate limiting, scaling conversion, fault state mechanism and other features.
	DO	NUM	DISCRETE OUTPUT – The DO block provides a discrete value to generate a discrete output signal. There is option to invert the discrete value, fault state mechanism and other features.
	MAO	NUM	MULTIPLE ANALOG OUTPUT – It provides a way to send 8 analog variables to other modules or physical outputs.
OUTPUT FUNCTION	MDO	NUM	MULTIPLE DISCRETE OUTPUT – It provides a way to send 8 discrete variables to other modules or physical outputs.
BLOCKS	STEP	NUM	STEP OUTPUT PID – It is used when the final control element has an actuator driven by an electric motor.
	ROMAO	ROM	ROMAO ANALOG OUTPUT - This block has all characteristics of the standard AO block in addition the features related to alarm and IO mapping via CHANNEL_TAG.
	MAO16	ROM	MULTIPLE ANALOG OUTPUT 16 – It receives from the FOUNDATION fieldbus network 16 analog output variables in a single input parameter.
[1] Logand:	MBO64	ROM	MULTIPLE BINARY OUTPUT 64 - It receives from the FOUNDATION fieldbus network 64 binary output variables in a single input parameter

[1] Legend:
NUM: exclusive block for controller with Numeric Mapping
ROM: exclusive block for controller with ROM Mapping
-: block supported by controller with Numeric or ROM Mapping

Block Type Availability and Initial Block Set

The table below shows the list of supported blocks for each product. Read carefully the notes in order to fully understand the information in this table.

Block Class	Block Type	DF62	DF63	DF73	DF75	DF79	DF81	DF89	DF95	DF97	DF99	DF100
Resource	RS (1)	1	1	1	1	1	1	1	1	1		
	RS2 (1)										1	1
	DIAG (1)	1	1	1	1	1	1	1	1	1	1	1
	TEMP	0	0	0	0	0	0	0	0	0		
	HC (1)	0	0	0	0	0	0	0	0	0		
	TRDRED (1)	1	1	1	1			1				
	ABC										1	
Transducer Blocks	TB8BI										0	
DIOCKS	TB8BO										0	
	TB8AI										0	
	TB4AO										0	
	TBHG (1)										1	1
	TBWH										0	0
	Al	0	0	0	0	0	0	0	0	0		
	EAI	0	0	0	0	0	0	0	0	0		
	DI	0	0	0	0	0	0	0	0	0		
	MAI	0	0	0	0	0	0	0	0	0		
Input Function	MDI	0	0	0	0	0	0	0	0	0		
Blocks	PUL	0	0	0	0	0	0	0	0	0		
	MAI16										0	0
	ROMAI										0	0
	MBI64										0	
	PID	0	0	0	0	0	0	0	0	0	0	0
	EPID	0	0	0	0	0	0	0	0	0	0	0
	APID	0	0	0	0	0	0	0	0	0	0	0
	ARTH	0	0	0	0	0	0	0	0	0	0	0
	SPLT	0	0	0	0	0	0	0	0	0	0	0
	CHAR	0	0	0	0	0	0	0	0	0		
	ECHAR	0	0	0	0	0	0	0	0	0	0	0
	INTG	0	0	0	0	0	0	0	0	0	0	0
	AALM	0	0	0	0	0	0	0	0	0		
Control and	EAALM	0	0	0	0	0	0	0	0	0	0	0
Calculation	ISEL	0	0	0	0	0	0	0	0	0	0	0
Function Blocks	SPG	0	0	0	0	0	0	0	0	0	0	0
	ESPG	0	0	0	0	0	0	0	0	0	0	0
	TIME	0	0	0	0	0	0	0	0	0	0	0
	LLAG	0	0	0	0	0	0	0	0	0	0	0
	OSDL	0	0	0	0	0	0	0	0	0	0	0
	DENS	0	0	0	0	0	0	0	0	0		
	CTRW	0	0	0	0	0	0	0	0	0		
	FFET	0	0	0	0	0	0	0	0	0	0	0
	AEQU	0	0	0	0	0	0	0	0	0	0	0
	PRED	0	0	0	0	0	0	0	0	0		

Block Class	Block Type	DF62	DF63	DF73	DF75	DF79	DF81	DF89	DF95	DF97	DF99	DF100
	TF	0	0	0	0	0	0	0	0	0		
	LCF	0	0	0	0	0	0	0	0	0		
	FMTH	0	0	0	0	0	0	0	0	0		
	ADT	0	0	0	0	0	0	0	0	0	0	0
	DDT	0	0	0	0	0	0	0	0	0	0	0
Flexible Function	FFB_1131 (1)	0	0	0	0	0	0	0	0	0		
Block 1131	FFB2_1131 (1)	0	0	0	0	0	0	0	0	0		
	MBCF (1)	0	0	0	0	0	0	0	0	0	0	0
Modbus Function	MBCS (16)	0	0								0	0
Blocks	MBCM (16)	0	0								0	0
	MBSM (16)	0	0								0	0
	AO	0	0	0	0	0	0	0	0	0		
	DO	0	0	0	0	0	0	0	0	0		
	MAO	0	0	0	0	0	0	0	0	0		
Output Function	MDO	0	0	0	0	0	0	0	0	0		
Blocks	STEP	0	0	0	0	0	0	0	0	0		
	ROMAO										0	
	MAO16										0	
	MBO64										0	

Note 1 - The column "Block type" indicates which block type is available for each type of device.

Note 2 – The number associated to the block type and the device type is the number of instantiated blocks during the factory initialization.

Note 3 - If the function block type is not available to the device type, it will be indicated by blank space.

Note 4 – The column Block type shows the mnemonics, if it is followed by a number between parentheses, it indicates the maximum number of block instances.

Note 5 – To know the firmware versions of controllers which support the FFB_1131 and FFB2_1131 blocks, consult the description of block in "Flexible Function Block 1131 – Chapter 2".

Note 6 – The following transducer blocks represents generically a set of specific transducer blocks for each type of I/O module.

TB8BI represents the transducer of DF16.

TB8BO represents the transducer of DF25.

TB8Al represents the transducer of DF44.

TB4AO represents the transducer of DF46.

Resource

RS – Resource Block

Description

This block contains data that is specific to the hardware that is associated with the resource. All data is modeled as Contained, so there are no links to this block. The data is not processed in the way that a function block processes data, so there is no function schematic.

This parameter set is intended to be the minimum required for the Function Block Application associated with the resource in which it resides. Some parameters that could be in the set, like calibration data and ambient temperature, are more part of their respective transducer blocks.

The mode is used to control major states of the resource. O/S mode stops all function block execution. The actual mode of the function blocks will be changed to O/S, but the target mode will not be changed. Auto mode allows normal operation of the resource. IMan shows that the resource is initializing or receiving a software download.

Parameters MANUFAC_ID, DEV_TYPE, DEV_REV, DD_REV, and DD_RESOURCE are required to identify and locate the DD so that Device Description Services can select the correct DD for use with the resource.

The parameter HARD_TYPES is a read only BitString that indicates the types of hardware that are available to this resource. If an I/O block is configured that requires a type of hardware that is not available, the result will be a block alarm for a configuration error.

The RS_STATE parameter contains the operational state of the Function Block Application for the resource containing this resource block.

RESTART parameter

The RESTART parameter allows degrees of initialization of the resource. They are:

- 1 Run: it is the passive state of the parameter
- 2 Restart resource: it is intended to clear up problems like garbage collection
- 3 Restart with defaults: it is intended to wipe configuration memory; it works like a factory initialization.
- 4 Restart processor: it provides a way to hit the reset button on the processor associated with the resource

This parameter does not appear in a view because it returns to 1 shortly after being written.

Non-volatile parameters

The Smar devices do not support cyclic saving of non-volatile parameters to a non-volatile memory, therefore NV_CYCLE_T parameter will always be zero, which means not supported feature.

On the other hand, the Smar devices have a mechanism to save non-volatile parameters into a non-volatile memory during the power down, and they will be recovered in the power up.

Timeout for remote cascade modes

SHED_RCAS and SHED_ROUT set the time limit for loss of communication from a remote device. These constants are used by all function blocks that support a remote cascade mode. The effect of a timeout is described in Mode Calculation. Shedding from RCAS/ROUT shall not happen when SHED_RCAS or SHED_ROUT is set to zero.

Alert Notification

The MAX_NOTIFY parameter value is the maximum number of alert reports that this resource can have sent without getting a confirmation, corresponding to the amount of buffer space available for alert messages. A user can set the number lower than that, to control alert flooding, by adjusting the LIM_NOTIFY parameter value. If LIM_NOTIFY is set to zero, then no alerts are reported. The CONFIRM_TIME parameter is the time for the resource to wait for confirmation of receipt of a report before trying again. If the CONFIRM_TIME = 0 the device shall not retry.

FEATURES / FEATURE_SEL parameters

The bit strings FEATURES and FEATURE_SEL determine optional behavior of the resource. The first defines the available features, and is read only. The second is used to turn on an available

feature by configuration. If a bit is set in FEATURE_SEL that is not set in FEATURES, the result will be a block alarm for a configuration error.

Smar devices support the following features: Reports supported, Fault State supported, Soft Write lock supported.

Fault state for the whole resource

If the user sets the SET_FSTATE parameter, the FAULT_STATE parameter will indicate active and it will cause **all output function blocks** in the resource to go immediately to the condition chosen by the fault state Type I/O option. It may be cleared by setting the CLR_FSTATE parameter. The set and clear parameters do not appear in a view because they are momentary.

Write lock by software

The WRITE_LOCK parameter, if set, will prevent any external change to the static or nonvolatile data base in the Function Block Application of the resource. Block connections and calculation results will proceed normally, but the configuration will be locked. It is set and cleared by writing to the WRITE_LOCK parameter. Clearing WRITE_LOCK will generate the discrete alert WRITE_ALM, at the WRITE_PRI priority. Setting WRITE_LOCK will clear the alert, if it exists.

Before setting WRITE_LOCK parameter to *Locked*, it is necessary to select the "Soft Write lock supported" option in FEATURE_SEL.

Schedule Optimization

The functional blocks optimization is enable when "Sched and Link Optimization" of the RES_OPTS parameter is set. In this case the blocks Schedule is executed in sequential mode not consider the dowloaded FBSchedule, but complying with the macrocycle calculated by Syscon.

Optionally the user can change the optimization level by OPTIM_LEVEL parameter, establishing a high (level 1) or low (level 3) optimization. The level indicates the gap size among the block groups.

RES_STATUS parameter indicates "Schedule Overflow" when the Resource block detects an insufficient Syscon's macrocycle to execute the block logic. Indicates "Download in Progress" always when to start a configuration download in resource. In this case, when finishing the download the parameter change the status for None. Indicates "CPU Overload" when CPU overload is higher than 80%.

Besides, this parameter can indicate error if the Schedule is not executed within a specified time by macrocycle. This problem occurs when the configuration has many HSE links. In this case the user should increase the macrocycle and the optimization level, to do a new download, until the macrocycle is in conformity with the control logic, in other words, until execute completely the Schedule.

Other Features

The parameter CYCLE_TYPE is a BitString that defines the types of cycles that this resource can do. CYCLE_SEL allows the configurator chooses one of them. If CYCLE_SEL contains more than one bit, or the bit set is not set in CYCLE_TYPE, the result will be a block alarm for a configuration error. MIN_CYCLE_T is the manufacturer specified minimum time to execute a cycle. It puts a lower limit on the scheduling of the resource.

MEMORY_SIZE declares the size of the resource for configuration of function blocks, in kilobytes. The parameter FREE_SPACE shows the percentage of configuration memory that is still available. FREE_TIME shows the approximate percentage of time that the resource has left for processing new function blocks, should they be configured.

BLOCK ERR

The BLOCK_ERR of the resource block will reflect the following causes:

- Device Fault State Set When FAULT_STATE is active.
- Simulate Active When the Simulate jumper is ON.
- Out of Service When the block is in O/S mode.

Supported Modes

O/S, IMAN and AUTO

Parameters

ldx	Parameter	DataType (length)	Valid Range/ Options	Default Value	Units	Store/ Mode	Description
1	ST_REV	Unsigned16	Options	0	None	S/RO	
2	TAG_DESC	OctString(32)		Spaces	Na	S	
3	STRATEGY	Unsigned16		0	None	S	
4	ALERT_KEY	Unsigned8	1 to 255	0	None	S	
5	MODE_BLK	DS-69		O/S	Na	S	See Mode Parameter
6	BLOCK_ERR	Bitstring(2)			E	D/RO	
7	RS_STATE	Unsigned8			E	D/RO	State of the function block application state machine.
8	TEST_RW	DS-85			None	D	Read/write test parameter - used only for conformance testing.
9	DD_RESOURCE	VisibletString(32)		Spaces	Na	S/RO	String identifying the tag of the resource which contains the Device Description for this resource.
10	MANUFAC_ID	Unsigned32	Enumeration; controlled by FF	0x0000030 2	None	S/RO	Manufacturer identification number - used by an interface device to locate the DD file for the resource.
11	DEV_TYPE	Unsigned16	Set by mfgr		None	S/RO	Manufacturer's model number associated with the resource - used by interface devices to locate the DD file for the resource.
12	DEV_REV	Unsigned8	Set by mfgr		None	S/RO	Manufacturer revision number associated with the resource - used by an interface device to locate the DD file for the resource.
13	DD_REV	Unsigned8	Set by mfgr		None	S/RO	Revision of the DD associated with the resource - used by an interface device to locate the DD file for the resource.
14	GRANT_DENY	DS-70	See Block Options	0	Na	D	Options for controlling access of host computer and local control panels to operating, tuning and alarm parameters of the block.
15	HARD_TYPES	Bitstring(2)	Set by mfgr		Na	S/RO	The types of hardware available as channel numbers.
16	RESTART	Unsigned8	1: Run, 2: Restart resource, 3: Restart with defaults, 4: Restart processor		E	D	Allows a manual restart to be initiated. Several degrees of restart are possible.
17	FEATURES	Bitstring(2)	Set by mfgr		Na	S/RO	Used to show supported resource block options.
18	FEATURE_SEL	Bitstring(2)	, ,	0	Na	S	Used to select resource block options.
19	CYCLE_TYPE	Bitstring(2)	Set by mfgr		Na	S/RO	Identifies the block execution methods available for this resource.
20	CYCLE_SEL	Bitstring(2)		0	Na	S	Used to select the block execution method for this resource.
21	MIN_CYCLE_T	Unsigned32	Set by mfgr		1/32 millisec	S/RO	Time duration of the shortest cycle interval of which the resource is capable.
22	MEMORY_SIZE	Unsigned16	Set by mfgr		kbytes	S/RO	Available configuration memory in the empty resource. To be checked before attempting a download.
23	NV_CYCLE_T	Unsigned32			1/32 millisec	S/RO	Interval between writing copies of NV parameters to non-volatile memory. Zero means never.
24	FREE_SPACE	Float	0 to 100 %		%	D/RO	Percent of memory available for further configuration. Zero in a preconfigured resource.
25	FREE_TIME	Float	0 to 100%		%	D/RO	Percent of the block processing time that is free to process additional blocks.
26	SHED_RCAS	Unsigned32		640000	1/32millis ec	S	Time duration at which to give up on computer writes to function block RCas locations.

ldx	Parameter	DataType (length)	Valid Range/ Options	Default Value	Units	Store/ Mode	Description
27	SHED_ROUT	Unsigned32		640000	1/32 millisec	S	Time duration at which to give up on computer writes to function block ROut locations.
28	FAULT_STATE	Unsigned8	1: Clear, 2: Active		E	D	Condition set by loss of communication to an output block, failure promoted to an output block or a physical contact. When Fault State condition is set, and then output function blocks will perform their FSAFE actions.
29	SET_FSTATE	Unsigned8	1: Off, 2: Set	1	E	D	Allows the fault state condition to be manually initiated by selecting Set.
30	CLR_FSTATE	Unsigned8	1: Off, 2: Clear	1	E	D	Writing a Clear to this parameter will clear the device fault state if the field condition, if any, has cleared.
31	MAX_NOTIFY	Unsigned8	Set by mfgr		None	S/RO	Maximum number of unconfirmed notifies messages possible.
32	LIM_NOTIFY	Unsigned8	0 to MAX_ NOTIFY	MAX_ NOTIFY	None	S	Maximum number of unconfirmed alert notifies messages allowed.
33	CONFIRM_TIME	Unsigned32		640000	1/32 millisec	S	The minimum time between retries of alert reports.
34	WRITE_LOCK	Unsigned8	1:Unlocked, 2:Locked	1	E	S	If set, no writes from anywhere are allowed, except to clear WRITE_LOCK. Block inputs will continue to be updated.
35	UPDATE_EVT	DS-73			Na	D	This alert is generated by any change to the static data.
36	BLOCK_ALM	DS-72			Na	D	The block alarm is used for all configuration, hardware, and connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.
37	ALARM_SUM	DS-74			Na	S	The current alert status, unacknowledged states, unreported states, and disabled states of the alarms associated with the function block.
38	ACK_OPTION	Bitstring(2)	0: Auto ACK Disable 1: Auto ACK Enable	0	Na	S	Selection of whether alarms associated with the block will be automatically acknowledged.
39	WRITE_PRI	Unsigned8	0 to 15	0	None	S	Priority of the alarm generated by clearing the write lock.
40	WRITE_ALM	DS-72			None	D	This alert is generated if the write lock parameter is cleared.
41	ITK_VER	Unsigned16			Na	S/RO	This parameter informs which ITK version is the device (only for certified devices).
42	RES_OPTS	BitString (2)		None		RW / OOS	Options of Resource block. See description below.
43	OPTIM_LEVEL	Unsigned8	1:High, 2:Average, 3:Low	1		RW / OOS	If the optimization is enable indicates the level of the optimization: (1) is best optimization up to; (2) average optimization; (3) low optimization.
44	RES_STATUS RES_MIN_CYCL	BitString (2)				RO	Status of some resource features.
45	E E	Unsigned32				RO	Dynamic minimum macrocycle time recommended.

Legend: E – Enumerated Parameter; Na – Dimensionless Parameter; RO – Read Only; D – Dynamic; N – Non volatile; S – Static.

Gray Background Line: Default Parameters in Syscon

RS2 - Resource Block

Additional parameters to the Resource Block adding the Field Diagnostics feature

This block has additional features of FOUNDATION Diagnostic (Field Diagnostics) whose parameters are described below.

Parameters

ldx	Parameter	Data Type (lenght)	Valid Range/ Options	Default Value	Units	Store/ Mode	Description
46	FD_VER	Unsigned16			Na	S, RO	A parameter equal to the value of the major version of the Field Diagnostics specification that this device was designed to.
47	FD_FAIL_ACTIVE	BitString[4]			Na	D, RO	This parameter reflects the error conditions that are being detected as active as selected for this category. It is a bit string, so that multiple conditions may be shown.
48	FD_OFFSPEC_ACTIVE	BitString[4]			Na	D, RO	This parameter reflects the error conditions that are being detected as active as selected for this category. It is a bit string, so that multiple conditions may be shown.
49	FD_MAINT_ACTIVE	BitString[4]			Na	D, RO	This parameter reflects the error conditions that are being detected as active as selected for this category. It is a bit string, so that multiple conditions may be shown.
50	FD_CHECK_ACTIVE	BitString[4]			Na	D, RO	This parameter reflects the error conditions that are being detected as active as selected for this category. It is a bit string, so that multiple conditions may be shown. See section 2.9
51	FD_FAIL_MAP	BitString[4]			Na	S	This parameter maps conditions to be detected as active for this alarm category. Thus the same condition may be active in all, some, or none of the 4 alarm categories.
52	FD_OFFSPEC_MAP	BitString[4]			Na	S	This parameter maps conditions to be detected as active for this alarm category. Thus the same condition may be active in all, some, or none of the 4 alarm categories.
53	FD_MAINT_MAP	BitString[4]			Na	S	This parameter maps conditions to be detected as active for this alarm category. Thus the same condition may be active in all, some, or none of the 4 alarm categories.
54	FD_CHECK_MAP	BitString[4]			Na	S	This parameter maps conditions to be detected as active for this alarm category. Thus the same condition may be active in all, some, or none of the 4 alarm categories.
55	FD_FAIL_MASK	BitString[4]			Na	S	This parameter allows the user to suppress any single or multiple conditions that are active, in this category, from being broadcast to the host through the alarm parameter. A bit equal to '1' will mask i.e. inhibit the broadcast of a condition, and a bit equal to '0' will unmask i.e. allow broadcast of a condition.

56	FD_OFFSPEC_MASK	BitString[4]			Na	S	This parameter allows the user to suppress any single or multiple conditions that are active, in this category, from being broadcast to the host through the alarm parameter. A bit equal to '1' will mask i.e. inhibit the broadcast of a condition, and a bit equal to '0' will unmask i.e. allow broadcast of a condition.
57	FD_MAINT_MASK	BitString[4]			Na	S	This parameter allows the user to suppress any single or multiple conditions that are active, in this category, from being broadcast to the host through the alarm parameter. A bit equal to '1' will mask i.e. inhibit the broadcast of a condition, and a bit equal to '0' will unmask i.e. allow broadcast of a condition.
58	FD_CHECK_MASK	BitString[4]			Na	S	This parameter allows the user to suppress any single or multiple conditions that are active, in this category, from being broadcast to the host through the alarm parameter. A bit equal to '1' will mask i.e. inhibit the broadcast of a condition, and a bit equal to '0' will unmask i.e. allow broadcast of a condition.
59	FD_FAIL_ALM	DS-87			Na	D	This parameter is used primarily to broadcast a change in the associated active conditions, which are not masked, for this alarm category to a Host System.
60	FD_OFFSPEC_ALM	DS-87			Na	D	This parameter is used primarily to broadcast a change in the associated active conditions, which are not masked, for this alarm category to a Host System.
61	FD_MAINT_ALM	DS-87			Na	D	This parameter is used primarily to broadcast a change in the associated active conditions, which are not masked, for this alarm category to a Host System.
62	FD_CHECK_ALM	DS-87			Na	D	This parameter is used primarily to broadcast a change in the associated active conditions, which are not masked, for this alarm category to a Host System.
63	FD_FAIL_PRI	Unsigned8	0-15	0	Na	s	This parameter allows the user to specify the priority of this alarm category.
64	FD_OFFSPEC_PRI	Unsigned8	0-15	0	Na	S	This parameter allows the user to specify the priority of this alarm category.
65	FD_MAINT_PRI	Unsigned8	0-15	0	Na	s	This parameter allows the user to specify the priority of this alarm category.
66	FD_CHECK_PRI	Unsigned8	0-15	0	Na	S	This parameter allows the user to specify the priority of this alarm category.
67	FD_SIMULATE	DS-89		disabled	Na	D	This parameter allows the conditions to be manually supplied when simulation is enabled. When simulation is disabled both the diagnostic simulate value and the diagnostic value tracks the actual conditions. The simulate jumper is required for simulation to be enabled and while simulation is enabled the recommended action will show that simulation is active.

68	FD_RECOMMEN_ACT	Unsigned16	0-Not Initalized 1-No Action Required 28-Replace the battery in the CPU module 29-RS block in O/S 31-Check the power supply system, including the power supply module 32-Replace CPU module	0	Na	D, RO	This parameter is a device enumerated summarization of the most severe condition or conditions detected. The DD help should describe by enumerated action, what should be done to alleviate the condition or conditions. 0 is defined as Not Initialized, 1 is defined as No Action Required, all others defined by manufacturer.
----	-----------------	------------	---	---	----	-------	---

Legend: E – Enumerated Parameter; Na – Dimensionless Parameter; RO – Read Only; D – Dynamic; N – Non volatile; S – Static.

Gray Background Line: Default Parameters in Syscon

Definition of Field Diagnostics

		alue			
Bit#	Bit Description	FD_MAINT_MAP	FD_OFFSPEC_MAP	FD_CHECK_MAP	FD_FAIL_MAP
0	Check			Х	
1	FD_1				
2	FD_2				
3	FD_3				
4	FD_4				
5	FD_5				
6	FD_6				
7	FD_7				
8	FD_8				
9	FD_9				
10	FD_10				
11	FD_11				
12	FD_12				
13	FD_13				
14	FD_14				
15	FD_15				
16	FD_16				
17	FD 17				
18	FD_18				
19	FD_19				
20	FD_20				
21	FD_21				
22	FD_22				
23	FD_23				
24	FD_24				
25	FD_25				
26	HART	Х			Х
	communication				
	failure				
27	Low battery	Х			
	voltage				
28	Resource in O/S			Х	
29	FD_29				
30	Power supply failure	х			
31	Bad memory of CPU module	х			х

Transducer Blocks

DIAG - Diagnostics Transducer Block

Description

This transducer block provides the following features:

- Online measurement of block execution time
- Hardware revision
- Firmware revision
- Serial number of device
- Serial number of main board

The parameter BEHAVIOR will define which initial values for parameters will be used after a block instantiation. The option *Adapted* selects a more suitable initial value set; it will avoid invalid values for parameters. It is still possible to have the initial values defined by specification by selecting the option *Spec*.

Supported modes

O/S and AUTO.

Parameters

ldx	Parameter	Data Type	Valid Range/	Default	Units	Store /	Description
IGA	i didiliotoi	(length)	Options	Value	Onno	Mode	Bosonphon
1	ST_REV	Unsigned16		0	None	S/RO	
2	TAG_DESC	OctString(32)		Spaces	Na	S	
3	STRATEGY	Unsigned16		0	None	S	
4	ALERT_KEY	Unsigned8	1 to 255	0	None	S	
5	MODE_BLK	DS-69		O/S	Na	S	See Mode Parameter.
6	BLOCK_ERR	Bitstring(2)			E	D/RO	
7	EXE_TIME_TAG	Visible String (32)		spaces	Na	D	Block tag of the selected block to measure the execution time.
8	MIN_EXE_TIME	Float		+INF	ms	D/RO	Minimum execution time of the selected block.
9	CUR_EXE_TIME	Float		0	ms	D/RO	Current execution time of the selected block.
10	MAX_EXE_TIME	Float		0	ms	D/RO	Maximum execution time of the selected block.
11	HW_REV	Visible String(5)				S/RO	Hardware revision.
12	FIRMWARE_REV	Visible String(5)				S/RO	Firmware revision.
13	DEV_SN	Unsigned32				S/RO	Device serial number.
14	MAIN_BOARD_SN	Unsigned32				S/RO	Main board serial number.
15	BEHAVIOR	Unsigned8	0:Adapted 1:Spec	0	E	s	Select the initial values for parameters, there are two options Adapted and Spec.
16	PUB_SUB_STATUS	Unsigned8	0-good 1-bad		E	D/RO	Indicate if all external links is good or if at least one is bad.
17	LINK_SELECTION	Unsigned8	0-first 1-next 2-previous	0	E	D	Select an external link.
18	LINK_NUMBER	Unsigned16				D/RO	Number of the external link selected.
19	LINK_STATUS	Unsigned8				D/RO	Status of the external link selected (see table below)
20	LINK_RECOVER	Unsigned8	0-no action 1-action	No action	E	D	Command a recovery process to the external link selected.

ldx	Parameter	Data Type (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
21	BLOCK_ALM	DS-72			Na	D	The block alarm is used for all configuration, hardware, and connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.
22	SAVING_CONFIG	Unsigned 8	0 – NOT SAVING 1 - SAVING	0	E	D	It indicates if the device is saving the configuration in a non-volatile memory.

Legend: E – Enumerated Parameter; Na – Dimensionless Parameter; RO – Read Only; D – Dynamic; N – Non volatile; S – Static.

Gray Background Line: Default Parameters in Syscon

Description of the values given by the LINK_STATUS parameter

Link Status	General Status	Publisher/ Subscriber	Connection Status	Sending/Receiving	Block Update
0X00	Good	Publisher			
0X40	Good	Subscriber			
0X84	Bad	Publisher	Established	Sending/Receiving	Not updating
0X88	Bad	Publisher	Established	Not sending/receiving	Updating
0X8C	Bad	Publisher	Established	Not sending/receiving	Not updating
0X98	Bad	Publisher	Not established	Not sending/receiving	Updating
0X9C	Bad	Publisher	Not established	Not sending/receiving	Not updating
0XA8	Bad	Publisher	Pending	Not sending/receiving	Updating
0XAC	Bad	Publisher	Pending	Not sending/receiving	Not updating
0XBC	Bad	Publisher	Not configured	Not sending/receiving	Not updating
0XC4	Bad	Subscriber	Established	Sending/Receiving	Not updating
0XCC	Bad	Subscriber	Established	Not sending/receiving	Not updating
0XDC	Bad	Subscriber	Not established	Not sending/receiving	Not updating
0XEC	Bad	Subscriber	Pending	Not sending/receiving	Not updating
0XFC	Bad	Subscriber	Not configured	Not sending/receiving	Not updating

TEMP – DF45 Temperature Transducer

Overview

This is the transducer block for the module DF45, an eight low level input module for RTD, TC, mV and Ohm.

IMPORTANT

If the temperature module is used for blocks and for Ladder, the temperature module configuration must be the same Ladder configuration. In this case, it will not be allowed an online change (after a download) of block channel if the Ladder is using this module. In this case, the online change of channel can be made only if the rack, slot is not being used by the Ladder.

Description

This transducer block has parameters to configure the eight inputs of low signal, as well an individual status and value in engineering units for each input. Therefore it is enough to configure only the TEMP block if the purpose is to monitor variables.

If the application is a control loop or calculation, it is also necessary to configure an AI or MAI block to address these variables. One important difference for the TEMP block, when using an AI block to access an input: write to VALUE_RANGE_x parameter is disabled. The user must configure the scale in the XD_SCALE parameter of the AI block, that will be copied to the corresponding VALUE_RANGE_x parameter.

BLOCK_ERR

The BLOCK_ERR will reflect the following causes:

- Block Configuration Error When it is not compatible the CHANNEL parameter and HC configuration (DFI302);
- Input Failure At least one input is in failure (DFI302);
- Out of Service When the block is in O/S mode.

Supported Modes

O/S and AUTO.

Parameters

ldx	Parameter	DataType (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
1	ST_REV	Unsigned16		0	None	S/RO	
2	TAG_DESC	OctString(32)		Spaces	Na	S	
3	STRATEGY	Unsigned16		0	None	S	
4	ALERT_KEY	Unsigned8	1 to 255	0	None	S	
5	MODE_BLK	DS-69		o/s	Na	s	See Mode Parameter
6	BLOCK_ERR	Bitstring(2)			Е	D/RO	
7	CHANNEL	Unsigned16			None	S / O/S	The rack and slot number of the associated DF-45 module coded as RRSXX.
8	TEMP_0	DS-65				D	Temperature of point 0.
9	TEMP_1	DS-65				D	Temperature of point 1.
10	TEMP_2	DS-65				D	Temperature of point 2.
11	TEMP_3	DS-65				D	Temperature of point 3.
12	TEMP_4	DS-65				D	Temperature of point 4.
13	TEMP_5	DS-65				D	Temperature of point 5.
14	TEMP_6	DS-65				D	Temperature of point 6.
15	TEMP_7	DS-65				D	Temperature of point 7.
16	VALUE_RANGE_0	DS-68		0-100%	VR0	S / O/S	If it is connected to AI block, it is a copy of XD_SCALE. Otherwise the user may write in this scaling parameter.

ldx	Parameter	DataType (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
			1 : differential				
17	SENSOR_CONNECTION_0	Unsigned8	2 : 2-wire 3 : 3-wire	3	E	S / O/S	Connection of the sensor 0.
18	SENSOR_TYPE_0	Unsigned8	See table below	Pt 100 IEC	Е	S / O/S	Type of sensor 0.
10	VALUE DANCE 4	DC 60		0.4000/	VR1	S / O/S	If it is connected to Al block, it is a copy
19	VALUE_RANGE_1	DS-68		0-100%	VKT	5/0/5	of XD_SCALE. Otherwise the user may write in this scaling parameter.
20	SENSOR_CONNECTION_1	Unsigned8	1 : differential 2 : 2-wire 3 : 3-wire	3	E	S / O/S	Connection of the sensor 1.
21	SENSOR_TYPE_1	Unsigned8	See table below	Pt 100 IEC	E	S / O/S	Type of sensor 1.
22	VALUE_RANGE_2	DS-68		0-100%	VR2	S / O/S	If it is connected to AI block, it is a copy of XD_SCALE. Otherwise the user may write in this scaling parameter.
			1 : differential				
23	SENSOR_CONNECTION_2	Unsigned8	2 : 2-wire 3 : 3-wire	3	E	S / O/S	Connection of the sensor 2.
24	SENSOR TYPE 2	Unsigned8	See table below	Pt 100 IEC	Е	S / O/S	Type of sensor 2.
	OLNOOK_TTT E_E	Onsignedo	Occ table below	11100120	_	07070	If it is connected to Al block, it is a copy
25	VALUE_RANGE_3	DS-68		0-100%	VR3	S / O/S	of XD_SCALE. Otherwise the user may write in this scaling parameter.
	OFNIGOR CONNECTION O		1 : differential		_	0 / 0 / 0	
26	SENSOR_CONNECTION_3	Unsigned8	2 : 2-wire 3 : 3-wire	3	E	S / O/S	Connection of the sensor 3.
27	SENSOR_TYPE_3	Unsigned8	See table below	Pt 100 IEC	E	S / O/S	Type of sensor 3.
28	VALUE_RANGE_4	DS-68		0-100%	VR4	S / O/S	If it is connected to Al block, it is a copy of XD_SCALE. Otherwise the user may write in this scaling parameter.
			1 : differential				
29	SENSOR_CONNECTION_4	Unsigned8	2 : 2-wire	3	E	S / O/S	Connection of the sensor 4.
20	CENCOD TYPE 4	l la siana a dO	3 : 3-wire	Dt 400 IEC		C / O/C	Turns of sources 4
30	SENSOR_TYPE_4	Unsigned8	See table below	Pt 100 IEC	E	S / O/S	Type of sensor 4. If it is connected to Al block, it is a copy
31	VALUE_RANGE_5	DS-68		0-100%	VR5	S / O/S	of XD_SCALE. Otherwise the user may write in this scaling parameter.
			1 : differential				
32	SENSOR_CONNECTION_5	Unsigned8	2 : 2-wire	3	E	S / O/S	Connection of the sensor 5.
33	SENSOR_TYPE_5	Unsigned8	3 : 3-wire See table below	Pt 100 IEC	E	S / O/S	Type of sensor 5.
33	OLNOOK_III E_0	Olisiglieud	OSC LADIC DEIOW	T TOO ILC	_	0,00	If it is connected to Al block, it is a copy
34	VALUE_RANGE_6	DS-68		0-100%	VR6	S / O/S	of XD_SCALE. Otherwise the user may write in this scaling parameter.
35	SENSOR_CONNECTION_6	Unsigned8	1 : differential 2 : 2-wire 3 : 3-wire	3	E	S / O/S	Connection of the sensor 6.
36	SENSOR_TYPE_6	Unsigned8	See table below	Pt 100 IEC	E	S / O/S	Type of sensor 6.
37	VALUE_RANGE_7	DS-68		0-100%	VR7	S / O/S	If it is connected to AI block, it is a copy of XD_SCALE. Otherwise the user may write in this scaling parameter.

ldx	Parameter	DataType (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
38	SENSOR_CONNECTION_7	Unsigned8	1 : differential 2 : 2-wire 3 : 3-wire	3	E	S / O/S	Connection of the sensor 7.
39	SENSOR_TYPE_7	Unsigned8	See table below	Pt 100 IEC	Е	S / O/S	Type of sensor 7.
40	UPDATE_EVT	DS-73			Na	D	This alert is generated by any change to the static data.
41	BLOCK_ALM	DS-72			Na	D	The block alarm is used for all configuration, hardware, connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.

Legend: E – Enumerated parameter; Na – Dimensionless parameter; RO – Read only; D – dynamic; N – non-volatile; S - static Gray Background Line: Default Parameters of Syscon

Code	Sensor Type	Class	Sensor range – Differential (Celsius)	Sensor range – 2- wire (Celsius)	Sensor range – 3- wire (Celsius)
1	Cu 10 GE	RTD	-270 to 270	-20 to 250	-20 to 250
2	Ni 120 DIN		-320 to 320	-50 to 270	-50 to 270
3	Pt 50 IEC		-1050 to 1050	-200 to 850	-200 to 850
4	Pt 100 IEC		-1050 to 1050	-200 to 850	-200 to 850
5	Pt 500 IEC		-270 to 270	-200 to 450	-200 to 450
6	Pt 50 JIS		-850 to 850	-200 to 600	-200 to 600
7	Pt 100 JIS		-800 to 800	-200 to 600	-200 to 600
51	0 to 100	Ohm		0 to 100	0 to 100
52	0 to 400			0 to 400	0 to 400
53	0 to 2000			0 to 2000	0 to 2000
151	B NBS	TC	-1600 to 1600	100 to 1800	
152	E NBS		-1100 to 1100	-100 to 1000	
153	J NBS		900 to 900	-150 to 750	
154	K NBS		-1550 to 1550	-200 to 1350	
155	N NBS		-1400 to 1400	-100 to 1300	
156	R NBS		-1750 to 1750	0 to 1750	
157	S NBS		-1750 to 1750	0 to 1750	
158	T NBS		-600 to 600	-200 to 400	
159	L DIN		-1100 to 1100	-200 to 900	
160	U DIN		-800 to 800	-200 to 600	
201	-6 to 22	MV		-6 to 22	
202	-10 to 100			-10 to 100	
203	-50 to 500			-50 to 500	

If DIAG.BEHAVIOR parameter is "Adapted":

When the configuration of sensor type means a different class, the connection is automatically changed to default (RTD and Ohm - 3-wire, TC and mV - 2-wire).

HC – Hardware Configuration Transducer

Overview

It configures the module type for each slot in the DFI302.

IMPORTANT

For configuration of the same rack, slot for blocks (in HC block) and for Ladder, the module must be of the same type. It will not be allowed an online change (after a download) of an IO module in the HC block if the Ladder is using this module. In this case, the online change of IO module can be made only if the rack, slot is not being used by the Ladder.

Description

The following table shows the available module types.

Code	Description	I/O Type
	Available slot	No I/O
DF51	DFI302 Processor 1x10Mbps, 4xH1	No I/O
DF50	Power Supply 90-264VAC	No I/O
DF56	Power Supply for Backplane 20-30VDC	No I/O
DF52	Power Supply for Fieldbus	No I/O
DF49	2-channel Power Supply Impedance	No I/O
DF53	4-channel Power Supply Impedance	No I/O
DF11	2 Groups of 8 24VDC Inputs (Isolated)	16-discrete input
DF12	2 Groups of 8 48VDC Inputs (Isolated)	16- discrete input
DF13	2 Groups of 8 60VDC Inputs (Isolated)	16- discrete input
DF14	2 Groups of 8 125VDC Inputs (Isolated)	16- discrete input
DF15	2 Groups of 8 24VDC Inputs (Sink)(Isolated)	16- discrete input
DF16	2 Groups of 4 120VAC Inputs (Isolated)	8- discrete input
DF17	2 Groups of 4 240VAC Inputs (Isolated)	8- discrete input
DF18	2 Groups of 8 120VAC Inputs (Isolated)	16- discrete input
DF19	2 Groups of 8 240VAC Inputs (Isolated)	16- discrete input
DF20	1 Group of 8 On/Off Switches	8- discrete input
DF21	1 Group of 16 Open Collector Outputs	16- discrete output
DF22	2 Group of 8 Transistor Outputs (source) (Isolated)	16- discrete output
DF23	2 Groups of 4 120/240VAC Outputs	8- discrete output
DF24	2 Groups of 8 120/240VAC Outputs	16- discrete output
DF25	2 Groups of 4 NO Relays Outputs	8- discrete output
DF26	2 Groups of 4 NC Relays Outputs	8- discrete output
DF27	1 Group of 4 NO and 4 NC Relay Outputs	8- discrete output
DF28	2 Groups of 8 NO Relays Outputs	16- discrete output
DF29	2 Groups of 4 NO Relays Outputs (W/o RC)	8- discrete output
DF30	2 Groups of 4 NC Relays Outputs (W/o RC)	8- discrete output
DF31	1 Group of 4 NO and 4 NC Relay Outputs (W/o RC)	8- discrete output
DF32	1 Group of 8 24VDC Inputs and 1 Group of 4 NO Relays	8- discrete input/
DI-32	I Gloup of 8 24 VDC Inputs and 1 Gloup of 4 NO Relays	4- discrete output
DF33	1 Group of 8 48VDC Inputs and 1 Group of 4 NO Relays	8- discrete input/
DI 33	1 Gloup of G 40VDG Inputs and 1 Gloup of 4 NO Relays	4- discrete output
DF34	1 Group of 8 60VDC Inputs and 1 Group of 4 NO Relays	8- discrete input/
D1 07	. Group of Group of Five Relays	4- discrete output
DF35	1 Group of 8 24VDC Inputs and 1 Group of 4 NC Relays	8- discrete input/
5,00	. C. Sup of G 2 17 20 inpute and 1 Group of 4 110 Holdys	4- discrete output

Code	Description	I/O Type
DF36	4 Crown of 9 49\/DC Inputs and 4 Crown of 4 NC Polove	8- discrete input/
DF36	1 Group of 8 48VDC Inputs and 1 Group of 4 NC Relays	4- discrete output
DF37	1 Group of 8 60VDC Inputs and 1 Group of 4 NC Relays	8- discrete input/
DF37	I Group of 8 60 VDC Inputs and 1 Group of 4 NC Relays	4- discrete output
DF38	1 Group of 8 24VDC Inputs ,1 Group of 2 NO and 2 NC Relays	8- discrete input/
DI-36	I Gloup of 8 24VDC Inputs , I Gloup of 2 NO and 2 NC Relays	4- discrete output
DF39	1 Group of 8 48VDC Inputs , 1 Group of 2 NO and 2 NC Relays	8- discrete input/
DF39	I Group of 6 46 VDC Inputs , 1 Group of 2 NO and 2 NC Relays	4- discrete output
DF40	1 Group of 8 60VDC Inputs , 1 Group of 2 NO and 2 NC Relays	8- discrete input/
DI 40	I Group of 8 00 VDC Inputs , 1 Group of 2 NO and 2 NC Kelays	4- discrete output
DF41	2 Groups of 8 pulse inputs – low frequency	16-pulse input
DF42	2 Groups of 8 pulse inputs – high frequency	16-pulse input
DF44	1 Group of 8 analog inputs with shunt resistors	8-analog input
DF57	1 Group of 8 differential analog inputs with shunt resistors	8-analog input
DF45	1 Group of 8 temperature Inputs	8-temperature
DF46	1 Group of 4 analog output	4-analog output

The execution method of this transducer block will write to all output modules and it will read all the input modules. If any I/O module has failed in this scan, it will be indicated in BLOCK_ERR as well in the MODULE_STATUS_x. It makes easy to find the module in failure or even the sensor.

All the I/O modules in the previous table may be accessed directly using Input/Output Function Blocks without a transducer block, except for the DF45 that requires the TEMP block.

IMPORTANT

In order to have a safe startup, is necessary to set in Offline mode the MODE_BLK parameter to OOS to download the configuration. Change the MODE_BLK parameter to Auto, only after the download finished.

BLOCK_ERR

The BLOCK_ERR of the HC block will reflect the following causes:

- Lost static data Low battery voltage indication
- Device needs maintenance now High temperature in the CPU
- Input Failure a physical input point in failure
- Output Failure a physical output point in failure
- Out of Service When the block is in O/S mode.

Supported Modes

O/S and AUTO.

Parameters

ldx	Parameter	DataType (length)	Valid Range/ Options	Default Value	Units	Store/ Mode	Description
1	ST_REV	Unsigned16		0	None	S	
2	TAG_DESC	OctString(32)		Spaces	Na	S	
3	STRATEGY	Unsigned16		0	None	S	
4	ALERT_KEY	Unsigned8	1 to 255	0	None	S	
5	MODE_BLK	DS-69		O/S	Na	S	See Mode Parameter
6	BLOCK_ERR	Bitstring(2)			Е	D/RO	

ldx	Parameter	DataType (length)	Valid Range/ Options	Default Value	Units	Store/ Mode	Description
7	REMOTE_IO	Unsigned8	0 : Remote I/O Master 1 :Remote I/O Slave 1 2 : Remote I/O Slave 2 3 : Remote I/O Slave 3 4 Remote I/O Slave 4 5 : Remote I/O Slave 5 6 : Remote I/O Slave 6	0	E	RO	Identification for master remote I/O. It supports only the I/O Master option.
8	IO_TYPE_R0	4 Unsigned8		0	E	S / O/S	Select module type for the rack 0
9	IO_TYPE_R1	4 Unsigned8		0	E	S / O/S	Select module type for the rack 1
10	IO_TYPE_R2	4 Unsigned8		0	E	S / O/S	Select module type for the rack 2
11	IO_TYPE_R3	4 Unsigned8		0	Е	S / O/S	Select module type for the rack 3
12	IO_TYPE_R4	4 Unsigned8		0	Е	S / O/S	Select module type for the rack 4
13	IO_TYPE_R5	4 Unsigned8		0	Е	S / O/S	Select module type for the rack 5
14	IO_TYPE_R6	4 Unsigned8		0	Е	S / O/S	Select module type for the rack 6
15	IO_TYPE_R7	4 Unsigned8		0	Е	S / O/S	Select module type for the rack 7
16	IO_TYPE_R8	4 Unsigned8		0	Е	S / O/S	Select module type for the rack 8
17	IO_TYPE_R9	4 Unsigned8		0	Е	S / O/S	Select module type for the rack 9
18	IO_TYPE_R10	4 Unsigned8		0	Е	S / O/S	Select module type for the rack 10
19	IO_TYPE_R11	4 Unsigned8		0	Е	S / O/S	Select module type for the rack 11
20	IO_TYPE_R12	4 Unsigned8		0	Е	S / O/S	Select module type for the rack 12
21	IO_TYPE_R13	4 Unsigned8		0	Е	S / O/S	Select module type for the rack 13
22	IO_TYPE_R14	4 Unsigned8		0	Е	S / O/S	Select module type for the rack 14
23	MODULE_STATUS_R 0_3	Bitstring(2)				D/RO	Status of modules in rack 0-3.
24	MODULE_STATUS_R 4_7	Bitstring(2)				D/RO	Status of modules in rack 4-7.
25	MODULE_STATUS_R 8_11	Bitstring(2)				D/RO	Status of modules in rack 8-11.
26	MODULE_STATUS_R 12_14	Bitstring(2)				D/RO	Status of modules in rack 12-14.
27	UPDATE_EVT	DS-73			Na	D	This alert is generated by any change to the static data.
28	BLOCK_ALM	DS-72			Na	D	The block alarm is used for all configuration, hardware, and connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.

Legend: E – Enumerated Parameter; Na – Dimensionless Parameter; RO – Read Only; D – Dynamic; N – Non volatile; S – Static.

Gray Background Line: Default Parameters in Syscon

TRDRED - Redundancy Transducer

Description

This block provides information about redundant devices. It allows verify the actual status and data related to the devices that work in redundancy.

Supported modes

O/S and AUTO.

Parameters

ldx	Parameter	Data Type (length)	Valid Range/ Options	Default Value	Units	Store/ Mode	Description
1	ST_REV	Unsigned int	0 to 2 ¹⁶	0	-	S/RO	
2	TAG_DESC	OctString(32)		Blank	NA	RW	
3	STRATEGY	Unsigned int	0 to 2 ¹⁶	0	-	RW	
4	ALERT_KEY	Unsigned char	1 to 255	1	-	RW	
5	MODE_BLK	DS-69		O/S	NA		See Mode Parameter.
6	BLOCK_ERR	BitString(2)			E	D/RO	
7	UPDATE_EVT	EventUpdate					This alert is generated by any change to the static data.
8	BLOCK_ALM	AlarmDiscrete					The block alarm is used for all configuration, hardware, and connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.
9	TRANSDUCER_DIRECTORY	Unsigned int	0 to 2 ¹⁶			RO	A directory that specifies the number and the starting indices of the transducers in the transducer block.
10	TRANSDUCER_TYPE	Unsigned int	0 to 2 ¹⁶			RO	Identities the transducer that follows.
11	XD_ERROR	Unsigned char	1 to 255			RO	Define one of the error code.
12	COLLECTION_DIRECTORY	Unsigned long	0 to 2 ³²			RO	A directory that specifies the number, the starting indices, and DD Item IDs of data collections in each transducers in the transducer block.
13	SOFTWARE_NAME	VisibleString				S/RO	Name of the last software downloaded to the bridge.
14	RED_PRIMARY_SN	Unsigned int	0 to 65535	0	NA	D/RO	Indicates the Serial Number of the Primary controller.
15	RED_SECONDARY_SN	Unsigned int	0 to 65535	0	NA	D/RO	Indicates the Serial Number of the Secondary controller.
16	RED_PRIMARY_IP	VisibleString(16)		Blank	NA	D/RO	Indicates the IP of the Redundant Primary module.
17	RED_SECONDARY_IP	VisibleString(16)		Blank	NA	D/RO	Indicates the IP of the Redundant Secondary module.

ldx	Parameter	Data Type (length)	Valid Range/ Options	Default Value	Units	Store/ Mode	Description
18	RED_SYNC_STATUS	Unsigned char	0: Not defined 1: Stand Alone 2: Synchronizing 3: Updating Secondary 4: Synchronized 5: WARNING: Role Conflict 6: WARNING: Sync Cable Fail 7: WARNING: Updating Secondary Fail	O	E	D/RO	Indicates the Synchronism status of the controller pair. 0: Default value just after start up. 1: Stand alone operation (no redundancy). 2: Checking configuration for synchronization. 3: Primary transferring configuration to the Secondary. 4: The Primary continuously updates the Secondary dynamic databases. 5: It was not possible to solve autonomously the Role. (Primary / Secondary). 6: Fail on all the synchronism channels (redundancy unavailable). 7: Primary fail before synchronism be completed (redundancy unavailable).
19	RED_PRIMARY_BAD_COND ITIONS	Bitstring(2)	0. Modbus 1. H1-1 2. H1-2 3. H1-3 4. H1-4 5. Live List 6. Eth1 7. HSE link 8. Eth2 9. Serial Sync Cable 10. Unable to Sync	<none></none>	E	D/RO	Bad conditions for the Primary controller.
20	RED_SECONDARY_BAD_C ONDITIONS	Bitstring(2)	0. Modbus 1. H1-1 2. H1-2 3. H1-3 4. H1-4 5. Live List 6. Eth1 7. HSE link 8. Eth2 9. Serial Sync Cable 10. Unable to Sync	<none></none>	E	D/RO	Bad conditions for the Secondary controller.
21	RED_PRIMARY_WDG	Unsigned char	0 ~ 255	0	NA	D/RO	Watchdog indicating OPC communication status with the Primary controller.
22	RED_SECONDARY_WDG	Unsigned char	0 ~ 255	0	NA	D/RO	Watchdog indicating OPC communication status with the Secondary controller.
23	RED_RESERVED1 RED_RESERVED2	Unsigned long Unsigned long	0 to 2 ³² 0 to 2 ³²	0	NA NA	D/RW D/RW	Reserved for future use. Reserved for future use.
	NED_NEGENVED2	Jiloigilea long	0 10 2	<u> </u>	14/1	D / IXVV	1.000. Vod for fataro ago.

Legend: E – Enumerated parameter; Na – Dimensionless parameter; RO – Read only; D – dynamic; N – non-volatile; S - Static

Gray Background Line: Custom Parameters

ABC – Association Block for Components

Overview

This block was developed using ROM (Remote Operations Management) technology of Fieldbus Foundation. It has similar functionality of the HC block, i.e., allows the user to configure the hardware defining the I/O module type for each position (rack/slot).

Description

- The execution method performs the I/O scan and calls the execution methods of corresponding transducer blocks.
- The I/O module scanning occurs only if there is compatibility between the I/O module type obtained from Module ID and from the Expected Type (part number). The execution method is invoked only if ABC.ELEM_STAT_Rx_Sx.Element mismatch = Matched, i.e., the Expected tag matches with the transducer block tag and the Expected type, Module ID and transducer block tag match.

ELEM_EXPD_Rx_Sx: user configures the tag and the expected module type for each rack/slot.

ELEM_ACTL_Rx_Sx: indicates the tag and module type found in each rack/slot

Actual Tag: If the tags match and there is compatibility between Expected type and transducer block type, thus it is the very Expected tag. Otherwise indicates null. So, the Actual Tag reflects the matching between Expected tag and type with the transducer block.

Actual Type: It indicates the module transducer block found in each rack/slot based on Module ID, regardless if it was configured in Expected Tag or Expected Type. If the Module ID is not supported, Actual Type will indicate the Module ID instead of a possible corresponding DD Item ID.

ELEM_STAT_Rx_Sx.Element mismatch: It will indicate "Matched" only if tag and type match.

Note: This block was defined to support 32 I/O modules, but it already has parameters (ELEM_MISMAT_BS_2 and FD_EXTENDED_ACTIVE_2) for an expansion up to 64 modules, where only the triads for additional 32 modules would be added.

Field Diagnostics Definition

		Default Value								
Bit#	Bit Description	FD_MAINT_MAP	FD_OFFSPEC_MAP	FD_CHECK_MAP	FD_FAIL_MAP					
0	Module Failure Rack#0				Х					
1	Module Failure Rack#1				Х					
2	Module Failure Rack#2				Х					
3	Module Failure Rack#3				Х					
4	Module Failure Rack#4				Х					
5	Module Failure Rack#5				Х					
6	Module Failure Rack#6				Х					
7	Module Failure Rack#7				Х					
8	Module Failure Rack#8				Х					
9	Module Failure Rack#9				Х					
10	Module Failure Rack#10				Х					
11	Module Failure Rack#11				Х					
12	Module Failure Rack#12				Х					
13	Module Failure Rack#13				Х					
14	Module Failure Rack#14				Х					
15	Module Failure Rack#15				Х					
16	FD_16									
17	FD_17									
18	FD_18									
19	FD_19									
20	FD_20									
21	FD_21									
22	FD_22									
23	FD_23									
24	FD_24									
25	FD_25									
26	FD_26									
27	FD_27									
28	FD_28									
29	FD_29				Х					
30	FD_30				Х					
31	FD_31				Х					
		0x00000000	0x00000000	0x00000000	0x0000ffff					

FD_EXTENDED_ACTIVE_1 – The four bits of each slot in the rack are "OR'ed" to represent just one bit in the Field Diagnostics.

Bit#	Bit Description
0	Module Failure R0 S0
1	Module Failure R0 S1
2	Module Failure R0 S2
3	Module Failure R0 S3
4	Module Failure R1 S0
5	Module Failure R1 S1
6	Module Failure R1 S2
7	Module Failure R1 S3
8	Module Failure R2 S0
9	Module Failure R2 S1
10	Module Failure R2 S2
11	Module Failure R2 S3
12	Module Failure R3 S0
13	Module Failure R3 S1
14	Module Failure R3 S2
15	Module Failure R3 S3
16	Module Failure R4 S0
17	Module Failure R4 S1
18	Module Failure R4 S2
19	Module Failure R4 S3
20	Module Failure R5 S0
21	Module Failure R5 S1
22	Module Failure R5 S2
23	Module Failure R5 S3
24	Module Failure R6 S0
25	Module Failure R6 S1
26	Module Failure R6 S2
27	Module Failure R6 S3
28	Module Failure R7 S0
29	Module Failure R7 S1
30	Module Failure R7 S2
31	Module Failure R7 S3

FD_EXTENDED_ACTIVE_2 – The four bits of each slot in the rack are "OR'ed" to represent just one bit in the Field Diagnostics.

Bit#	Bit Description
0	Module Failure R8 S0
1	Module Failure R8 S1
2	Module Failure R8 S2
3	Module Failure R8 S3
4	Module Failure R9 S0
5	Module Failure R9 S1
6	Module Failure R9 S2
7	Module Failure R9 S3
8	Module Failure R10 S0
9	Module Failure R10 S1
10	Module Failure R10 S2
11	Module Failure R10 S3
12	Module Failure R11 S0
13	Module Failure R11 S1
14	Module Failure R11 S2
15	Module Failure R11 S3
16	Module Failure R12 S0
17	Module Failure R12 S1
18	Module Failure R12 S2
19	Module Failure R12 S3
20	Module Failure R13 S0
21	Module Failure R13 S1
22	Module Failure R13 S2
23	Module Failure R13 S3
24	Module Failure R14 S0
25	Module Failure R14 S1
26	Module Failure R14 S2
27	Module Failure R14 S3

28	Module Failure R15 S0
29	Module Failure R15 S1
30	Module Failure R15 S2
31	Module Failure R15 S3

Diagnostic and troubleshootingBLOCK_ERR. Block configuration: this indication may occur, but does not force the mode block to OS, due to the following problem: ELEM_MISMAT_NUM is different from zero.

ldx	Type/ View	Parameter	Data type	Valid Range	Initial Value	Units	Store/Ot her	Description
1	1,2,3,4	ST_REV	Unsigned16		0	None	S/RO	
2		TAG_DESC	OctString(32)		Spaces	Na	S	
3	4	STRATEGY	Unsigned16		255	None	S	
4	4	ALERT_KEY	Unsigned8		1	None	S	
5	1,3	MODE_BLK	DS-69		Auto	Na	S	
6	1,3	BLOCK_ERR	Bitstring(2)			Е	D/RO	
7		UPDATE_EVT	DS-73			Na	D	This alert is generated by any change to the static data.
8		BLOCK_ALM	DS-72			Na	D	The block alarm is used for all configuration, hardware, connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.
9	2	NUM_POSNS	Unsigned16	0 to 64	0		S	This is the number of positions provided by the current configuration (i.e., number of slots, positions, or addresses physically provided, whether used or not).
10	2	MAX_NUM_POSNS	Unsigned16		64		S/RO	This is the maximum number of positions supportable by this set of association block parameters (i.e., maximum number of slots, positions, or addresses that could be provided by physical extensions).
11	1,3	ELEM_MISMAT_NUM	Unsigned16	0 to 64	0	Na	D/RO	This is the number of elements whose off-line configuration and on-line presence disagree.
12	1,3	ELEM_MISMAT_BS_1	BitString[4]		0	Na	D/RO	This is a 32-bit bitstring indication which of the first set of 32 elements, if any, has a mismatch of an off-line configuration and on-line presence. The description of the element position effected is provided in the manufacturer's DD for the association block.

ldx	Type/ View	Parameter	Data type	Valid Range	Initial Value	Units	Store/Ot her	Description
13	4	ELEM_EXPD_R0_S0	DS-176				S	This structured parameter indicates the expected configuration (per off-line configuration) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 0 slot 0)
14		ELEM_ACTL_R0_S0	DS-177				D / RO	This structured parameter indicates the actual configuration (per element detection) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 0 slot 0)
15	1,3	ELEM_STAT_R0_S0	DS-178				D / mixed	This structured parameter indicates the status of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 0 slot 0)
16	4	ELEM_EXPD_R0_S1	DS-176				S	This structured parameter indicates the expected configuration (per off-line configuration) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 0 slot 1)
17		ELEM_ACTL_R0_S1	DS-177				D/RO	This structured parameter indicates the actual configuration (per element detection) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 0 slot 1)
18	1,3	ELEM_STAT_R0_S1	DS-178				D / mixed	This structured parameter indicates the status of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 0 slot 1)
19	4	ELEM_EXPD_R0_S2	DS-176				S	This structured parameter indicates the expected configuration (per off-line configuration) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 0 slot 2)

ldx	Type/ View	Parameter	Data type	Valid Range	Initial Value	Units	Store/Ot her	Description
20		ELEM_ACTL_R0_S2	DS-177				D/RO	This structured parameter indicates the actual configuration (per element detection) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 0 slot 2)
21	1,3	ELEM_STAT_R0_S2	DS-178				D / mixed	This structured parameter indicates the status of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 0 slot 2)
22	4	ELEM_EXPD_R0_S3	DS-176				S	This structured parameter indicates the expected configuration (per off-line configuration) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 0 slot 3)
23		ELEM_ACTL_R0_S3	DS-177				D / RO	This structured parameter indicates the actual configuration (per element detection) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 0 slot 3)
24	1,3	ELEM_STAT_R0_S3	DS-178				D / mixed	This structured parameter indicates the status of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 0 slot 3)
25	4	ELEM_EXPD_R1_S0	DS-176				S	This structured parameter indicates the expected configuration (per off-line configuration) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 1 slot 0)
26		ELEM_ACTL_R1_S0	DS-177				D / RO	This structured parameter indicates the actual configuration (per element detection) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 1 slot 0)

ldx	Type/ View	Parameter	Data type	Valid Range	Initial Value	Units	Store/Ot her	Description
27	1,3	ELEM_STAT_R1_S0	DS-178				D / mixed	This structured parameter indicates the status of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 1 slot 0)
28	4	ELEM_EXPD_R1_S1	DS-176				S	This structured parameter indicates the expected configuration (per off-line configuration) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 1 slot 1)
29		ELEM_ACTL_R1_S1	DS-177				D / RO	This structured parameter indicates the actual configuration (per element detection) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 1 slot 1)
30	1,3	ELEM_STAT_R1_S1	DS-178				D / mixed	This structured parameter indicates the status of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 1 slot 1)
31	4	ELEM_EXPD_R1_S2	DS-176				S	This structured parameter indicates the expected configuration (per off-line configuration) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 1 slot 2)
32		ELEM_ACTL_R1_S2	DS-177				D / RO	This structured parameter indicates the actual configuration (per element detection) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 1 slot 2)
33	1,3	ELEM_STAT_R1_S2	DS-178				D / mixed	This structured parameter indicates the status of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 1 slot 2)

ldx	Type/ View	Parameter	Data type	Valid Range	Initial Value	Units	Store/Ot her	Description
34	4	ELEM_EXPD_R1_S3	DS-176				S	This structured parameter indicates the expected configuration (per off-line configuration) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 1 slot 3)
35		ELEM_ACTL_R1_S3	DS-177				D/RO	This structured parameter indicates the actual configuration (per element detection) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 1 slot 3)
36	1,3	ELEM_STAT_R1_S3	DS-178				D / mixed	This structured parameter indicates the status of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 1 slot 3)
37	4	ELEM_EXPD_R2_S0	DS-176				S	This structured parameter indicates the expected configuration (per off-line configuration) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 2 slot 0)
38		ELEM_ACTL_R2_S0	DS-177				D/RO	This structured parameter indicates the actual configuration (per element detection) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 2 slot 0)
39	1,3	ELEM_STAT_R2_S0	DS-178				D / mixed	This structured parameter indicates the status of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 2 slot 0)
40	4	ELEM_EXPD_R2_S1	DS-176				S	This structured parameter indicates the expected configuration (per off-line configuration) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 2 slot 1)

ldx	Type/ View	Parameter	Data type	Valid Range	Initial Value	Units	Store/Ot her	Description
41		ELEM_ACTL_R2_S1	DS-177				D / RO	This structured parameter indicates the actual configuration (per element detection) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 2 slot 1)
42	1,3	ELEM_STAT_R2_S1	DS-178				D / mixed	This structured parameter indicates the status of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 2 slot 1)
43	4	ELEM_EXPD_R2_S2	DS-176				S	This structured parameter indicates the expected configuration (per off-line configuration) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 2 slot 2)
44		ELEM_ACTL_R2_S2	DS-177				D / RO	This structured parameter indicates the actual configuration (per element detection) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 2 slot 2)
45	1,3	ELEM_STAT_R2_S2	DS-178				D / mixed	This structured parameter indicates the status of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 2 slot 2)
46	4	ELEM_EXPD_R2_S3	DS-176				s	This structured parameter indicates the expected configuration (per off-line configuration) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 2 slot 3)
47		ELEM_ACTL_R2_S3	DS-177				D / RO	This structured parameter indicates the actual configuration (per element detection) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 2 slot 3)

ldx	Type/ View	Parameter	Data type	Valid Range	Initial Value	Units	Store/Ot her	Description
48	1,3	ELEM_STAT_R2_S3	DS-178				D / mixed	This structured parameter indicates the status of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 2 slot 3)
49	4	ELEM_EXPD_R3_S0	DS-176				S	This structured parameter indicates the expected configuration (per off-line configuration) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 3 slot 0)
50		ELEM_ACTL_R3_S0	DS-177				D / RO	This structured parameter indicates the actual configuration (per element detection) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 3 slot 0)
51	1,3	ELEM_STAT_R3_S0	DS-178				D / mixed	This structured parameter indicates the status of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 3 slot 0)
52	4	ELEM_EXPD_R3_S1	DS-176				S	This structured parameter indicates the expected configuration (per off-line configuration) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 3 slot 1)
53		ELEM_ACTL_R3_S1	DS-177				D / RO	This structured parameter indicates the actual configuration (per element detection) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 3 slot 1)
54	1,3	ELEM_STAT_R3_S1	DS-178				D / mixed	This structured parameter indicates the status of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 3 slot 1)

ldx	Type/ View	Parameter	Data type	Valid Range	Initial Value	Units	Store/Ot her	Description
55	4	ELEM_EXPD_R3_S2	DS-176				S	This structured parameter indicates the expected configuration (per off-line configuration) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 3 slot 2)
56		ELEM_ACTL_R3_S2	DS-177				D/RO	This structured parameter indicates the actual configuration (per element detection) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 3 slot 2)
57	1,3	ELEM_STAT_R3_S2	DS-178				D / mixed	This structured parameter indicates the status of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 3 slot 2)
58	4	ELEM_EXPD_R3_S3	DS-176				S	This structured parameter indicates the expected configuration (per off-line configuration) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 3 slot 3)
59		ELEM_ACTL_R3_S3	DS-177				D / RO	This structured parameter indicates the actual configuration (per element detection) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 3 slot 3)
60	1,3	ELEM_STAT_R3_S3	DS-178				D / mixed	This structured parameter indicates the status of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 3 slot 3)
61		ELEM_EXPD_R4_S0	DS-176				S	This structured parameter indicates the expected configuration (per off-line configuration) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 4 slot 0)

ldx	Type/ View	Parameter	Data type	Valid Range	Initial Value	Units	Store/Ot her	Description
62		ELEM_ACTL_R4_S0	DS-177				D/RO	This structured parameter indicates the actual configuration (per element detection) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 4 slot 0)
63	1,3	ELEM_STAT_R4_S0	DS-178				D / mixed	This structured parameter indicates the status of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 4 slot 0)
64		ELEM_EXPD_R4_S1	DS-176				s	This structured parameter indicates the expected configuration (per off-line configuration) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 4 slot 1)
65		ELEM_ACTL_R4_S1	DS-177				D / RO	This structured parameter indicates the actual configuration (per element detection) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 4 slot 1)
66	1,3	ELEM_STAT_R4_S1	DS-178				D / mixed	This structured parameter indicates the status of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 4 slot 1)
67		ELEM_EXPD_R4_S2	DS-176				S	This structured parameter indicates the expected configuration (per off-line configuration) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 4 slot 2)
68		ELEM_ACTL_R4_S2	DS-177				D / RO	This structured parameter indicates the actual configuration (per element detection) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 4 slot 2)

ldx	Type/ View	Parameter	Data type	Valid Range	Initial Value	Units	Store/Ot her	Description
69	1,3	ELEM_STAT_R4_S2	DS-178				D / mixed	This structured parameter indicates the status of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 4 slot 2)
70		ELEM_EXPD_R4_S3	DS-176				S	This structured parameter indicates the expected configuration (per off-line configuration) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 4 slot 3)
71		ELEM_ACTL_R4_S3	DS-177				D / RO	This structured parameter indicates the actual configuration (per element detection) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 4 slot 3)
72	1,3	ELEM_STAT_R4_S3	DS-178				D / mixed	This structured parameter indicates the status of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 4 slot 3)
73		ELEM_EXPD_R5_S0	DS-176				S	This structured parameter indicates the expected configuration (per off-line configuration) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 5 slot 0)
74		ELEM_ACTL_R5_S0	DS-177				D/RO	This structured parameter indicates the actual configuration (per element detection) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 5 slot 0)
75	1,3	ELEM_STAT_R5_S0	DS-178				D / mixed	This structured parameter indicates the status of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 5 slot 0)

ldx	Type/ View	Parameter	Data type	Valid Range	Initial Value	Units	Store/Ot her	Description
76		ELEM_EXPD_R5_S1	DS-176				S	This structured parameter indicates the expected configuration (per off-line configuration) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 5 slot 1)
77		ELEM_ACTL_R5_S1	DS-177				D / RO	This structured parameter indicates the actual configuration (per element detection) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 5 slot 1)
78	1,3	ELEM_STAT_R5_S1	DS-178				D / mixed	This structured parameter indicates the status of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 5 slot 1)
79		ELEM_EXPD_R5_S2	DS-176				S	This structured parameter indicates the expected configuration (per off-line configuration) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 5 slot 2)
80		ELEM_ACTL_R5_S2	DS-177				D / RO	This structured parameter indicates the actual configuration (per element detection) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 5 slot 2)
81	1,3	ELEM_STAT_R5_S2	DS-178				D / mixed	This structured parameter indicates the status of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 5 slot 2)
82		ELEM_EXPD_R5_S3	DS-176				S	This structured parameter indicates the expected configuration (per off-line configuration) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 5 slot 3)

ldx	Type/ View	Parameter	Data type	Valid Range	Initial Value	Units	Store/Ot her	Description
83		ELEM_ACTL_R5_S3	DS-177				D/RO	This structured parameter indicates the actual configuration (per element detection) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 5 slot 3)
84	1,3	ELEM_STAT_R5_S3	DS-178				D / mixed	This structured parameter indicates the status of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 5 slot 3)
85		ELEM_EXPD_R6_S0	DS-176				S	This structured parameter indicates the expected configuration (per off-line configuration) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 6 slot 0)
86		ELEM_ACTL_R6_S0	DS-177				D/RO	This structured parameter indicates the actual configuration (per element detection) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 6 slot 0)
87	1,3	ELEM_STAT_R6_S0	DS-178				D / mixed	This structured parameter indicates the status of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 6 slot 0)
88		ELEM_EXPD_R6_S1	DS-176				S	This structured parameter indicates the expected configuration (per off-line configuration) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 6 slot 1)
89		ELEM_ACTL_R6_S1	DS-177				D / RO	This structured parameter indicates the actual configuration (per element detection) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 6 slot 1)

ldx	Type/ View	Parameter	Data type	Valid Range	Initial Value	Units	Store/Ot her	Description
90	1,3	ELEM_STAT_R6_S1	DS-178				D / mixed	This structured parameter indicates the status of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 6 slot 1)
91		ELEM_EXPD_R6_S2	DS-176				S	This structured parameter indicates the expected configuration (per off-line configuration) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 6 slot 2)
92		ELEM_ACTL_R6_S2	DS-177				D/RO	This structured parameter indicates the actual configuration (per element detection) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 6 slot 2)
93	1,3	ELEM_STAT_R6_S2	DS-178				D / mixed	This structured parameter indicates the status of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 6 slot 2)
94		ELEM_EXPD_R6_S3	DS-176				S	This structured parameter indicates the expected configuration (per off-line configuration) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 6 slot 3)
95		ELEM_ACTL_R6_S3	DS-177				D/RO	This structured parameter indicates the actual configuration (per element detection) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 6 slot 3)
96	1,3	ELEM_STAT_R6_S3	DS-178				D / mixed	This structured parameter indicates the status of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 6 slot 3)

ldx	Type/ View	Parameter	Data type	Valid Range	Initial Value	Units	Store/Ot her	Description
97		ELEM_EXPD_R7_S0	DS-176				S	This structured parameter indicates the expected configuration (per off-line configuration) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 7 slot 0)
98		ELEM_ACTL_R7_S0	DS-177				D/RO	This structured parameter indicates the actual configuration (per element detection) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 7 slot 0)
99	1,3	ELEM_STAT_R7_S0	DS-178				D / mixed	This structured parameter indicates the status of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 7 slot 0)
100		ELEM_EXPD_R7_S1	DS-176				S	This structured parameter indicates the expected configuration (per off-line configuration) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 7 slot 1)
101		ELEM_ACTL_R7_S1	DS-177				D / RO	This structured parameter indicates the actual configuration (per element detection) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 7 slot 1)
102	1,3	ELEM_STAT_R7_S1	DS-178				D / mixed	This structured parameter indicates the status of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 7 slot 1)
103		ELEM_EXPD_R7_S2	DS-176				S	This structured parameter indicates the expected configuration (per off-line configuration) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 7 slot 2)

ldx	Type/ View	Parameter	Data type	Valid Range	Initial Value	Units	Store/Ot her	Description
104		ELEM_ACTL_R7_S2	DS-177				D/RO	This structured parameter indicates the actual configuration (per element detection) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 7 slot 2)
105	1,3	ELEM_STAT_R7_S2	DS-178				D / mixed	This structured parameter indicates the status of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 7 slot 2)
106		ELEM_EXPD_R7_S3	DS-176				s	This structured parameter indicates the expected configuration (per off-line configuration) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 7 slot 3)
107		ELEM_ACTL_R7_S3	DS-177				D/RO	This structured parameter indicates the actual configuration (per element detection) of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 7 slot 3)
108	1,3	ELEM_STAT_R7_S3	DS-178				D / mixed	This structured parameter indicates the status of an element beneath the association block hierarchically. The posn suffix indicates the vendor's nomenclature for the particular position or address (rack 7 slot 3)
109	4	ACK_OPTION	Bitstring(2)	0:Auto Ack Disabled 1:Auto Ack Enabled		E	S	Selection of whether alarms associated with the block will be automatically acknowledged.
110	4	FD_VER	Unsigned16			Na	S, RO	A parameter equal to the value of the major version of the Field Diagnostics specification that this device was designed to.
111	1,3	FD_FAIL_ACTIVE	BitString[4]			Na	D, RO	This parameter reflects the error conditions that are being detected as active as selected for this category. It is a bit string, so that multiple conditions may be shown.
112	1,3	FD_OFFSPEC_ACTIVE	BitString[4]			Na	D, RO	This parameter reflects the error conditions that are being detected as active as selected for this category. It is a bit string, so that multiple conditions may be shown.

ldx	Type/ View	Parameter	Data type	Valid Range	Initial Value	Units	Store/Ot her	Description
113	1,3	FD_MAINT_ACTIVE	BitString[4]			Na	D, RO	This parameter reflects the error conditions that are being detected as active as selected for this category. It is a bit string, so that multiple conditions may be shown.
114	1,3	FD_CHECK_ACTIVE	BitString[4]			Na	D, RO	This parameter reflects the error conditions that are being detected as active as selected for this category. It is a bit string, so that multiple conditions may be shown.
115	4	FD_FAIL_MAP	BitString[4]			Na	S	This parameter maps conditions to be detected as active for this alarm category. Thus the same condition may be active in all, some, or none of the 4 alarm categories.
116	4	FD_OFFSPEC_MAP	BitString[4]			Na	S	This parameter maps conditions to be detected as active for this alarm category. Thus the same condition may be active in all, some, or none of the 4 alarm categories.
117	4	FD_MAINT_MAP	BitString[4]			Na	S	This parameter maps conditions to be detected as active for this alarm category. Thus the same condition may be active in all, some, or none of the 4 alarm categories.
118	4	FD_CHECK_MAP	BitString[4]			Na	S	This parameter maps conditions to be detected as active for this alarm category. Thus the same condition may be active in all, some, or none of the 4 alarm categories.
119	4	FD_FAIL_MASK	BitString[4]			Na	S	This parameter allows the user to suppress any single or multiple conditions that are active, in this category, from being broadcast to the host through the alarm parameter. A bit equal to '1' will mask i.e. inhibit the broadcast of a condition, and a bit equal to '0' will unmask i.e. allow broadcast of a condition.
120	4	FD_OFFSPEC_MASK	BitString[4]			Na	s	This parameter allows the user to suppress any single or multiple conditions that are active, in this category, from being broadcast to the host through the alarm parameter. A bit equal to '1' will mask i.e. inhibit the broadcast of a condition, and a bit equal to '0' will unmask i.e. allow broadcast of a condition.

ldx	Type/ View	Parameter	Data type	Valid Range	Initial Value	Units	Store/Ot her	Description
121	4	FD_MAINT_MASK	BitString[4]			Na	S	This parameter allows the user to suppress any single or multiple conditions that are active, in this category, from being broadcast to the host through the alarm parameter. A bit equal to '1' will mask i.e. inhibit the broadcast of a condition, and a bit equal to '0' will unmask i.e. allow broadcast of a condition.
122	4	FD_CHECK_MASK	BitString[4]			Na	s	This parameter allows the user to suppress any single or multiple conditions that are active, in this category, from being broadcast to the host through the alarm parameter. A bit equal to '1' will mask i.e. inhibit the broadcast of a condition, and a bit equal to '0' will unmask i.e. allow broadcast of a condition.
123		FD_FAIL_ALM	DS-87			Na	D	This parameter is used primarily to broadcast a change in the associated active conditions, which are not masked, for this alarm category to a Host System.
124		FD_OFFSPEC_ALM	DS-87			Na	D	This parameter is used primarily to broadcast a change in the associated active conditions, which are not masked, for this alarm category to a Host System.
125		FD_MAINT_ALM	DS-87			Na	D	This parameter is used primarily to broadcast a change in the associated active conditions, which are not masked, for this alarm category to a Host System.
126		FD_CHECK_ALM	DS-87			Na	D	This parameter is used primarily to broadcast a change in the associated active conditions, which are not masked, for this alarm category to a Host System.
127	4	FD_FAIL_PRI	Unsigned8	0-15	0	Na	S	This parameter allows the user to specify the priority of this alarm category.
128	4	FD_OFFSPEC_PRI	Unsigned8	0-15	0	Na	s	This parameter allows the user to specify the priority of this alarm category.
129	4	FD_MAINT_PRI	Unsigned8	0-15	0	Na	s	This parameter allows the user to specify the priority of this alarm category.
130	4	FD_CHECK_PRI	Unsigned8	0-15	0	Na	S	This parameter allows the user to specify the priority of this alarm category.

ldx	Type/ View	Parameter	Data type	Valid Range	Initial Value	Units	Store/Ot her	Description
131	3	FD_SIMULATE	DS-89		disabled	Na	D	This parameter allows the conditions to be manually supplied when simulation is enabled. When simulation is disabled both the diagnostic simulate value and the diagnostic value tracks the actual conditions. The simulate jumper is required for simulation to be enabled and while simulation is enabled the recommended action will show that simulation is active.
132	1,3	FD_RECOMMEN_ACT	Unsigned16	0-Not Initalized 1-No Action Required	0	Na	D, RO	This parameter is a device enumerated summarization of the most severe condition or conditions detected. The DD help should describe by enumerated action, what should be done to alleviate the condition or conditions. 0 is defined as Not Initialized, 1 is defined as No Action Required, all others defined by manuf.

Legend: E – Enumerated parameter; Na – Dimensionless parameter; RO – Read only; D – dynamic; N – non-volatile; S - Static Gray Background Line: Custom Parameters

TB8BI – 8 Binary Inputs Transducer Block

Description

This transducer block represents generically the transducers of all module types with 8 binary inputs (digitals).

Diagnostic and troubleshooting

BLOCK_ERR. Block configuration: this indication may occur due to the following problem:

It exceeded the maximum number of the system I/O points, so it was not possible to allocate VAR_NAME to this block points.

ldx	Type/ View	Parameter	Data Type	Valid Range	Initial Value	Units	Store/ Other	Description
1	1,2,3,4	ST_REV	Unsigned16		0	None	S/RO	
2		TAG_DESC	OctString(32)		Spaces	Na	S	
3	4	STRATEGY	Unsigned16		255	None	s	
4	4	ALERT_KEY	Unsigned8		1	None	s	
5	1,3	MODE_BLK	DS-69		Auto	Na	s	
6	1,3	BLOCK_ERR	Bitstring(2)			E	D/RO	
7		UPDATE_EVT	DS-73			Na	D	This alert is generated by any change to the static data.
8		BLOCK_ALM	DS-72			Na	D	The block alarm is used for all configuration, hardware, connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.
9	4	ACK_OPTION	Bitstring(2)	0:Auto Ack Disabled 1:Auto Ack Enabled		E	S	Selection of whether alarms associated with the block will be automatically acknowledged.
10		TRANSDUCER_DIRECTORY	Unsigned16[1]		0		N/RO	A directory that specifies the number and starting indices of the transducers in the transducer block.
11	1,2,3,4	TRANSDUCER_TYPE	Unsigned16	FF-131	200	Е	N / RO	Identifies the transducer that follows.
12		TRANSDUCER_TYPE_VER	Unsigned16				N / RO	The version of the transducer identified by TRANSDUCERT_TYPE in the form 0xAABB where AA is the major revision of the transducer specification on which the transducer is based, and BB is a revision number assigned and controlled by the manufacturer of the device.
13	1,3	XD_ERROR	Unsigned8	Ver enumerações		E	D/RO	Error code for transducer.

ldx	Type/ View	Parameter	Data Type	Valid Range	Initial Value	Units	Store/ Other	Description
14		COLLECTION_DIRECTORY	Unsigned32[1]		0		N / RO	A directory that specifies the number, starting indices, and DD Item IDs of the data collections in each transducer within a transducer block.
15		VAR_NAMES8	VisibleString[8][32]		Manufactur er defined	Na	s	Array of 8 variable names to address each individual I/O.
16		VAR_DIR8	Unsigned8[8]	0:Undefined 1:Input 2:Output	1's		S, RO	Direction of the I/O: 0=undefined, 1=input, 2=output. If the I/O direction is fixed, this parameter is read only. If the module allows configurable I/O selection, the parameter is r/w and may be configured. The default is then 0.
17	1,3	PROCESS_VALUE_B_1	DS-66				D/RO	The measured Boolean value and status available to the Function Block or the final Boolean output value (FINAL_VALUE) and status available from the Function Block.
18	1,3	PROCESS_VALUE_B_2	DS-66				D/RO	The measured Boolean value and status available to the Function Block or the final Boolean output value (FINAL_VALUE) and status available from the Function Block.
19	1,3	PROCESS_VALUE_B_3	DS-66				D/RO	The measured Boolean value and status available to the Function Block or the final Boolean output value (FINAL_VALUE) and status available from the Function Block.
20	1,3	PROCESS_VALUE_B_4	DS-66				D/RO	The measured Boolean value and status available to the Function Block or the final Boolean output value (FINAL_VALUE) and status available from the Function Block.
21	1,3	PROCESS_VALUE_B_5	DS-66				D/RO	The measured Boolean value and status available to the Function Block or the final Boolean output value (FINAL_VALUE) and status available from the Function Block.
22	1,3	PROCESS_VALUE_B_6	DS-66				D/RO	The measured Boolean value and status available to the Function Block or the final Boolean output value (FINAL_VALUE) and status available from the Function Block.
23	1,3	PROCESS_VALUE_B_7	DS-66				D/RO	The measured Boolean value and status available to the Function Block or the final Boolean output value (FINAL_VALUE) and status available from the Function Block.
24	1,3	PROCESS_VALUE_B_8	DS-66				D/RO	The measured Boolean value and status available to the Function Block or the final Boolean output value (FINAL_VALUE) and status available from the Function Block.
25	1	RACK	Unsigned8	0 to 15	0	Na	S/RO	Rack number where the module is plugged in.
26	1	SLOT	Unsigned8	0 to 3	0	Na	S/RO	Slot number where the module is plugged in.

Legend: E – Enumerated parameter; Na – Dimensionless parameter; RO – Read only; D – dynamic; N – non-volatile; S - Static Gray Background Line: Custom Parameters

TB8BO – 8 Binary Outputs Transducer Block

Description

This transducer block represents generically the transducers of all module types with 8 binary outputs (digitals).

Diagnostic and troubleshooting

BLOCK_ERR. Block configuration: this indication may occur due to the following problem:

It exceeded the maximum number of the system I/O points, so it was not possible to allocate VAR_NAME to this block points.

ldx	Type/ View	Parameter	Data Type	Valid Range	Initial Value	Units	Store/ Other	Description
1	1,2,3,4	ST_REV	Unsigned16		0	None	S/RO	
2		TAG_DESC	OctString(32)		Spaces	Na	S	
3	4	STRATEGY	Unsigned16		255	None	s	
4	4	ALERT_KEY	Unsigned8		1	None	s	
5	1,3	MODE_BLK	DS-69		Auto	Na	s	
6	1,3	BLOCK_ERR	Bitstring(2)			E	D/RO	
7		UPDATE_EVT	DS-73			Na	D	This alert is generated by any change to the static data.
8		BLOCK_ALM	DS-72			Na	D	The block alarm is used for all configuration, hardware, connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.
9	4	ACK_OPTION	Bitstring(2)	0:Auto Ack Disabled 1:Auto Ack Enabled		E	s	Selection of whether alarms associated with the block will be automatically acknowledged.
10		TRANSDUCER_DIRECTORY	Unsigned16[1]		0		N/RO	A directory that specifies the number and starting indices of the transducers in the transducer block.
11	1,2,3,4	TRANSDUCER_TYPE	Unsigned16	FF-131	200	E	N / RO	Identifies the transducer that follows.
12		TRANSDUCER_TYPE_VER	Unsigned16				N / RO	The version of the transducer identified by TRANSDUCERT_TYPE in the form 0xAABB where AA is the major revision of the transducer specification on which the transducer is based, and BB is a revision number assigned and controlled by the manufacturer of the device.
13	1,3	XD_ERROR	Unsigned8	See enumerations		E	D/RO	Error code for transducer.

	Type/ View	Parameter	Data Type	Valid Range	Initial Value	Units	Store/ Other	Description
14		COLLECTION_DIRECTORY	Unsigned32[1]		0		N / RO	A directory that specifies the number, starting indices, and DD Item IDs of the data collections in each transducer within a transducer block.
15		VAR_NAMES8	VisibleString[8][32]		Manufactur er defined	Na	S	Array of 8 variable names to address each individual I/O.
16		VAR_DIR8	Unsigned8[8]	0:Undefined 1:Input 2:Output	2's		S, RO	Direction of the I/O: 0=undefined, 1=input, 2=output. If the I/O direction is fixed, this parameter is read-only. If the module allows configurable I/O selection, the parameter is r/w and may be configured. The default is then 0.
17	1,3	PROCESS_VALUE_B_1	DS-66				D/RO	The measured boolean value and status available to the Function Block or the final Boolean output value (FINAL_VALUE) and status available from the Function Block.
18	1,3	PROCESS _VALUE_B_2	DS-66				D / RO	The measured boolean value and status provided by the Function Block or the final Boolean output value (FINAL_VALUE) and status available from the Function Block.
19	1,3	PROCESS _VALUE_B_3	DS-66				D / RO	The measured boolean value and status available to the Function Block or the final Boolean output value (FINAL_VALUE) and status available from the Function Block
20	1,3	PROCESS _VALUE_B_4	DS-66				D/RO	The measured boolean value and status available to the Function Block or the final Boolean output value (FINAL_VALUE) and status available from the Function Block.
21	1,3	PROCESS _VALUE_B_5	DS-66				D / RO	The measured boolean value and status available to the Function Block or the final Boolean output value (FINAL_VALUE) and status available from the Function Block.
22	1,3	PROCESS _VALUE_B_6	DS-66				D / RO	The measured boolean value and status available to the Function Block or the final Boolean output value (FINAL_VALUE) and status available from the Function Block.
23	1,3	PROCESS _VALUE_B_7	DS-66				D / RO	The measured boolean value and status available to the Function Block or the final Boolean output value (FINAL_VALUE) and status available from the Function Block.
24	1,3	PROCESS _VALUE_B_8	DS-66				D / RO	The measured boolean value and status available to the Function Block or the final Boolean output value (FINAL_VALUE) and status available from the Function Block.
25	1	RACK	Unsigned8	0 to 15	0	Na	N / RO	Rack number where the module is plugged in.
26	1	SLOT	Unsigned8	0 to 3	0	Na	N / RO	Slot number where the module is plugged in.

Legend: E – Enumerated parameter; Na – Dimensionless parameter; RO – Read only; D – dynamic; N – non-volatile; S - Static Gray Background Line: Custom Parameters

TB8AI - 8 Analog Inputs Transducer Block

Description

This transducer block represents generically the transducers of all module types with 8 analog inputs.

This block performs:

- Reading the points of I/O scan database in percentage.
- Convert to engineering unit configured by user in PROCESS_VALUE_RANGE_A_x. From A/D converter to % of 4-20mA

From % to EU_0 to EU_100 of PROCESS_VALUE_RANGE_A_x

Scale and unit	PROCESS_VALUE_RANGE_A_x (*)
4-20mA or 0-20mA	EU_0=4 or 0
	EU_100=20
% of 4-20mA	EU_0=0
	EU_100=100
% of 0-20mA	EU_0=20
	EU_100=100
4mA -> EU_0	EU_0 and EU_100 set
20mA -> EU_100	

^(*)UNITS_INDEX is not used in the conversion, only for indication

Diagnostic and troubleshooting

BLOCK_ERR. Block configuration: this indication may occur due to the following problem:

• It exceeded the maximum number of the system I/O points, so it was not possible to allocate VAR_NAME to this block points.

ldx	Type/ View	Parameter	Data type	Valid Range	Initial Value	Units	Store/ Other	Description
1	1,2,3,4	ST_REV	Unsigned16		0	None	S/RO	
2		TAG_DESC	OctString(32)		Spaces	Na	S	
3	4	STRATEGY	Unsigned16		255	None	S	
4	4	ALERT_KEY	Unsigned8		1	None	s	
5	1,3	MODE_BLK	DS-69		Auto	Na	S	
6	1,3	BLOCK_ERR	Bitstring(2)			E	D/RO	
7		UPDATE_EVT	DS-73			Na	D	This alert is generated by any change to the static data.
8		BLOCK_ALM	DS-72			Na	D	The block alarm is used for all configuration, hardware, connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.
9	4	ACK_OPTION	Bitstring(2)	0:Auto Ack Disabled 1:Auto Ack Enabled		Е	S	Selection of whether alarms associated with the block will be automatically acknowledged.

ldx	Type/ View	Parameter	Data type	Valid Range	Initial Value	Units	Store/ Other	Description
10		TRANSDUCER_DIRECTORY	Unsigned16[1]		0		N / RO	A directory that specifies the number and starting indices of the transducers in the transducer block.
11	1,2,3,4	TRANSDUCER_TYPE	Unsigned16	FF-131	200	E	N / RO	Identifies the transducer that follows.
12		TRANSDUCER_TYPE_VER	Unsigned16				N / RO	The version of the transducer identified by TRANSDUCERT_TYPE in the form 0xAABB where AA is the major revision of the transducer specification on which the transducer is based, and BB is a revision number assigned and controlled by the manufacturer of the device.
13	1,3	XD_ERROR	Unsigned8	See enumerations		E	D / RO	Error code for transducer.
14		COLLECTION_DIRECTORY	Unsigned32[1]		0		N / RO	A directory that specifies the number, starting indices, and DD Item IDs of the data collections in each transducer within a transducer block.
15		VAR_NAMES8	VisibleString[8][32]		Manufactur er defined	Na	s	Array of 8 variable names to address each individual I/O.
16		VAR_DIR8	Unsigned8[8]	0:Undefined 1:Input 2:Output	1's		S, RO	Direction of the I/O: 0=undefined, 1=input, 2=output. If the I/O direction is fixed, this parameter is read-only. If the module allows configurable I/O selection, the parameter is r/w and may be configured. The default is then 0.
17	1,3	PROCESS_VALUE_A_1	DS-65			PVR1	D/RO	The measured analog value and status available to the Function Block (PRIMARY_VALUE) or the final analog output value (FINAL_VALUE) and status available to the Function Block.
18	1,3	PROCESS_VALUE_A_2	DS-65			PVR2	D/RO	The measured analog value and status available to the Function Block (PRIMARY_VALUE) or the final analog output value (FINAL_VALUE) and status available to the Function Block.
19	1,3	PROCESS_VALUE_A_3	DS-65			PVR3	D/RO	The measured analog value and status available to the Function Block (PRIMARY_VALUE) or the final analog output value (FINAL_VALUE) and status available to the Function Block.

ldx	Type/ View	Parameter	Data type	Valid Range	Initial Value	Units	Store/ Other	Description
20	1,3	PROCESS_VALUE_A_4	DS-65			PVR4	D/RO	The measured analog value and status available to the Function Block (PRIMARY_VALUE) or the final analog output value (FINAL_VALUE) and status available to the Function Block.
21	1,3	PROCESS_VALUE_A_5	DS-65			PVR5	D / RO	The measured analog value and status available to the Function Block (PRIMARY_VALUE) or the final analog output value (FINAL_VALUE) and status available to the Function Block.
22	1,3	PROCESS_VALUE_A_6	DS-65			PVR6	D/RO	The measured analog value and status available to the Function Block (PRIMARY_VALUE) or the final analog output value (FINAL_VALUE) and status available to the Function Block.
23	1,3	PROCESS_VALUE_A_7	DS-65			PVR7	D/RO	The measured analog value and status available to the Function Block (PRIMARY_VALUE) or the final analog output value (FINAL_VALUE) and status available to the Function Block.
24	1,3	PROCESS_VALUE_A_8	DS-65			PVR8	D/RO	The measured analog value and status available to the Function Block (PRIMARY_VALUE) or the final analog output value (FINAL_VALUE) and status available to the Function Block.
25	2	PROCESS_VALUE_RANGE_ A_1	DS-68		420mA		S	PROCESS_VALUE_RANG E_A_ n defines the ends of the PROCESS_VALUE, the units of the PROCESS_VALUE, and the decimal point position (number of significant digits to the right of the point). The engineering units must match the units selected in the parameter XD_SCALE of the Analog Input Block that reads the channel with this value, if a block AI is used.

ldx	Type/ View	Parameter	Data type	Valid Range	Initial Value	Units	Store/ Other	Description
26	2	PROCESS_VALUE_RANGE_ A_2	DS-68		420mA		S	PROCESS_VALUE_RANG E_A_ n defines the ends of the PROCESS_VALUE, the units of the PROCESS_VALUE, and the decimal point position (number of significant digits to the right of the point). The engineering units must match the units selected in the parameter XD_SCALE of the Analog Input Block that reads the channel with this value, if a block AI is used.
27	2	PROCESS_VALUE_RANGE_ A_3	DS-68		420mA		S	PROCESS_VALUE_RANG E_A_ n defines the ends of the PROCESS_VALUE, the units of the PROCESS_VALUE, and the decimal point position (number of significant digits to the right of the point). The engineering units must match the units selected in the parameter XD_SCALE of the Analog Input Block that reads the channel with this value, if a block AI is used.
28	2	PROCESS_VALUE_RANGE_ A_4	DS-68		420mA		S	PROCESS_VALUE_RANG E_A_ n defines the ends of the PROCESS_VALUE, the units of the PROCESS_VALUE, and the decimal point position (number of significant digits to the right of the point). The engineering units must match the units selected in the parameter XD_SCALE of the Analog Input Block that reads the channel with this value, if a block AI is used.
29	2	PROCESS_VALUE_RANGE_ A_5	DS-68		420mA		S	PROCESS_VALUE_RANG E_A_ n defines the ends of the PROCESS_VALUE, the units of the PROCESS_VALUE, and the decimal point position (number of significant digits to the right of the point). The engineering units must match the units selected in the parameter XD_SCALE of the Analog Input Block that reads the channel with this value, if a block AI is used.

ldx	Type/ View	Parameter	Data type	Valid Range	Initial Value	Units	Store/ Other	Description
30	2	PROCESS_VALUE_RANGE_ A_6	DS-68		420mA		S	PROCESS_VALUE_RANG E_A_ n defines the ends of the PROCESS_VALUE, the units of the PROCESS_VALUE, and the decimal point position (number of significant digits to the right of the point). The engineering units must match the units selected in the parameter XD_SCALE of the Analog Input Block that reads the channel with this value, if a block AI is used.
31	2	PROCESS_VALUE_RANGE_ A_7	DS-68		420mA		S	PROCESS_VALUE_RANG E_A_ n defines the ends of the PROCESS_VALUE, the units of the PROCESS_VALUE, and the decimal point position (number of significant digits to the right of the point). The engineering units must match the units selected in the parameter XD_SCALE of the Analog Input Block that reads the channel with this value, if a block AI is used.
32	2	PROCESS_VALUE_RANGE_ A_8	DS-68		420mA		S	PROCESS_VALUE_RANG E_A_ n defines the ends of the PROCESS_VALUE, the units of the PROCESS_VALUE, and the decimal point position (number of significant digits to the right of the point). The engineering units must match the units selected in the parameter XD_SCALE of the Analog Input Block that reads the channel with this value, if a block AI is used.
33	2	IO_THRESHOLD_A_1	DS-179				S	Thresholds of over-range and under-range bad and uncertain status indications on input (PROCESS_VALUE status) and over-range and underrange limits on output for the 4-20mA signal of the HART device.
34	2	IO_THRESHOLD_A_2	DS-179				S	Thresholds of over-range and under-range bad and uncertain status indications on input (PROCESS_VALUE status) and over-range and underrange limits on output for the 4-20mA signal of the HART device.

ldx	Type/ View	Parameter	Data type	Valid Range	Initial Value	Units	Store/ Other	Description
35	2	IO_THRESHOLD_A_3	DS-179				S	Thresholds of over-range and under-range bad and uncertain status indications on input (PROCESS_VALUE status) and over-range and underrange limits on output for the 4-20mA signal of the HART device.
36	2	IO_THRESHOLD_A_4	DS-179				S	Thresholds of over-range and under-range bad and uncertain status indications on input (PROCESS_VALUE status) and over-range and underrange limits on output for the 4-20mA signal of the HART device.
37	2	IO_THRESHOLD_A_5	DS-179				S	Thresholds of over-range and under-range bad and uncertain status indications on input (PROCESS_VALUE status) and over-range and underrange limits on output for the 4-20mA signal of the HART device.
38	2	IO_THRESHOLD_A_6	DS-179				S	Thresholds of over-range and under-range bad and uncertain status indications on input (PROCESS_VALUE status) and over-range and underrange limits on output for the 4-20mA signal of the HART device.
39	2	IO_THRESHOLD_A_7	DS-179				S	Thresholds of over-range and under-range bad and uncertain status indications on input (PROCESS_VALUE status) and over-range and under-range limits on output for the 4-20mA signal of the HART device.
40	2	IO_THRESHOLD_A_8	DS-179				S	Thresholds of over-range and under-range bad and uncertain status indications on input (PROCESS_VALUE status) and over-range and underrange limits on output for the 4-20mA signal of the HART device.
41	1	RACK	Unsigned8	0 to 15	0	Na	N / RO	Rack number where the module is plugged in.
42	1	SLOT	Unsigned8	0 to 3	0 Bood o	Na	N / RO	Slot number where the module is plugged in.

Legend: E – Enumerated parameter; Na – Dimensionless parameter; RO – Read only; D – dynamic; N – non-volatile; S - Static
Gray Background Line: Custom Parameters

TB4AO - 4 Analog Outputs Transducer Block

Description

This transducer block represents generically the transducers of all module types with 4 analog outputs.

The TB4AO block expects to receive the function block values in percentage, then it converts the percentage to an unit appropriated for the module type (4-20 mA for DF46), which is not the value written in the transducer (D/A converter). The converted value will be used for indication in the PROCESS_VALUE_x parameters.

- It is still necessary to convert the value to be written in the sensor (D/A converter).
- The conversion to engineering unit is configured by user in PROCESS_VALUE_RANGE_A_x: From 0-100% to EU_0 EU_100 in mA, that is indicated in PROCESS_VALUE_x. From EU_0 EU_100 in mA to D/A converter

Scale and unit	PROCESS_VALUE_RANGE_A_x (*)
4-20mA	EU_0=4
	EU_100=20
0-20mA	EU_0=0
	EU 100=20

(*)UNITS_INDEX fixed in mA, thus the indication in PROCESS_VALUE_RANGE_A_x always refers to current output of DF46.

IO_THRESHOLD_A_n

The elements OVERRNG_LIM and UNDERRNG_LIM are used to limit the value that will be sent to the D/A converter. The other elements of this structure are not used.

PROCESS_VALUE_A_n

These parameters indicate the value in mA of value assigned to the sensor, so now including the limitation imposed by IO_THRESHOLD_A_n parameter, despite the description of the standard does not mention this.

Diagnostic and troubleshooting

BLOCK ERR. Block configuration: this indication may occur due to the following problem:

• It exceeded the maximum number of the system I/O points, so it was not possible to allocate VAR_NAME to this block points.

ldx	Type/ View	Parameter	Data type	Valid Range	Initial Value	Units	Store/ Other	Description
1	1,2,3,4	ST_REV	Unsigned16		0	None	S/RO	
2		TAG_DESC	OctString(32)		Spaces	Na	S	
3	4	STRATEGY	Unsigned16		255	None	s	
4	4	ALERT_KEY	Unsigned8		1	None	s	
5	1,3	MODE_BLK	DS-69		Auto	Na	S	
6	1,3	BLOCK_ERR	Bitstring(2)			E	D/RO	
7		UPDATE_EVT	DS-73			Na	D	This alert is generated by any change to the static data.

ldx	Type/ View	Parameter	Data type	Valid Range	Initial Value	Units	Store/ Other	Description
8		BLOCK_ALM	DS-72			Na	D	The block alarm is used for all configuration, hardware, connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.
9	4	ACK_OPTION	Bitstring(2)	0:Auto Ack Disabled 1:Auto Ack Enabled		E	S	Selection of whether alarms associated with the block will be automatically acknowledged.
10		TRANSDUCER_DIRECTORY	Unsigned16[1]		0		N / RO	A directory that specifies the number and starting indices of the transducers in the transducer block.
11	1,2,3,4	TRANSDUCER_TYPE	Unsigned16	FF-131	200	E	N / RO	Identifies the transducer that follows.
12		TRANSDUCER_TYPE_VER	Unsigned16				N / RO	The version of the transducer identified by TRANSDUCERT_TYPE in the form 0xAABB where AA is the major revision of the transducer specification on which the transducer is based, and BB is a revision number assigned and controlled by the manufacturer of the device.
13	1,3	XD_ERROR	Unsigned8	See enumeration		E	D / RO	Error code for transducer.
14		COLLECTION_DIRECTORY	Unsigned32[1]		0		N / RO	A directory that specifies the number, starting indices, and DD Item IDs of the data collections in each transducer within a transducer block.
15		VAR_NAMES4	VisibleString[4][32]		Manufac- turer defined	Na	s	Array of 4 variable names to address each individual I/O.
16		VAR_DIR4	Unsigned8[4]	0:Undefined 1:Input 2:Output	2's		S, RO	Direction of the I/O: 0=undefined, 1=input, 2=output. If the I/O direction is fixed, this parameter is readonly. If the module allows configurable I/O selection, the parameter is r/w and may be configured. The default is then 0.
17	1,3	PROCESS_VALUE_A_1	DS-65			mA	D/RO	The measured analog value and status available to the Function Block (PRIMARY_VALUE) or the final analog output value (FINAL_VALUE) and status available to the Function Block.

ldx	Type/ View	Parameter	Data type	Valid Range	Initial Value	Units	Store/ Other	Description
18	1,3	PROCESS_VALUE_A _2	DS-65			mA	D/RO	The measured analog value and status available to the Function Block (PRIMARY_VALUE) or the final analog output value (FINAL_VALUE) and status available to the Function Block.
19	1,3	PROCESS_VALUE_A _3	DS-65			mA	D/RO	The measured analog value and status available to the Function Block (PRIMARY_VALUE) or the final analog output value (FINAL_VALUE) and status available to the Function Block.
20	1,3	PROCESS_VALUE_A _4	DS-65			mA	D/RO	The measured analog value and status available to the Function Block (PRIMARY_VALUE) or the final analog output value (FINAL_VALUE) and status available to the Function Block.
21	2	PROCESS_VALUE_RANGE_ A_1	DS-68	EU_0:0-20 EU_100:0-20 EU_UNITS=mA	420mA		S	PROCESS_VALUE_RANGE_A_1 defines the ends of the PROCESS_VALUE_A_1, the units of the PROCESS_VALUE_A_1, and the decimal point position (number of significant digits to the right of the point). The engineering units must match the units selected in the parameter XD_SCALE of the Analog Input Block that reads the channel with this value, if a block AI is used.
22	2	PROCESS_VALUE_RANGE_ A_2	DS-68	EU_0:0-20 EU_100:0-20 EU_UNITS=mA	420mA		S	PROCESS_VALUE_RANGE_A_2 defines the ends of the PROCESS_VALUE_A_2, the units of the PROCESS_VALUE_A_2, and the decimal point position (number of significant digits to the right of the point). The engineering units must match the units selected in the parameter XD_SCALE of the Analog Input Block that reads the channel with this value, if a block AI is used.
23	2	PROCESS_VALUE_RANGE_ A_3	DS-68	EU_0:0-20 EU_100:0-20 EU_UNITS=mA	420mA		S	PROCESS_VALUE_RANGE_ A_ 3 defines the ends of the PROCESS_VALUE_A_3, the units of the PROCESS_VALUE_A_3, and the decimal point position (number of significant digits to the right of the point). The engineering units must match the units selected in the parameter XD_SCALE of the Analog Input Block that reads the channel with this value, if a block AI is used.

ldx	Type/ View	Parameter	Data type	Valid Range	Initial Value	Units	Store/ Other	Description
24	2	PROCESS_VALUE_RANGE_ A_4	DS-68	EU_0:0-20 EU_100:0-20 EU_UNITS=mA	420mA		S	PROCESS_VALUE_RANGE_A_4 defines the ends of the PROCESS_VALUE_A_4, the units of the PROCESS_VALUE_A_4, and the decimal point position (number of significant digits to the right of the point). The engineering units must match the units selected in the parameter XD_SCALE of the Analog Input Block that reads the channel with this value, if a block AI is used.
25	2	IO_THRESHOLD_A_1	DS-179				S	Thresholds of over-range and under-range bad and uncertain status indications on input (PROCESS_VALUE_A_1 status) and over-range and under-range limits on output for the 4-20mA signal of the HART device.
26	2	IO_THRESHOLD_A_2	DS-179				S	Thresholds of over-range and under-range bad and uncertain status indications on input (PROCESS_VALUE_A_2 status) and over-range and under-range limits on output for the 4-20mA signal of the HART device.
27	2	IO_THRESHOLD_A_3	DS-179				S	Thresholds of over-range and under-range bad and uncertain status indications on input (PROCESS_VALUE_A_3 status) and over-range and under-range limits on output for the 4-20mA signal of the HART device.
28	2	IO_THRESHOLD_A_4	DS-179				S	Thresholds of over-range and under-range bad and uncertain status indications on input (PROCESS_VALUE_A_4 status) and over-range and under-range limits on output for the 4-20mA signal of the HART device.
29	1	RACK	Unsigned8	0 to 15	0	Na	N / RO	Rack number where the module is plugged in.
30	1	SLOT	Unsigned8	0 to 3	0	Na	N / RO	Slot number where the module is plugged in.

Legend: E – Enumerated parameter; Na – Dimensionless parameter; RO – Read only; D – dynamic; N – non-volatile; S - Static Gray Background Line: Custom Parameters

TBHG - Transducer Block for HART Gateway

This transducer block has the following characteristics:

- Specific and unique HSE WIO transducer block for the WirelessHART Gateway;
- Number¹ of HART and WirelessHART field devices supported;
- Status² about commissioning of HART and WirelessHART field devices;
- Live List ³ of HART and WirelessHART field devices.

Description

- o If the field device Long Tag is equal to the Block tag of some TBWH⁴ block, then the device will be commissioned and it will be represented in the application by the corresponding TBWH block. If there is not equality mentioned between tags, then the device Long Tag is indicated, but it will be stated as "NotCommissioned."
- o The execution of **TBHG** primarily triggers the execution of commissioned **TBWHs** for treatment of commands in the area of bypass and timeout in the updating of digital variables.

See in the following table the parameters description.

ldx	Type/ View	Parameter	Data Type	Valid Range	Initial Value	Units	Store/ Other	Description
1	1,2,3,4	ST_REV	Unsigned16		0	None	S/RO	
2		TAG_DESC	OctString(32)		Spaces	Na	S	
3	4	STRATEGY	Unsigned16		255	None	S	
4	4	ALERT_KEY	Unsigned8		1	None	S	
5	1,3	MODE_BLK	DS-69		Auto	Na	s	
6	1,3	BLOCK_ERR	Bitstring(2)			Е	D/RO	
7		UPDATE_EVT	DS-73			Na	D	This alert is generated by any change to the static data.
8		BLOCK_ALM	DS-72			Na	D	The block alarm is used for all configuration, hardware, connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.
9		TRANSDUCER_DIRECTORY	Unsigned16[1]		0		N / RO	A directory that specifies the number and starting indices of the transducers in the transducer block.
10	1,2,3,4	TRANSDUCER_TYPE	Unsigned16	FF-131	203	E	N / RO	Identifies the transducer that follows.
11	2,4	TRANSDUCER_TYPE_VER	Unsigned16				N / RO	The version of the transducer identified by TRANSDUCER_TYPE in the form 0xAABB where AA is the major revision of the transducer specification on which the transducer is based, and BB is a revision number assigned and controlled by the manufacturer of the device.

¹ See N_DEV_SUPPORTED parameter.

⁴ See Transducer Block for *Wireless*HART (TBWH), also specific for the WirelessHART gateway.

² See LIVE_LIST_ST parameter.

³ See LIVE_LIST_TAG_A, LIVE_LIST_TAG_B, LIVE_LIST_TAG_C and LIVE_LIST_TAG_D parameters. Each one of the three first mentioned parameters inform up to 32 field devices in the Live List. The last parameter informs just four.

ldx	Type/ View	Parameter	Data Type	Valid Range	Initial Value	Units	Store/ Other	Description
12	1,3	XD_ERROR	Unsigned8	See enumerations		E	D/RO	Error code for transducer.
13		COLLECTION_DIRECTORY	Unsigned32[1]		0		N / RO	A directory that specifies the number, starting indices, and DD Item IDs of the data collections in each transducer within a transducer block.
14	2	HART_EXPD_DEV_INFO	DS-175				S	Expected HART Device information for use by asset managing host and configuration host for DD location and display validity in off-line mode
15	2	HART_ACTL_DEV_INFO	DS-175				S, RO	Actual HART Device information for use by asset managing host and configuration host for DD location and display validity in online mode.
16		HART_CMD	OctetString [256]		Null	Na	D	HART digital protocol command buffer for use by asset managing host. No need for user access.
17		HART_RESP	OctetString [256]		Null	Na	D, RO	HART digital protocol response buffer for use by asset managing host. No need for user access.
18		HART_IND	DS-184				D, RO	HART response available indicator. An alert object for notifying an asset managing host.
19		HART_COM_STAT	Unsigned8	0:Idle 1:Writing 2:Awaiting Response 3:Receiving 4-Timed-out 5-Completed	1		D, RO	HART communication status (idle, busy)
20	4	HART_IND_PRI	Unsigned8	0 to 2	0	Na	S	Priority of response indication.
21	4	ACK_OPTION	Bitstring(2)	0:Auto Ack Disabled 1:Auto Ack Enabled		E	s	Selection of whether alarms associated with the block will be automatically acknowledged.
22	4	N_DEV_SUPPORTED	Unsigned16		100	Na	S, RO	Number of devices supported by the gateway.
23	3	LIVE_LIST_ST	Unsigned8[100]	0: NotCommissio ned 1: Commissione d	0: NotCommi ssioned	E	D, RO	Commissioned status of the devices alive in the network connected to the gateway. (0 = Not Commissioned; 1= Commissioned)
24		LIVE_LIST_TAG_A	VisibleString[32][32]		Blanks	Na	D, RO	TAGs of the devices alive in the network connected to the gateway. LIVE_LIST_TAG_A holds the TAGs of the first 32 devices. If N_DEV_SUPPORTED is greater than 32, then multiples LIVE_LIST_TAG_x (where x = A, B, C) should be included in order to list all N_DEV_SUPPORTED possible devices in the live list.
25		LIVE_LIST_TAG_B	VisibleString[32][32]		Blanks	Na	D, RO	TAGs of the devices alive in the network connected to the gateway. LIVE_LIST_TAG_B holds the TAGs of the second group of 32 devices. If N_DEV_SUPPORTED is greater than 32, then multiples LIVE_LIST_TAG_x (where x = A, B, C) should be included in order to list all N_DEV_SUPPORTED possible devices in the live list.

ldx	Type/ View	Parameter	Data Type	Valid Range	Initial Value	Units	Store/ Other	Description
26		LIVE_LIST_TAG_C	VisibleString[32][32]		Blanks	Na	D, RO	TAGs of the devices alive in the network connected to the gateway. LIVE_LIST_TAG_C holds the TAGs of the third group of 32 devices. If N_DEV_SUPPORTED is greater than 32, then multiples LIVE_LIST_TAG_x (where x = A, B, C) should be included in order to list all N_DEV_SUPPORTED possible devices in the live list.
27		LIVE_LIST_TAG_D	VisibleString[4][32]		Blanks	Na	D, RO	TAGs of the devices alive in the network connected to the gateway. LIVE_LIST_TAG_D holds the TAGs of the fourth group of 4 devices. If N_DEV_SUPPORTED is greater than 32, then multiples LIVE_LIST_TAG_x (where x = A, B, C) should be included in order to list all N_DEV_SUPPORTED possible devices in the live list.

Legend: E – Enumerated parameter; Na – Dimensionless parameter; RO – Read only; D – dynamic; N – non-volatile; S - Static Gray Background Line: Custom Parameters

TBWH - Transducer Block for WirelessHART

This transducer block has the main characteristics:

- HART⁵ digital variables read from the field device;
- Names (variable names) to identify the HART digital variables.
- Bypass of HART command;
- Standard Field Diagnostics (FD).

Description

The TBWH is a HSE WIO transducer block used to map each one of the HART and *Wireless*HART field devices. The tag of the **TBWH** block is very important and should be configured with the tag6 of the field device that will be mapped. Can be instantiated as many **TBWH** blocks, as there are the HART and *Wireless*HART⁷ field devices.

Update mechanism of the field device configuration parameter

When the *Wireless*HART gateway detects the field device configuration changes and the changed variable is mapped in this block, the **ST_REV** parameter value is automatically incremented and can generate an event⁸.

Mechanism of the HART Bypass command

The bypass area can be used to send a HART command to the field device. A client, for example an Asset Management application, can benefit from this mechanism.

Since the status of **HART_COM_STAT** parameter is **Idle**, the HART command can be written in the **HART_CMD** parameter. After writing, the status of **HART_COM_STAT** parameter will change to **Busy**⁹ and the command will be sent to device that will process it and will return a corresponding response. The response to the HART command will be updated in the **HART_RESP** parameter. In addition, an event¹⁰ will be reported on the HSE network and the status of **HART_COM_STAT** parameter will return to **Idle**.

To access a field device response, the client may choose one of the methods below:

- a) Read the available response directly from the HART_RESP parameter. Given the described bypass mechanism, we may conclude that this is only possible after the transition of HART_COM_STAT parameter value from Busy to Idle
- b) Subscription of the event that will be automatically reported on the HSE network.

Diagnostic and troubleshooting

The BLOCK_ERR parameter may indicate Block configuration due to the following problems:

- A field device there is not in the Live List of the TBHG block with Long Tag equals to the tag of the TBWH block.
- The HART_EXPD_DEV_INFO parameter is not parameterized as indicated by the HART_ACTL_DEV_INFO parameter.

The status of the digital HART variables indicates events, for example, failure in the communication with the field device and failure in the device sensor. The table below lists four conditions and their hierarchical status¹¹ to the HART variables

⁵ HART_PV, HART_SV, HART_TV, HART_QV, HART_5V, HART_6V, HART_7V, HART_8V and PRIMARY_VALUE parameters.

⁶ The Long Tag has been introduced in the HART protocol from version 6. Knowing this, the field device tag is the Long Tag of HART field device for all devices that implement version 6 or 7 of the HART protocol. Otherwise the field device tag will be considered equal to the Message of the HART device. The Message is defined by the HART protocol and is 32 characters long.

⁷ See Section 11 – Technical Specifications of DFI302 manual for further about number of supported devices.

⁸ See UPDATE_EVT parameter.

⁹ This prevents the client writing another command before receiving the response for the newly written command.

See HART_IND parameter. This parameter also has the received response for the HART command.

If two or more conditions are present simultaneously, the lower hierarchical condition is used to determine the status. For example, if conditions 2 and 3 are present, the status is determined by the condition 2.

HIERARCHY OF CONDITION	DESCRIPTION OF THE CONDITION	STATUS (HART_PV A HART_8V)
1	Not commissioned	Bad:Out of Service
2	-Commissioned -HART_BAD_TMOUT different from zero -Elapsed time since the last update greater than HART_BAD_TMOUT	Bad:No Communication Last Usable Value
3	- Commissioned -HART_UNC_TMOUT different from zero - Elapsed time since the last update greater than HART_UNC_TMOUT	Uncertain:Last Usable Value
4	- Commissioned -There was no timeout.	Status conversion from HART to FF

Indication of Mismatch in the Field Diagnostics

The indication of *Mismatch* in the *Field Diagnostics* may occur due to the following situations:

- Mismatch between field device tag and **TBWH** block tag, that is done regardless of mode;
- Mismatch between HART_EXPD_DEV_INFO and HART_ACTL_DEV_INFO that is done only in Auto (Automatic) mode.

Definition of Field Diagnostics for the WirelessHART Gateway

FD		HART_D	AG_MAP			Defa	ult	
Bit	Bit Index Value Descrip- tion		Value	Enumeration String	FD_MAINT_ MAP	FD_OFFSPEC _MAP	FD_CHECK _MAP	FD_FAIL_M AP
0	FD_0	1	253	"Maintenance worker is checking"			х	
1	FD_1	2	1	"Primary Variable Out-of-Limits"		Х		
2	FD_2	3	2	"Non-Prim Variable Out-of-Limits"		Х		
3	FD_3	4	6	"HART Cold Start"			Х	
4	FD_4	5	7	"HART Configuration Changed"				
5	FD_5	6	8	"HART Device Malfunction"				Х
6	FD_6	7	57	"HART Maintenance Required"	Х			
7	FD_7	8	59	"Critical Power Failure"	Х		Х	
8	FD_8	9	73	"Simulation Active"			Х	
9	FD_9	10	77	"Voltage Conditions out of Range"		Х		
10	FD_10	11	78	"Environmental Cond. out of Range"		Х		
11	FD_11	12	105	"Capacity denied"		Х		
12	FD_12	13	240	"Electronics or memory Defect"				Х
13	FD_13	14	252	"Mismatch"				
14	FD_14	15	255	"Reserved for FF use"				
15	FD_15	16	255	"Reserved for FF use"				
16	FD_16	17	0	"Unassigned"				
17	FD_17	18	0	"Unassigned"				
18	FD_18	19	0	"Unassigned"				
19	FD_19	20	0	"Unassigned"				
20	FD_20	21	0	"Unassigned"				
21	FD_21	22	0	"Unassigned"				
22	FD_22	23	0	"Unassigned"				
23	FD_23	24	0	"Unassigned"				
24	FD_24	25	0	"Unassigned"				
25	FD_25	26	0	"Unassigned"				
26	FD_26	27	0	"Unassigned"				
27	FD_27	28	0	"Unassigned"				
28	FD_28	29	0	"Unassigned"				
29	FD_29	30	0	"Unassigned"				
30	FD_30	31	0	"Unassigned"				
31	FD_31	32	0	"Unassigned"				
				Valor (Hex)	0x00000040	0x00000e06	0x00000189	0x00001020

Diagnostic and troubleshooting

- 1. BLOCK_ERR. Block configuration: this indication may occur due to the following problems:
- Block is not associated to a position in the TBHG.
- It was not possible to allocate VAR_NAMEs to this block.

See in the following table the description of the **TBWH** block parameters.

ldx	Type/ View	Parameter	Data type	Valid Range	Initial Value	Units	Store/ Other	Description
1	1,2,3,4	ST_REV	Unsigned16		0	None	S/RO	
2		TAG_DESC STRATEGY	OctString(32)		Spaces	Na	S	
3	4		Unsigned16		255	None	S	
4	4	ALERT_KEY	Unsigned8		1	None	S	
5	1,3	MODE_BLK	DS-69		Auto	Na	S	
6	1,3	BLOCK_ERR	Bitstring(2)			E	D/RO	
7		UPDATE_EVT	DS-73				D	
8		BLOCK_ALM	DS-72				D	
9		TRANSDUCER_DIRECT ORY	Unsigned16				N / RO	It is used to select several Transducer Blocks.
10	1,2,3,4	TRANSDUCER_TYPE	Unsigned16		202		N/RO	Indicates the type of Transducer according to its class.
11	2,4	TRANSDUCER_TYPE_V ER	Unsigned16				N / RO	The version of the transducer identified by TRANSDUCERT_TYPE in the form 0xAABB where AA is the major revision of the transducer specification on which the transducer is based, and BB is a revision number assigned and controlled by the manufacturer of the device.
12	1,3	XD_ERROR	Unsigned8				D/RO	It is used to indicate calibration status.
13		COLLECTION_DIRECTO RY	Unsigned16				N / RO	Specifies the number of transducer index into Transducer Block.
14	2	HART_EXPD_DEV_INFO	DS-175				S	Expected HART Device information for use by asset managing host and configuration host for DD location and display validity in off-line mode
15	2	HART_ACTL_DEV_INFO	DS-175				S, RO	Actual HART Device information for use by asset managing host and configuration host for DD location and display validity in online mode.
16		HART_CMD	OctetString [256]		Null	Na	D	HART digital protocol command buffer for use by asset managing host. No need for user access.
17		HART_RESP	OctetString [256]		Null	Na	D, RO	HART digital protocol response buffer for use by asset managing host. No need for user access.
18		HART_IND	DS-184				D, RO	HART response available indicator. An alert object for notifying an asset managing host.
19		HART_COM_STAT	Unsigned8	0:Idle 1:Busy	1		D, RO	HART communication status (0:Idle, 1:Busy)
20	4	HART_IND_PRI	Unsigned8	0 to 2	0	Na	S	Priority of response indication.
21	2	HART_DIAG_MAP	Unsigned8[3 2]				s	An array of 1-octet enumeration with 32 elements, one for each bit, index 1 for bit-0 through index 32 for bit-31, defining the mapping between HART diagnostics status flags and the FF Field Diagnostics parameters specified in FF-912.

ldx	Type/ View	Parameter	Data type	Valid Range	Initial Value	Units	Store/ Other	Description
22	1	HART_TSTAMP	Time Value				D, RO	Time stamp of the last update of digital HART variables.
23	4	HART_BAD_TMOUT	Unsigned16		0	s	S	Time interval, in seconds, to wait for an update of the digital HART variables before changing the status to Bad/No_Comm. A zero value means "do not timeout".
24	4	HART_UNC_TMOUT	Unsigned16		0	S	S	Time interval, in seconds, to wait for an update of the digital HART variables before changing the status to Unc/Last Usable Value. A zero value means "do not timeout".
25	4	HART_VAR_CODES8	Unsigned8[8]		255		S	HART Device Variable Code for process data variables (HART_PV, HART_SV, HART_TV, HART_4V, HART_5V, HART_6V, HART_7V, HART_8V). Value 250 for an element from this array means no HART variable is associated with the related process data variable.
26	1	HART_PV	DS-65			VAR_U NITS9.1	D, RO	For wired HART, this is the converted 4-20mA value. For <i>Wireless</i> HART™, this is not applicable.
27	1	HART_SV	DS-65		0 Bad:Not connect ed	VAR_U NITS9.2	D, RO	Digital form of the HART secondary variable. Status of "Bad/Not_Connected" if unused.
28	1	HART_TV	DS-65		0 Bad:Not connect ed	VAR_U NITS9.3	D, RO	Digital form of the HART tertiary variable. Status of "Bad/Not_Connected" if unused.
29	1	HART_QV	DS-65		0 Bad:Not connect ed	VAR_U NITS9.4	D, RO	Digital form of the HART 4th variable. Status of "Bad/Not_Connected" if unused.
30	1	HART_5V	DS-65		0 Bad:Not connect ed	VAR_U NITS9.5	D, RO	Digital form of the HART 5th variable. Status of "Bad/Not_Connected" if unused.
31	1	HART_6V	DS-65		0 Bad:Not connect ed	VAR_U NITS9.6	D, RO	Digital form of the HART 6th variable. Status of "Bad/Not_Connected" if unused.
32	1	HART_7V	DS-65		0 Bad:Not connect ed	VAR_U NITS9.7	D, RO	Digital form of the HART 7th variable. Status of "Bad/Not_Connected" if unused.
33	1	HART_8V	DS-65		0 Bad:Not connect ed	VAR_U NITS9.8	D, RO	Digital form of the HART 8th variable. Status of "Bad/Not_Connected" if unused.
34	1	ANALOG_VALUE	DS-65		0 Bad:Not connect ed	VAR_U NITS9.9	D, RO	For wired HART, this is the converted 4-20mA value to engineering unit based on HART_LRL and HART_URL. For <i>Wireless</i> HART TM , this is not applicable.

ldx	Type/ View	Parameter	Data type	Valid Range	Initial Value	Units	Store/ Other	Description
35	4	VAR_UNITS9	Unsigned16[9]			E	S, RO	This is an array of the Fieldbus Foundation engineering units' codes corresponding to the HART engineering units' codes for each of up to 9 variables. VAR_UNITS9.1 through VAR_UNITS9.8 are the variable units for HART_PV through HART_8V, and VAR_UNITS9.9 is the variable unit for ANALOG_VALUE.
36		VAR_NAMES9	VisibleString[9][32]		blanks		S	This is an array of the names of the HART device variables. VAR_NAMES9.1 through VAR_NAMES9.8 are the variable names for HART_PV through HART_8V, and VAR_NAMES9.9 is the variable name for ANALOG_VALUE.
37	4	VAR_DIR9	Unsigned8[9]	0:Undefined 1:Input 2:Output	0		S	This is an array of 1-octet enumeration with 9 elements, one for each HART device variables, defining the direction of each variable.
38	2	HART_URL	Float				S, RO	HART device upper range limit value obtained from the device. Used for the 20mA value of 4 to 20mA conversion. Read-only in transducer block. User must change via HART configuration tool.
39	2	HART_LRL	Float				S, RO	HART device lower range limit value obtained from the device. Used for the 4mA value of 4 to 20mA conversion. Read-only in transducer block. User must change via HART configuration tool.
40	2	IO_THRESHOLD	DS-179				S	Thresholds of over-range and under-range bad and uncertain status indications on input (ANALOG_VALUE status) and over-range and under-range limits on output for the 4-20mA signal of the HART device.
41	4	ACK_OPTION	Bitstring(2)	0:Auto Ack Disabled 1:Auto Ack Enabled		E	S	Selection of whether alarms associated with the block will be automatically acknowledged.
42	4	FD_VER	Unsigned16			Na	S, RO	A parameter equal to the value of the major version of the Field Diagnostics specification that this device was designed to.
43	1,3	FD_FAIL_ACTIVE	BitString[4]			Na	D, RO	This parameter reflects the error conditions that are being detected as active as selected for this category. It is a bit string, so that multiple conditions may be shown.
44	1,3	FD_OFFSPEC_ACTIVE	BitString[4]			Na	D, RO	This parameter reflects the error conditions that are being detected as active as selected for this category. It is a bit string, so that multiple conditions may be shown.

ldx	Type/ View	Parameter	Data type	Valid Range	Initial Value	Units	Store/ Other	Description
45	1,3	FD_MAINT_ACTIVE	BitString[4]			Na	D, RO	This parameter reflects the error conditions that are being detected as active as selected for this category. It is a bit string, so that multiple conditions may be shown.
46	1,3	FD_CHECK_ACTIVE	BitString[4]			Na	D, RO	This parameter reflects the error conditions that are being detected as active as selected for this category. It is a bit string, so that multiple conditions may be shown.
47	4	FD_FAIL_MAP	BitString[4]			Na	S	This parameter maps conditions to be detected as active for this alarm category. Thus the same condition may be active in all, some, or none of the 4 alarm categories.
48	4	FD_OFFSPEC_MAP	BitString[4]			Na	S	This parameter maps conditions to be detected as active for this alarm category. Thus the same condition may be active in all, some, or none of the 4 alarm categories.
49	4	FD_MAINT_MAP	BitString[4]			Na	S	This parameter maps conditions to be detected as active for this alarm category. Thus the same condition may be active in all, some, or none of the 4 alarm categories.
50	4	FD_CHECK_MAP	BitString[4]			Na	S	This parameter maps conditions to be detected as active for this alarm category. Thus the same condition may be active in all, some, or none of the 4 alarm categories.
51	4	FD_FAIL_MASK	BitString[4]			Na	S	This parameter allows the user to suppress any single or multiple conditions that are active, in this category, from being broadcast to the host through the alarm parameter. A bit equal to '1' will mask i.e. inhibit the broadcast of a condition, and a bit equal to '0' will unmask i.e. allow broadcast of a condition.
52	4	FD_OFFSPEC_MASK	BitString[4]			Na	S	This parameter allows the user to suppress any single or multiple conditions that are active, in this category, from being broadcast to the host through the alarm parameter. A bit equal to '1' will mask i.e. inhibit the broadcast of a condition, and a bit equal to '0' will unmask i.e. allow broadcast of a condition.
53	4	FD_MAINT_MASK	BitString[4]			Na	s	This parameter allows the user to suppress any single or multiple conditions that are active, in this category, from being broadcast to the host through the alarm parameter. A bit equal to '1' will mask i.e. inhibit the broadcast of a condition, and a bit equal to '0' will unmask i.e. allow broadcast of a condition.

ldx	Type/ View	Parameter	Data type	Valid Range	Initial Value	Units	Store/ Other	Description
54	4	FD_CHECK_MASK	BitString[4]			Na	S	This parameter allows the user to suppress any single or multiple conditions that are active, in this category, from being broadcast to the host through the alarm parameter. A bit equal to '1' will mask i.e. inhibit the broadcast of a condition, and a bit equal to '0' will unmask i.e. allow broadcast of a condition.
55		FD_FAIL_ALM	DS-87			Na	D	This parameter is used primarily to broadcast a change in the associated active conditions, which are not masked, for this alarm category to a Host System.
56		FD_OFFSPEC_ALM	DS-87			Na	D	This parameter is used primarily to broadcast a change in the associated active conditions, which are not masked, for this alarm category to a Host System.
57		FD_MAINT_ALM	DS-87			Na	D	This parameter is used primarily to broadcast a change in the associated active conditions, which are not masked, for this alarm category to a Host System.
58		FD_CHECK_ALM	DS-87			Na	D	This parameter is used primarily to broadcast a change in the associated active conditions, which are not masked, for this alarm category to a Host System.
59	4	FD_FAIL_PRI	Unsigned8	0-15	0	Na	S	This parameter allows the user to specify the priority of this alarm category.
60	4	FD_OFFSPEC_PRI	Unsigned8	0-15	0	Na	s	This parameter allows the user to specify the priority of this alarm category.
61	4	FD_MAINT_PRI	Unsigned8	0-15	0	Na	s	This parameter allows the user to specify the priority of this alarm category.
62	4	FD_CHECK_PRI	Unsigned8	0-15	0	Na	s	This parameter allows the user to specify the priority of this alarm category.
63	3	FD_SIMULATE	DS-89		disabled	Na	D	This parameter allows the conditions to be manually supplied when simulation is enabled. When simulation is disabled both the diagnostic simulate value and the diagnostic value tracks the actual conditions. The simulate jumper is required for simulation to be enabled and while simulation is enabled the recommended action will show that simulation is active.

ldx	Type/ View	Parameter	Data type	Valid Range	Initial Value	Units	Store/ Other	Description
64	1,3	FD_RECOMMEN_ACT	Unsigned16	0-Not Initialized 1-No Action Required 2-Check primary sensor range 3- Check non- primary sensor range 4No Action Required 5No Action Required 6- Check primary sensor 7-HART device requires maintenance 8-Check battery charge 9No Action Required 10-Check power supply voltage 11-Check environment conditions 12-Check HART device specification 13-Replace the electronics of HART device	0	Na	D, RO	This parameter is a device enumerated summarization of the most severe condition or conditions detected. The DD help should describe by enumerated action, what should be done to alleviate the condition or conditions. 0 is defined as Not Action Required, all others defined by manuf.
65	4	HART_BURST_CTRL_1	DS-183				S, RO	Data structure that describes burst control information configured in a HART device.
66	4	HART_BURST_CTRL_2	DS-183				S, RO	Data structure that describes burst control information configured in a HART device.
67	4	HART_BURST_CTRL_3	DS-183				S, RO	Data structure that describes burst control information configured in a HART device.
68	4	HART_BURST_CTRL_4	DS-183				S, RO	Data structure that describes burst control information configured in a HART device.
69		LOCAL_MOD_MAP	Unsigned8	0 to 99, 255-non mapped	255	Na	S	Define the Modbus addresses.

Legend: E – Enumerated parameter; Na – Dimensionless parameter; RO – Read only; D – dynamic; N – non-volatile; S - Static Gray Background Line: Custom Parameters

Input Function Blocks

AI - Analog Input

Overview

The Analog Input block takes the input data from the Transducer block, selected by channel number, and makes it available to other function blocks at its output.

Description

The AI block is connected to the transducer block through the CHANNEL parameter that must match with the following parameter in the transducer block:

- SENSOR_TRANSDUCER_NUMBER parameter for the TT302
- TERMINAL NUMBER parameter for the IF302

The CHANNEL parameter must be set to 1 (one) if the AI block is running in the LD302, and no configuration is necessary in the transducer block to connect it to the AI block.

Transducer scaling (XD_SCALE) is applied to the value from the channel to produce the FIELD_VAL in percent. The XD_SCALE engineering units code and range must be suitable to the sensor of transducer block connected to the Al block, otherwise a block alarm indicating configuration error will be generated.

The L_TYPE parameter determines how the values passed by the transducer block will be used into the block. The options are:

- Direct the transducer value is passed directly to the PV. Therefore OUT_SCALE is useless.
- Indirect the PV value is the FIELD_VAL value converted to the OUT_SCALE.
- Indirect with Square Root the PV value is square root of the FIELD_VAL converted to the OUT SCALE.

PV and OUT parameters always have identical scaling based on OUT_SCALE.

The LOW_CUT parameter is an optional characteristic that may be used to eliminate noise near zero for a flow sensor. The LOW_CUT parameter has a corresponding "Low cutoff" option in the IO_OPTS bit string. If the option bit is true, any calculated output below the low cutoff value (LOW_CUT) will be changed to zero.

BLOCK ERR

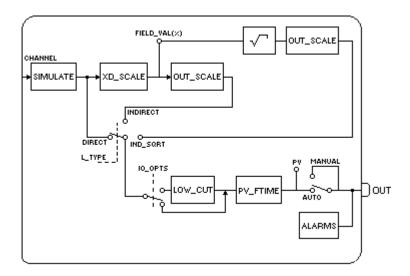
The BLOCK_ERR of the AI block will reflect the following causes:

- Block Configuration Error the configuration error occurs when one or more of the following situations occur:
 - When the CHANNEL or L_TYPE parameters have an invalid value;
 - When the XD_SCALE does not have a suitable engineering unit or range for the sensor of transducer block.
 - When it is not compatible the CHANNEL parameter and HC configuration (DFI302).
- Simulate Active When the Simulate is active.
- Input Failure I/O module failure (DFI302)
- Out of Service When the block is in O/S mode.

Supported Modes

O/S, Man and Auto.

Status Handling


The AI block does not support cascade path. Then, the output status has not a cascade sub-status.

When the OUT value exceeds the OUT_SCALE range and no worse condition exists in the block then the OUT status will be "uncertain, EU Range Violation".

The following options from STATUS_OPTS apply, where Limited refers to the sensor limits: (see in the Function block options to more details about each option)

- Propagate Fault Forward
- Uncertain if Limited
- BAD if Limited
- Uncertain if Man mode

Schematic

ldx	Parameter	DataType (length)	Valid Range/ Options	Default Value	Units	Store/ Mode	Description
1	ST_REV	Unsigned16		0	None	S/RO	
2	TAG_DESC	OctString(32)		Spaces	Na	S	
3	STRATEGY	Unsigned16		0	None	S	
4	ALERT_KEY	Unsigned8	1 to 255	0	None	S	
5	MODE_BLK	DS-69		O/S	Na	S	See Mode Parameter.
6	BLOCK_ERR	Bitstring(2)			E	D/RO	
7	PV	DS-65			PV	D/RO	Process analog value for use in executing the function.
8	OUT	DS-65	OUT_SCALE +/- 10%		OUT	D / Man	The analog value calculated as a result of executing the function.
9	SIMULATE	DS-82	1: Disable ; 2: Active are the Enable/Disable options.	Disable		D	Allows the input value to be manually supplied when simulate is enabled. In this case, the simulate value and status will be the PV value.
10	XD_SCALE	DS-68	Depends on the device type. See the manual. See the corresponding manual for details.	Depends on the device type. See description item for details.	XD	S / Man	The high and low scale values, to transducer for a specified channel. The Default value for each Smar device is showed below: DFI302: 0 to 100 [%]
11	OUT_SCALE	DS-68		0-100%	OUT	S / Man	The high and low scale values to the OUT parameter.
12	GRANT_DENY	DS-70		0	na	D	
13	IO_OPTS	Bitstring(2)	See Block Options	0	na	S / O/S	See Block Options
14	STATUS_OPTS	Bitstring(2)	See Block Options	0	Na	S / O/S	See Block Options
15	CHANNEL	Unsigned16		0	None	s / o/s	For more details about the configuration of this parameter, see Chapter 1 "CHANNEL Configuration".
16	L_TYPE	Unsigned8	1: Direct 2: Indirect 3: Indirect Square Root	0	E	S / Man	Determines how the values passed by the transducer block may be used: Direct: Directly Indirect: with a percent Indirect Sq Root: with a percent and with square root
17	LOW_CUT	Float	Non-Negative	0	OUT	s	A value of zero percent of scale is used in block processing if the transducer value falls below this limit, in % of scale. This feature may be used to eliminate noise near zero for a flow sensor.

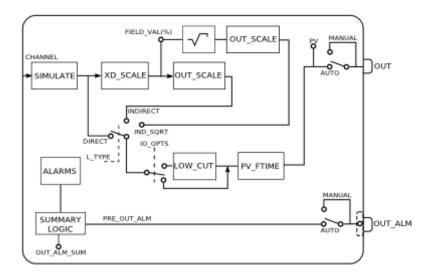
ldx	Parameter	DataType (length)	Valid Range/ Options	Default Value	Units	Store/ Mode	Description
18	PV_FTIME	Float	Non-Negative	0	Sec	s	Time constant of a single exponential filter for the PV, in seconds.
19	FIELD_VAL	DS-65			%	D/RO	Raw value of the field device in percent of the PV range, with a status reflecting the Transducer condition, before signal characterization (L_TYPE) or filtering (PV_FTIME).
20	UPDATE_EVT	DS-73			Na	D	This alert is generated by any change to the static data.
21	BLOCK_ALM	DS-72			Na	D	The block alarm is used for all configuration, hardware, connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.
22	ALARM_SUM	DS-74	See Block Options		Na	s	The current alert status, unacknowledged states, unreported states, and disabled states of the alarms associated with the function block.
23	ACK_OPTION	Bitstring(2)	0: Auto ACK Disable 1: Auto ACK Enable	0	Na	S	Selection of whether alarms associated with the block will be automatically acknowledged
24	ALARM_HYS	Float	0 to 50 %	0.5%	%	S	Alarm hysteresis parameter. In order to clear the alarm the amount the PV must return within the alarm limit plus hysteresis.
25	HI_HI_PRI	Unsigned8	0 to 15			S	Priority of the high high alarm.
26	HI_HI_LIM	Float	OUT_SCALE, +INF	+INF	OUT	S	The setting for high high alarm in engineering units.
27	HI_PRI	Unsigned8	0 to 15			S	Priority of the high alarm.
28	HI_LIM	Float	OUT_SCALE, +INF	+INF	OUT	S	The setting for high alarm in engineering units.
29	LO_PRI	Unsigned8	0 to 15			S	Priority of the low alarm.
30	LO_LIM	Float	OUT_SCALE, - INF	-INF	OUT	s	The setting for low alarm in engineering units.
31	LO_LO_PRI	Unsigned8	0 to 15			S	Priority of the low low alarm.
32	LO_LO_LIM	Float	OUT_SCALE, - INF	-INF	OUT	S	The setting for low low alarm in engineering units.
33	HI_HI_ALM	DS-71			OUT	D	The status for high high alarm and its associated time stamp.
34	HI_ALM	DS-71			OUT	D	The status for high alarm and its associated time stamp.
35	LO_ALM	DS-71			OUT	D	The status for low alarm and its associated time stamp.
36	LO_LO_ALM	DS-71			OUT	D	The status for low low alarm and its associated time stamp.

Legend: E – Enumerated parameter; Na – Dimensionless parameter; RO – Read only; D – dynamic; N – non-volatile; S - static Gray Background Line: Default Parameters of Syscon

If DIAG.BEHAVIOR parameter is "Adapted":

The default value of CHANNEL is the lowest available number.

The default value of L_TYPE is direct.


The required mode for writing is the Actual mode for the OUT parameter, regardless the Target mode.

EAI – Enhanced Analog Input

Overview

The Enhanced Analog Input block has all the parameters of the AI block. It has an additional feature for alarm output (OUT_ALM parameter) to be used in control logic.

Schematic

Description

The EAI block has the additional feature of OUT_ALM alarm output that indicates some alarm condition established. The block has 4 static alarms configured for xx_LIM parameters (where xx indicates one of the four types of block alarm: HI, LO, HI_HI and LO_LO).

The alarm type generated for OUT_ALM output is chosen through OUT_ALM_SUM parameter. In this case it is allowed to select the following alarm options:

OUT_ALM_SUM		ALARM C	ONDITIONS	S
	HI_HI_ALM	HI_ALM	LO_ALM	LO_LO_ALM
ANY	✓	✓	✓	✓
LOWs			✓	✓
HIGHs	✓	✓		
LEVEL1		✓	✓	
LEVEL2	✓			✓
LO_LO				✓
LO			✓	
HI		✓		
HI_HI	✓			
NONE				

The PRE_OUT_ALM parameter generates internally a 1 logic value when the alarm condition chosen in OUT_ALM_SUM is established.

Optionally the INVERT_OPTS parameter allows inverting the TRUE logic value of the OUT_ALM output from 1 to 0.

BLOCK ERR

The BLOCK_ERR of the block will reflect the following causes: Out of Service – occurs when the block is in O/S mode.

Supported Modes

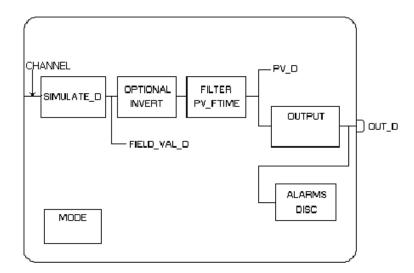
O/S, MAN and AUTO

Modes

Only in Out of Service mode is possible to configure INVERT_OPTS in two operation modes.

The manual mode disconnects the OUT_ALM output of the algorithm and it allows manual substitution of the alarm. In automatic mode the OUT_ALM output is PRE_OUT_ALM, verifying the option of TRUE logic value configured in INVERT_OPTS.

Index	Parameter	Data Type	Valid Range	Initial Value	Storage / Access	Views	Description
37	PRE_OUT_ALM	DS_66			D/RO	1, 3	This parameter indicates if exist alarm and it is available when the block is in <i>Auto</i> mode in OUT_ALM output.
38	OUT_ALM	DS_66		0	D/MAN	1, 3	Discrete output that indicates if the block is in alarm condition (value 1) or it is not in alarm condition (value 0).
39	OUT_ALM_SUM	Unsigned 8	0: NONE 1: LO_LO 2: LO 3: LOWs 4: HI 6: LEVEL1 8: HI_HI 9: LEVEL2 12: HIGHS 15: ANY	0	S//MAN	4	Specify the alarm conditions that should assume the <i>True</i> value for the OUT_ALM output assume <i>True</i> value.
40	INVERT_OPTS	Bitstring(2)		0	S//MAN	4	Parameter to invert the logic value corresponding to output of <i>True</i> value.


Legend: E - Enumerated parameter; Na - Dimensionless parameter; RO - Read only; D - Dynamic; N - non-volatile; S - static

DI - Discrete Input

Overview

The DI block takes the manufacturer's discrete input data, selected by channel number, and makes it available to other function blocks at its output.

Schematic

Description

The FIELD_VAL_D shows the true on/off state of the hardware, using XD_STATE.

The block output can be inverted using the "Invert" option of the IO_OPTS parameter. If "Invert" is selected, then a non-zero field value would result in an output equal to zero (0). And, a zero field value would result in an output equal to one (1).

PV_FTIME may be used to set the time that the hardware must be in one state before it gets passed to the PV_D. The PV_D is always the value that the block will place in OUT_D if the mode is Auto. If Man is allowed, someone may write a value to OUT_D. The PV_D and the OUT_D always have identical scaling. OUT_STATE provides scaling for PV_D.

BLOCK_ERR

The BLOCK_ERR of the DI block will reflect the following causes:

- Block Configuration Error the configuration error occurs when one or more of the following situations occur:
 - o When the CHANNEL parameter has an invalid value;
 - When it is not compatible the CHANNEL parameter and HC configuration (DFI302).
- Simulate Active When the Simulate is active;
- Input Failure I/O module failure (DFI302);
- Out of Service When the block is in O/S mode.

Supported Modes

O/S, Man, and Auto.

Status Handling

The DI block does not support cascade path. Then, the output status has not a cascade sub-status. The following options from STATUS_OPTS apply: Propagate Fault Forward

ldx	Parameter	DataType (length)	Valid Range/ Options	Default Value	Units	Store/ Mode	Description
1	ST_REV	Unsigned16		0	None	S/RO	
2	TAG_DESC	OctString(32)		Spaces	Na	S	
3	STRATEGY	Unsigned16		0	None	S	
4	ALERT_KEY	Unsigned8	1 to 255	0	None	S	
5	MODE_BLK	DS-69		O/S	Na	S	See Mode Parameter
6	BLOCK_ERR	Bitstring(2)			Е	D/RO	The primary discrete value for use in
7	PV_D	DS-66			PV	D/RO	executing the function, or a process value associated with it.
8	OUT_D	DS-66	OUT_STATE		OUT	D / Man	The primary discrete value calculated as a result of executing the function.
9	SIMULATE_D	DS-83	1: Disable ; 2: Active are the Enable/Disable options.	Disable		D	Allows the transducer discrete input or output to the block to be manually supplied when simulate is enabled. When simulation is disabled, the simulate value and status track the actual value and status.
10	XD_STATE	Unsigned16		0	XD	S	Index to the text describing the states of a discrete for the value obtained from the transducer.
11	OUT_STATE	Unsigned16		0	OUT	S	Index to the text describing the states of a discrete output.
12	GRANT_DENY	DS-70		0	Na	D	
13	IO_OPTS	Bitstring(2)	See Block Options	0	Na	S / O/S	See Block Options
14	STATUS_OPTS	Bitstring(2)	See Block Options	0	Na	S / O/S	See Block Options
15	CHANNEL	Unsigned16		0	None	s / o/s	For more details about the configuration of this parameter, see Chapter 1 "CHANNEL Configuration".
16	PV_FTIME	Float	Non-Negative	0	Sec	s	Time constant of a single exponential filter for the PV, in seconds.
17	FIELD_VAL_D	DS-66			On/Off	D/RO	Raw value of the field device discrete input, with a status reflecting the Transducer condition.
18	UPDATE_EVT	DS-73			Na	D	This alert is generated by any change to the static data.
19	BLOCK_ALM	DS-72			Na	D	The block alarm is used for all configuration, hardware, connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.
20	ALARM_SUM	DS-74	See Block Options		Na	S	The current alert status, unacknowledged states, unreported states, and disabled states of the alarms associated with the function block.
21	ACK_OPTION	Bitstring(2)	0: Auto ACK Disable 1: Auto ACK Enable	0	Na	S	Selection of whether alarms associated with the block will be automatically acknowledged
22	DISC_PRI	Unsigned8	0 to 15	0		S	Priority of the discrete alarm.
23	DISC_LIM	Unsigned8	PV_STATE	0	PV	S	State of discrete input which will generate an alarm.
24	DISC_ALM	DS-72			PV	D	The status and time stamp associated with the discrete alarm.

Legend: E – Enumerated parameter; Na – Dimensionless parameter; RO – Read only; D – dynamic; N – non-volatile; S - static

Gray Background Line: Default Parameters of Syscon

MAI - Multiple Analog Input

Description

The MAI block makes available for the FOUNDATION Fieldbus network eight analog variables of the I/O subsystem through its eight output parameters OUT_1 through OUT_8.

For DFI working with Analog Input, the 4-20mA or 1-5V range must be worked. In this case, the output values are in percent from 0 to 100%. If it is necessary to work in another configuration, the AI block must be used.

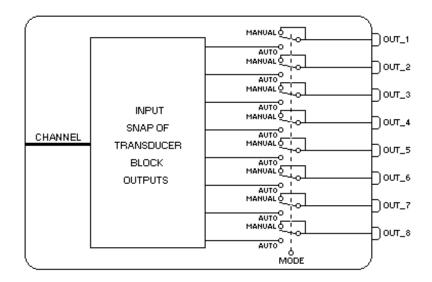
Status indication in the output parameters OUT_x depends on the I/O subsystem and the transducer block, that is manufacturer specific. For example, if there is individual detection of sensor failure, it will be indicated in the status of related OUT_x parameter. Problem in the interface to the I/O subsystem will be indicated in the status of all OUT_x as BAD – Device Failure.

BLOCK ERR

The BLOCK_ERR of the MAI block will reflect the following causes:

- Other the number of MDI, MDO, MAI and MAO blocks or the device tag in FB700 is different from LC700;
- Block Configuration Error the configuration error occurs when the configuration of the CHANNEL parameter is not compatible with the HC (DFI302);
- Out of Service When the block is in O/S mode.

Status Handling


The status of OUT_x will be the following if the BLOCK_ERR indicates:

- Other Bad : Configuration Error
 Input failure Bad : Device Failure
- Power up Bad : Device Failure

Supported Modes

O/S, Man and Auto.

Schematic

ldx	Parameter	DataType (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
1	ST_REV	Unsigned16		0	None	S/RO	
2	TAG_DESC	OctString(32)		Spaces	Na	S	
3	STRATEGY	Unsigned16		0	None	S	
4	ALERT_KEY	Unsigned8	1 to 255	0	None	S	
5	MODE_BLK	DS-69		O/S	Na	S	See Mode Parameter
6	BLOCK_ERR	Bitstring(2)			E	D/RO	
7	CHANNEL	Unsigned16		0	None	S / O/S	For more details about the configuration of this parameter, see Chapter 1 "CHANNEL Configuration".
8	OUT_1	DS-65			%	D / Man	Numbered analog input 1.
9	OUT_2	DS-65			%	D / Man	Numbered analog input 2.
10	OUT_3	DS-65			%	D / Man	Numbered analog input 3.
11	OUT_4	DS-65			%	D / Man	Numbered analog input 4.
12	OUT_5	DS-65			%	D / Man	Numbered analog input 5.
13	OUT_6	DS-65			%	D / Man	Numbered analog input 6.
14	OUT_7	DS-65			%	D / Man	Numbered analog input 7.
15	OUT_8	DS-65			%	D / Man	Numbered analog input 8.
16	UPDATE_EVT	DS-73			Na	D	
17	BLOCK_ALM	DS-72			Na	D	

Legend: E - Enumerated parameter; Na - Dimensionless parameter; RO - Read only; D - dynamic; N - non-volatile; S - static Gray Background Line: Default Parameters of Syscon

If DIAG.BEHAVIOR parameter is "Adapted":
The required mode for writing is the Actual mode for the parameters from OUT_1 to OUT_8, regardless the Target mode.

MDI - Multiple Discrete Input

Description

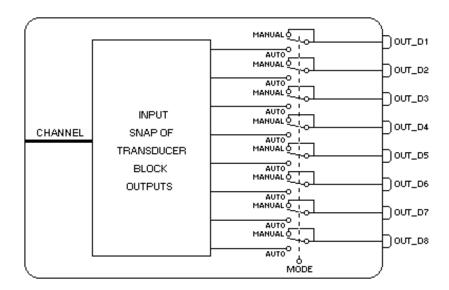
The MDI block makes available for the FOUNDATION Fieldbus network eight discrete variables of the I/O subsystem through its eight output parameters OUT_D1 through OUT_D8. Status indication in the output parameters OUT_Dx depends on the I/O subsystem and the transducer block, that is manufacturer specific. For example, if there is individual detection of sensor failure, it will be indicated in the status of related OUT_Dx parameter. Problem in the interface to the I/O subsystem will be indicated in the status of all OUT_Dx as BAD – Device Failure.

BLOCK_ERR

The BLOCK_ERR of the MDI block will reflect the following causes:

- Block Configuration Error the configuration error occurs when the configuration of CHANNEL parameter and HC block is not compatible (DFI302);
- Out of Service When the block is in O/S mode.

Status Handling


The status of OUT_Dx will be the following if the BLOCK_ERR indicates:

Other – Bad : Configuration Error
 Input failure – Bad : Device Failure
 Power up – Bad : Device Failure

Supported Modes

O/S, Man and Auto.

Schematic

ldx	Parameter	DataType (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
1	ST_REV	Unsigned16		0	None	S/RO	
2	TAG_DESC	OctString(32)		Spaces	Na	S	
3	STRATEGY	Unsigned16		0	None	S	
4	ALERT_KEY	Unsigned8	1 to 255	0	None	S	
5	MODE_BLK	DS-69		O/S	Na	s	See Mode Parameter
6	BLOCK_ERR	Bitstring(2)			E	D/RO	
7	CHANNEL	Unsigned16		0	None	s / o/s	For more details about the configuration of this parameter, see Chapter 1 "CHANNEL Configuration".
8	OUT_D1	DS-66				D / Man	Numbered discrete input 1.
9	OUT_D2	DS-66				D / Man	Numbered discrete input 2.
10	OUT_D3	DS-66				D / Man	Numbered discrete input 3.
11	OUT_D4	DS-66				D / Man	Numbered discrete input 4.
12	OUT_D5	DS-66				D / Man	Numbered discrete input 5.
13	OUT_D6	DS-66				D / Man	Numbered discrete input 6.
14	OUT_D7	DS-66				D / Man	Numbered discrete input 7.
15	OUT_D8	DS-66				D / Man	Numbered discrete input 8.
16	UPDATE_EVT	DS-73			Na	D	
17	BLOCK_ALM	DS-72			Na	D	

Legend: E – Enumerated parameter; Na – Dimensionless parameter; RO – Read only; D – dynamic; N – non-volatile; S - static Gray Background Line: Default Parameters of Syscon

If DIAG.BEHAVIOR parameter is "Adapted":

The required mode for writing is the Actual mode for the parameters from OUT_1 to OUT_8, regardless the Target mode.

PUL – Pulse Input

Overview

The Pulse Input Block provides analog values based on a pulse (counter) transducer input. There are two primary outputs available. An accumulation output is intended to be connected to an integrator block for differencing, conversion, and integration. This is most useful when the count rate is low relative to the block execution rate. For high count rates, the accumulated count of pulses per block execution can be interpreted as an analog rate (vs. accumulation) value and can be alarmed. (Alarm conditions include high, high-high, low, and low-low alarms.)

Description

OUT is a connectable bipolar (signed) analog value output of the PI block. It is determined by taking the number of counts accumulated since the last execution of the block, multiplying by the value of each pulse (PULSE_VAL), dividing by the block's execution rate in seconds, converting to units/minute, units/hour, or units/day in accordance with the TIME_UNITS enumeration, and filtering using PV_FTIME. PV_FTIME is the time constant for a filter. Alarming is performed on this filtered value. Reverse flow may be detected from the transducer and indicated via a negative value of

Pre-filtered value = (CHANGE IN COUNTS* PULSE VAL/EXEC PERIOD) * time unit factor

Where.

CHANGE_IN_COUNTS is the number of counts received since last execution PULSE VAL

is the value in engineering units of each pulse

EXEC PERIOD is the execution period of the block in seconds

Time Unit Factor is 1 sec/sec, 60 sec/min, 3600 sec/hour, or 86400 sec/day, per the TIME_UNITS index.

For example, 70 pulse counts are received by the transducer in the 0.5 second execution period of the PI block. The metering device manufacturer specifies that each pulse represents 0.1 gallons of flow. The user wants the flow rate expressed in "gallons per minute". PULSE_VAL should be set to 0.1. TIME_UNITS should be set to "units/minute". The related time_unit_factor will be "60 sec/min". Using the above equation, the pre-filtered rate value will then be computed as:

```
((70 pulses * 0.1 gallons/pulse) / 0.5 sec) * 60 sec/min =
(7.0 \text{ gallons}/ 0.5 \text{ sec}) * 60 \text{ sec/min} =
(14.0 gallons/sec) * 60 sec/min =
840 gallons/min
```

OUT ACCUM is a connectable float output of the PI block. It is intended to be connected to the Integrator block for totalization, so it only accumulates enough to avoid rollover between executions of the Integrator block. It represents a continuous accumulation of counts from the transducer, limited to the range of values from 0 to 999,999. It can count either up or down. An increment of the accumulation 999,999 by 1 will result in the accumulation 0 and a decrement of the accumulation 0 by 1 will result in the accumulation 999,999. A maximum change to the accumulation of ±499,999 counts is permitted to be reflected in OUT_ACCUM in a single execution of the block. If a change of counts greater in magnitude than 499,999 occurs at the transducer:

- The change in OUT_ACCUM is limited to 499,999 of the proper sign,
- The OUT_ACCUM status's quality is set to Uncertain,
- The OUT ACCUM status's sub-status is set to "Engr. Units Range Violation",
- The OUT ACCUM status's limits = low (if negative) or limits = high (if positive) indicator is set
- A BLOCK_ALM must be issued.

CHANNEL is used to associate the block with the hardware that is connected to this block. It defines the transducer to be used coming from the physical world.

Supported Modes

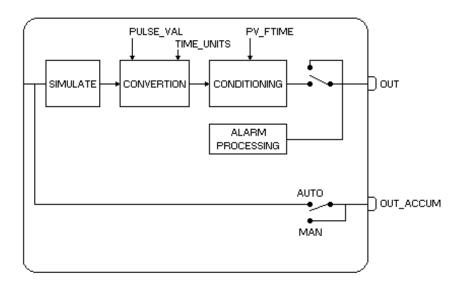
O/S, Manual and Auto.

Mode Handling

Manual mode "disconnects" the input from the output and permits manual substitution of the value. OUT is the alarmed value and the value which normally would be substituted, but OUT_ACCUM may also be substituted.

On transition from Manual to Auto, the PV filter will be initialized to the value of OUT, and the accumulated total will be set to the value of OUT ACCUM.

Status Handling


This block has no inputs from other blocks and therefore does not react to status of other blocks. Both the OUT and the OUT_ACCUM outputs have status and will reflect the status of the transducer (e.g. hardware failure) and the mode of the block (e.g., out-of-service, manual, etc.) using the conventional rules of status.

An unusable status (bad) for OUT will cause the alarm processing to be suspended. Current alarms will not be cleared and new alarms will not be generated until the status returns to a usable status.

Simulation

The SIMULATE_P parameter is provided to simulate pulse input as a rate in pulses/second, rather than the actual transducer value. The value entered in the SIMULATE_P record is considered to be the signed change in accumulation per second. The quality of the status entered is passed to the status of OUT and OUT_ACCUM.

Schematic

ldx	Parameter	DataType (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
1	ST_REV	Unsigned16		0	None	S/RO	
2	TAG_DESC	OctString(32)		Spaces	Na	S	
3	STRATEGY	Unsigned16		0	None	S	
4	ALERT_KEY	Unsigned8	1 to 255	0	None	S	
5	MODE_BLK	DS-69		O/S	Na	S	See Mode Parameter
6	BLOCK_ERR	Bitstring(2)			E	D/RO	
7	PV	DS-65			PV	D/RO	Process analog value for use in executing the function.
8	OUT	DS-65	OUT_SCALE +/- 10%		OUT	D / Man	The analog value calculated as a result of executing the function.
9	OUT_ACCUM	DS-65			None	N / Man	This parameter is the number of counts accumulated in an on-going basis. It is not normally reset except that it wraps around to zero after reaching 999,999 counts. The value is based on the transducer input in <i>Auto</i> mode and is the last transducer value of the value specified by the operator/engineer in <i>Man</i> mode. (Its meaning is most useful when the number of counts received between executions of the block is small.) It is intended to be connected to the counter input of an integrator block. The OUT_ACCUM value may increase or decrease by a maximum of 499,999 counts per execution.
10	SIMULATE_P	DS-82	1: Disable ; 2: Active are the Enable/Disable options.	Disable		D	Allows the transducer input to the Pulse Input block to be manually supplied when simulate is enabled. When simulation is disabled, the simulate value and status track the actual value and status. The value is the rate of change of the transducer count in counts per second, not the accumulation.
11	PULSE_VAL	Float		0	None		Value of each metered pulse in engineering units. Used only to calculate PV and OUT. Not used for OUT_ACCUM calculation.
12	TIME_UNITS	Unsigned8	1: seconds 2: minutes 3: hours 4: days 5: [day- [hr:[min[:sec]]]]	0	E	S	Time units factor to be used in the conversion of the output.
13	OUT_SCALE	DS-68		0-100%	OUT	S / Man	The high and low scale values to the OUT parameter.
14	GRANT_DENY	DS-70		0	na	D	
15	IO_OPTS	Bitstring(2)	See Block Options	0	na	S / O/S	See Block Options
16	STATUS_OPTS	Bitstring(2)	See Block Options	0	Na	S / O/S	See Block Options
17	CHANNEL	Unsigned16		0	None	s / o/s	For more details about the configuration of this parameter, see Chapter 1 "CHANNEL Configuration".

ldx	Parameter	DataType (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
18	PV_FTIME	Float	Non-Negative	0	Sec	S	Time constant of a single exponential filter for the PV, in seconds.
19	FIELD_VAL	DS-65			%	D/RO	Raw value of the field device with a status reflecting the Transducer condition, before filtering (PV_FTIME).
20	UPDATE_EVT	DS-73			Na	D	This alert is generated by any change to the static data.
21	BLOCK_ALM	DS-72			Na	D	The block alarm is used for all configuration, hardware, connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.
22	ALARM_SUM	DS-74	See Block Options		Na	S	The current alert status, unacknowledged states, unreported states, and disabled states of the alarms associated with the function block.
23	ACK_OPTION	Bitstring(2)	0: Auto ACK Disable 1: Auto ACK Enable	0	Na	S	Selection of whether alarms associated with the block will be automatically acknowledged
24	ALARM_HYS	Float	0 to 50 %	0.5%	%	S	Alarm hysteresis parameter. In order to clear the alarm the amount the PV must return within the alarm limit plus hysteresis (percentage of OUT_SCALE).
25	HI_HI_PRI	Unsigned8	0 to 15			S	Priority of the high high alarm.
26	HI_HI_LIM	Float	OUT_SCALE, +INF	+INF	OUT	S	The setting for high high alarm in engineering units.
27	HI_PRI	Unsigned8	0 to 15			S	Priority of the high alarm.
28	HI_LIM	Float	OUT_SCALE, +INF	+INF	OUT	S	The setting for high alarm in engineering units.
29	LO_PRI	Unsigned8	0 to 15			S	Priority of the low alarm.
30	LO_LIM	Float	OUT_SCALE, - INF	-INF	OUT	S	The setting for low alarm in engineering units.
31	LO_LO_PRI	Unsigned8	0 to 15			S	Priority of the low low alarm.
32	LO_LO_LIM	Float	OUT_SCALE, - INF	-INF	OUT	S	The setting for low low alarm in engineering units.
33	HI_HI_ALM	DS-71			OUT	D	The status for high high alarm and its associated time stamp.
34	HI_ALM	DS-71			OUT	D	The status for high alarm and its associated time stamp.
35	LO_ALM	DS-71			OUT	D	The status for low alarm and its associated time stamp.
36	LO_LO_ALM	DS-71			OUT	D	The status for low low alarm and its associated time stamp.

Legend: E - Enumerated parameter; Na - Dimensionless parameter; RO - Read only; D - dynamic; N - non-volatile; S - static Gray Background Line: Default Parameters of Syscon

If DIAG.BEHAVIOR parameter is "Adapted": The default value of CHANNEL is the lowest available number.

The required mode for writing is the Actual mode for the OUT parameter, regardless the Target mode.

ROMAI – ROM Analog Input

Description

This block has all characteristics of the standard Al block in addition the features related to alarms and I/O mapping via CHANNEL_TAG.

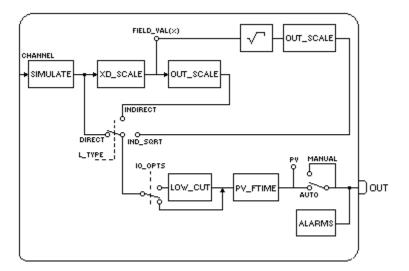
CHANNEL_TAG Parameter

This parameter allows association with the physical points of analog input, which occurs when the value of this parameter coincides with a compatible VAR_NAME in terms of type, ie, analog input. The same input physical point may be associated with up to 2 CHANNEL_TAGs in different function blocks.

The configuration of the CHANNEL_TAG parameter indirectly implies in the configuration of the CHANNEL parameter, which depends on the match with a valid VAR_NAME. So, the CHANNEL parameter becomes a read-only parameter to the user.

BLOCK ERR

It indicates a problem at some configured points, which can be: Configuration Error and Input Failure.


Diagnostic and troubleshooting

- Block configuration : possible causes of error are :
 - if CHANNEL_TAG specified here is not found in a transducer block
 - if an output Tag is specified in more than one CHANNEL_TAG parameter.
- Sensor (Input) failure: It indicates that a configured point has a bad status or a TRD is in O/S;
- Out-of-service: It indicates that Actual Mode is O/S.

Supported Modes

Auto, Man, O/S.

Schematic

ldx	Parameter	Data type	Valid Range	Initial Value	Units	Store/ Other	Description
37	PRE_OUT_ALM	DS-66		0		D/RO	This parameter indicates if exist alarm and it is available when the block is in Auto mode in OUT_ALM output.
38	OUT_ALM	DS-66		0		D/Man	Discrete output that indicates if the block is in alarm condition (value 1) or it is not in alarm condition (value 0).
39	OUT_ALM_SUM	Unsigned8	0:NONE 1:LO_LO 2:LO 3:LOWs 4:HI 6:LEVEL1 8:HI_HI 9:LEVEL2 12:HIGHs 15:ANY	0		S/MAN	Specify the alarm conditions that should assume the <i>True</i> value for the OUT_ALM output assume <i>True</i> value.
40	INVERT_OPTS	Bistring[2]		0		S / MAN	Parameter to invert the logic value corresponding to output of <i>True</i> value.
41	CHANNEL_TAG	VisibleString[32]		Blanks		S	TAG of the I/O point to be mapped with TAG in the I/O transducer block. Blank Tag means no association with I/O transducer block.

Legend: E – Enumerated parameter; Na – Dimensionless parameter; RO – Read only; D – dynamic; N – non-volatile; S - static

MAI16 -16 Multiple Analog Input

Overview

The block MAI16 provides to the FOUNDATION fieldbus network 16 I/O analog variables through its 16 **OUT_16** parameters whose values are expressed in engineering units.

CHANNEL_TAG_16 Parameter

This parameter allows association with the physical points of analog input, which occurs when the value of this parameter coincides with a compatible VAR_NAME in terms of type, ie, analog input. The same input physical point may be associated with up to 2 CHANNEL_TAGs in different function blocks.

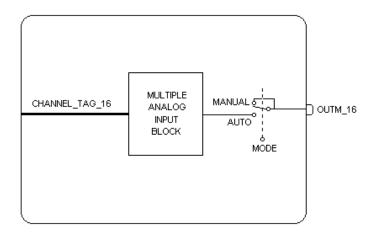
FORCE ENB 16 Parameter

This parameter enables/disables the point update in the output parameter (OUT_16) of this block, but the scan of the physical point and the transducer block update remains to be done regardless of this parameter.

BLOCK ERR:

It indicates a problem at some configured points, which can be:

- Block configuration: It indicates that a configured point has a configuration error;
- Sensor (input) failure: It indicates that a configured point has a bad status or a TRD is in O/S;
- Out-of-service: It indicates that Actual Mode is O/S.


Point's Status: It indicates a problem at specific point.

Overall status: It does not indicate problem of the point individually.

Supported Modes

Auto, Man, O/S.

Schematic

ldx	Parameter	Data Type (lenght)	Valid Range/ Options	Default Value	Units	Store/ Mode	Description
1	ST_REV	Unsigned16		0	None	S/RO	
2	TAG_DESC	OctString(32)		Spaces	Na	S	
3	STRATEGY	Unsigned16		255	None	s	
4	ALERT_KEY	Unsigned8		1	None	S	
5	MODE_BLK	DS-69		Auto	Na	S	

ldx	Parameter	Data Type (lenght)	Valid Range/ Options	Default Value	Units	Store/ Mode	Description
6	BLOCK_ERR	Bitstring(2)			E	D / RO	
7	FORCE_ENB_16	Bit String[2]		0		S	Controls the updating of each of the 16 analog points when the block is in AUTO mode. A value of 1 will stop the updating of the corresponding input/output point.
8	CHANNEL_TAG_16	VisibleString[16][32]		Blanks		S	TAGs of the I/O point to be mapped with TAGs in the I/O transducer block. Blank Tag means no association with I/O transducer block. The block's MAP_MM_* parameter indicates if any Tags specified here are not found in a transducer block or if an output Tag is specified in more than one CHANNEL_TAG_* parameter.
9	OUTM_16	DS-174			Na	N / Man	16 float (and status) values output parameter for multiple input and output function blocks.
10	MAP_MM_16	BitString[2]		0	Na	D/RO	Shows which of 16 function block points are in Tag mismatch mapping error. A "1" for point "n" indicates that the Tag for function block point "n" either (1) cannot be found in any transducer block, (2) is associated with a transducer block providing an incompatible data type, or (3) references a transducer block output that is also referenced by the same tag in another output function block.
11	UPDATE_EVT	DS-73			Na	D	This alert is generated by any change to the static data.
12	BLOCK_ALM	DS-72			Na	D	The block alarm is used for all configuration, hardware, connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.

Legend: E – Enumerated parameter; Na – Dimensionless parameter; RO – Read only; D – dynamic; N – non-volatile; S - static

MBI64 - Multiple Binary Inputs 64

Overview

The MBI64 block provides to the FOUNDATION fieldbus netwok 64 binary inputs variables, each one with status, through the OUTM_B64 output parameter. Thus the transfer of these 64 binary variables for control is performed by a single HSE link quite optimized.

CHANNEL TAG 64A/B Parameter

These parameters allow association with the physical points of binary input, which occurs when the value of this parameter coincides with a VAR_NAME with type compatible, i.e., binary input.

A single physical input point may be associated up to 2 CHANNEL_TAGs in different function blocks.

MAP MM 64 Parameter

It indicates which of 64 points configured in CHANNEL_TAG_64A/B is not associated to input point in transducer block, which can be for the following reasons:

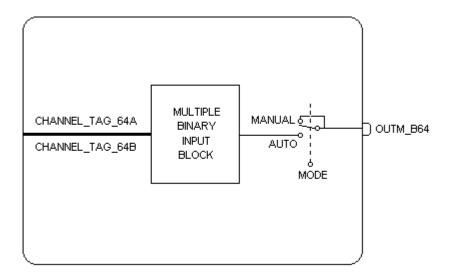
- (1) VAR_NAME equals to CHANNEL_TAG configured was not found,
- (2) Type is incompatible with the analog input.
- (3) Input point is already associated to two function blocks.

FORCE_ENB_B64 Parameter

This parameter enables/disables the point updating in the block output parameter (OUTM_B64) in Auto mode. But the physical point scanning and the transducer block updating continue to be performed regardless this parameter. So this parameter allows similar functionality to the Auto/Man mode individually for each point.

OUTM B64 Status

The status of OUTM_B64 output only reflects the block actual mode, i.e., the status of any individual configured points has no influence.


Diagnostic and troubleshooting

- Block configuration: it indicates if the configured point has some configuration error.
- Sensor (Input) failure: It indicates that the configured point has a bad status or a TRD is in O/S:
- Out-of-service: It indicates that Actual Mode is O/S.

Supported Modes

Auto, Man, O/S.

Schematic

Parameters

ldx	Type/ View	Parameter	Data Type	Valid Range	Initial Value	Unit	Store/ Mode	Description
1	1,2,3,4	ST_REV	Unsigned16		0	None	S/RO	
2		TAG_DESC	OctString(32)		Spaces	Na	S	
3	4	STRATEGY	Unsigned16		255	None	S	
4	4	ALERT_KEY	Unsigned8		1	None	S	
5	1,3	MODE_BLK	DS-69		Auto	Na	s	
6	1,3	BLOCK_ERR	Bitstring(2)			E	D/RO	
7	2,4	FORCE_ENB_B64	Bit String[8]		0		S	It controls the updating of each of the 64 binary points when the block is in Auto. A value of 1 in bit stops updating the input point in OUTM_B64.
8		CHANNEL_TAG_64A	VisibleString[32][32]		Blanks		S	Tags of the first group of 32 input points that must be mapped to points on the transducer block. Blank tag means that the input point is not configured. The MAP_MM_64 parameter indicates if some configured tag does not have corresponding in transducer block.
9		CHANNEL_TAG_64B	VisibleString[32][32]		Blanks		S	Tags of the second group of 32 input points must be mapped to points on the transducer block. Blank tag means that the input point is not configured. The MAP_MM_64 parameter indicates if some configured tag does not have corresponding in transducer block.
10	0,1,3	OUTM_B64	DS-158			Na	N / Man	Output parameter with 64 binary values and status.
11	1,3	MAP_MM_64	BitString[8]		0	Na	D/RO	Indicates which of 64 points configured in CHANNEL_TAG_64A/B is not associated to an input point on transducer block: (1) tag was not found on transducer block, (2) incompatible type.
12		UPDATE_EVT	DS-73			Na	D	This alert is generated by any change to the static data.

ldx	Type/ View	Parameter	Data Type	Valid Range	Initial Value	Unit	Store/ Mode	Description
13		BLOCK_ALM	DS-72			Na	D	The block alarm is used for all configuration, hardware, connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.

Legend: E - Enumerated parameter; Na - Dimensionless parameter; RO - Read only; D - dynamic; N - non-volatile; S - static

Control and Calculation Function Blocks

PID - PID Control

Overview

The PID block offers a lot of control algorithms that use the Proportional, integral and derivative terms.

Description

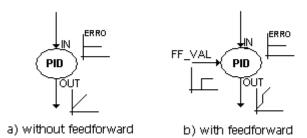
The algorithm of the PID is the non-iterative or ISA. In this algorithm, the GAIN is applied to all terms of the PID, and the Proportional and the Integral actuate over the error, and the derivative actuates over the PV value. Therefore user changes of SP will not cause bump in the output due to the derivative term when the block is in Auto.

As long as an error exists, the PID function will integrate the error, which moves the output in a direction to correct the error. PID blocks may be cascaded when the difference in process time constants of a primary and secondary process measurement makes it necessary or desirable.

See the PV calculation and SP calculation section for details.

Direct and Reverse Acting

It is possible to choose the direct or reverse action of control that is made through the "Direct Acting" bit in the CONTROL_OPTS parameter:


- If the "Direct acting" bit is true then the error is obtained subtracting the SP from the PV:
 Error = (PV SP)
- If the "Direct acting" bi7t is false (clear), the choice is "Reverse acting" then the error is obtained subtracting the PV from the SP:

$$Error = (SP - PV)$$

The Default value of the "Direct acting" bit is false, it means "reverse action".

Feedforward Control

The PID block supports the feedforward algorithm. The FF_VAL input is supplied by an external value, which is proportional to some disturbance in the control loop. The value is converted to output scale using the FF_SCALE and OUT_SCALE parameters. This value is multiplied by the FF_GAIN and added to the output of the PID algorithm.

If the status of FF_VAL is Bad, the last usable value will be used. When the status returns to good, the difference of FF_VAL values will be subtracted from BIAS_A/M in order to avoid bump in the output.

PID Constants

GAIN (Kp), RESET (Tr), and RATE (Td) are the tuning constants for the P, I and D terms, respectively. Gain is a dimensionless number. RESET and RATE are time constants expressed in seconds. There are existing controllers that are tuned by the inverse value of some or all of them, such as proportional band and repeats per minute. The human interface to these parameters should be able to display the user's preference.

Bypass

When bypass is active the SP value will be transferred to the OUT without the calculation of PID terms. Bypass is used in secondary cascade controller when the PV is bad.

Conditions to turn the Bypass on:

- The "Bypass Enable" bit in the CONTROL_OPTS must be true.
- BYPASS parameter is changed to ON.
- The BYPASS parameter is the ON/OFF switch that activates the bypass. By default, it can be changed only when the block mode is Man or O/S. Optionally, when the "Change of Bypass in an automatic mode" bit in the FEATURES_SEL parameter in Resource block is true, then the block permits that the BYPASS switch changes in automatic modes too.

There is special treatment when the Bypass parameter changes ON/OFF in order to avoid bump in the output. When the bypass is switched to ON, the SP receives the OUT value in percent of the OUT_SCALE. And when the bypass is switched to OFF, the SP receives the PV value.

Transition in BYPASS	Action
OFF → ON	OUT → SP with scaling conversion
ON → OFF	PV → SP

Below, there is an example of the bypass in the PID block working as a PID slave in cascade control.

- Step 1 the status of IN is bad, therefore the actual mode of PID is Man
- Step 2 the Target mode is changed to Man in order to write BYPASS
- Step 3 the user sets BYPASS to ON, and OUT is transferred to SP with scaling conversion
- Step 4 the user changes the Target mode to Cas
- Step 5 the PID block reaches the Cas mode, despite of IN. Status.
- Step 7 the status of IN becomes good
- Step 8 the target mode is changed to Man in order to write BYPASS
- Step 9 the user sets BYPASS to OFF, and PV is transferred to SP

CONTROL_OPTS = "Bypass Enable"

Steps	1	2	3	4	5	6	7	8	9	10	11
Target	Cas	Man		Cas				Man		Cas	
Bypass	Off		On						Off		
IN	Bad	Bad	Bad	Bad	Bad	Bad	GNC	GNC	GNC	GNC	GNC
N	Dau	Dau	Dau	Бай	Dau	Dau	80	80	80	80	80
SP	GC										
3F	50	50	20	20	20	20	20	20	80	80	80
Actual	Man	Man	Man	Man	Cas	Cas	Cas	Man	Man	Man	Cas
BKCAL_OUT	NI	NI	NI	IR	GC	GC	GC	NI	NI	IR	GC
OUT	GC										
001	20	20	20	20	20	20	20	20	20	20	20

Legend: GNC-Good Non Cascade status; GC-Good Cascade status

Output Tracking

The PID block supports the output track algorithm, which allows the output to be forced to a tracking value when the tracking switch is on.

In order to activate the output tracking, the block should attend the following conditions:

- bit "Track Enable" in the CONTROL_OPTS parameter must be true;
- the target mode is an automatic mode (Auto, Cas and Rcas) or Rout;
- status TRK_VAL and TRK_IN_D are usable, it means the status is good or uncertain and the bit STATUS_OPTS."Use Uncertain as good" is true;
- the value of TRK_IN_D is active;
- If the target mode is Man, it is necessary, besides the above conditions, the bit "Track in Manual" in the CONTROL_OPTS parameter must be true.

When the tracking output is active, the OUT will be transferred to TRK_VAL converted in OUT_SCALE. The limit status becomes constant and the actual mode goes to LO.

If the TRK_IN_D or TRK_VAL status is unusable, the tracking output will be disabled and PID will return to the normal operation.

BLOCK_ERR

The BLOCK_ERR of the PID block will reflect the following causes:

- Block Configuration Error the configuration error occurs when the BYPASS and SHED_OPT parameters have an invalid value;
- Out of Service it occurs when the block is in OOS mode.

Supported Modes

O/S,IMAN, LO, MAN, AUTO, CAS, RCAS and ROUT.

Control Algorithm

$$OUT = GAIN * \left[E + \frac{RATE * S}{1 + \alpha * RATE * S} * PV + \frac{E}{RESET * S}\right] + BIAS _A / M + FEEDFORWARD$$

NOTE: ① BIAS_A/M: Internal BIAS Calculated on changing to automatic modes (RCAS, CAS, AUTO).

• α: Pseudo - Derivative Gain Equals to 0.13

Example for Control Algorithm

Below there is an example of how the BIAS_A/M internal variable works in order to have bumpless output.

Initially it considers the values:

PV=10

SP=60

GAIN=1

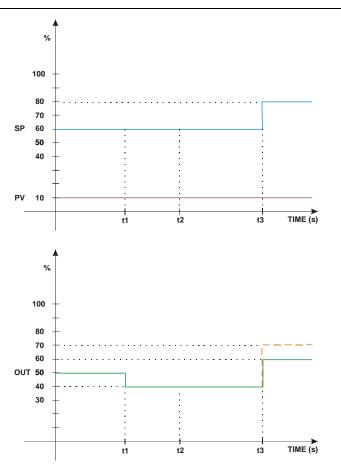
RATE=0

RESET=+Inf

FEEDFORWARD=0

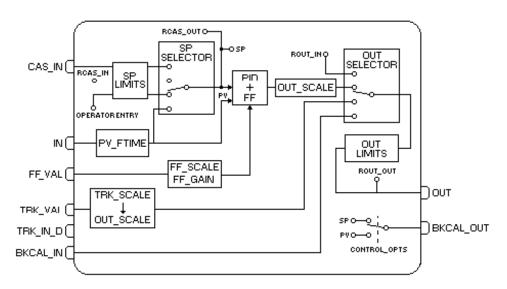
CONTROL_OPTS=None (reverse direction, SP-PV)

For PV equals to 10 and SP equals to 60, the calculated Error will be 50 (SP-PV). In t1, a transition from Automatic mode to Manual mode occurs and the value 40 is attributed to the OUT.


So, according to the Control Algorithm equation, the BIAS_A/M variable will be -10

$$OUT = GAIN * \left[E + \frac{RATE * S}{1 + \alpha * RATE * S} * PV + \frac{E}{RESET * S}\right] + BIAS _ A / M + FEEDFORWARD$$

BIAS
$$_A/M = 40 - 1*50$$


$$BIAS_A/M = -10$$

In t2, block returns to the Automatic mode. In order to have a bumpless output, BIAS_A/M is applied to the Error, so the output is kept in the last value. In t3, SP receives a step equals to 20, it goes from 60 to 80, then the calculated Error would be 70 (SP-PV), and how the BIAS_A/M is applied to the Error, so the step in the output will be 20.

- t1 Automatic to Manual transition (time that the value 40 is attributed to the OUT)
- t2 Manual to Automatic transition
- t3 SP receives a step of 20, then the OUT will also receive a step equals to 20

Schematic

Parameters

ldx	Parameter	Data Type (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
1	ST_REV	Unsigned16		0	None	S/RO	
2	TAG_DESC	OctString(32)		Spaces	Na	S	
3	STRATEGY	Unsigned16		0	None	S	
4	ALERT_KEY	Unsigned8	1 to 255	0	None	S	
5	MODE_BLK	DS-69		O/S	Na	S	See Mode Parameter
6	BLOCK_ERR	Bitstring(2)			E	D/RO	
7	PV	DS-65			PV	D/RO	Process analog value. This is the IN value after pass over the PV filter.
8	SP	DS-65	PV_SCALE +/- 10%		PV	N / Auto	The analog set point. Can be set manually, automatically through the interface device or another field device.
9	OUT	DS-65	OUT_SCALE +/- 10%		OUT	N / Man	The output value result of the PID calculation.
10	PV_SCALE	DS-68		0-100%	PV	S / Man	The high and low scale values to the PV and SP parameter.
11	OUT_SCALE	DS-68		0-100%	OUT	S / Man	The high and low scale values to the OUT parameter.
12	GRANT_DENY	DS-70		0	na	D	Options for controlling access of host computer and local control panels to operating, tuning and alarm parameters of the block.
13	CONTROL_OPTS	Bitstring(2)	See Block Options	0	na	s / o/s	See Block Options
14	STATUS_OPTS	Bitstring(2)	See Block Options	0	Na	s / o/s	See Block Options
15	IN	DS-65			PV	D	The primary input value of the block, or PV value.
16	PV_FTIME	Float	Non-Negative	0	Sec	S	Time constant of a single exponential filter for the PV, in seconds.
17	BYPASS	Unsigned8	1:Off 2:On	0	E	S / Man	When bypass is set, the setpoint value (in percent) will be directly transferred to the output.
18	CAS_IN	DS-65				D	This parameter is the remote setpoint value, which must come from another Fieldbus block, or a DCS block through a defined link.
19	SP_RATE_DN	Float	Positive	+INF	PV/Sec	S	Ramp rate at which upward setpoint changes in PV units per second. It is disable if is zero or +INF. Rate limiting will apply only in AUTO mode.
20	SP_RATE_UP	Float	Positive	+INF	PV/Sec	S	Ramp rate at which downward setpoint changes in PV units per second. It is disable if is zero or +INF. Rate limiting will apply only in AUTO mode.
21	SP_HI_LIM	Float	PV_SCALE +/- 10%	100	PV	s	The setpoint high limit is the highest setpoint operator entry that can be used for the block.
22	SP_LO_LIM	Float	PV_SCALE +/- 10%	0	PV	s	The setpoint low limit is the lowest setpoint operator entry that can be used for the block.
23	GAIN	Float		0	None	S	Proportional term of the PID. It is the Kp value.
24	RESET	Float	Positive	+INF	sec	S	Integral term of the PID. It is the Tr value.

ldx	Parameter	Data Type (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
25	DAI TIME	Float	Positive	0	200	S	This specifies the time for the internal working value of bias or ratio to return to the operator set bias or ratio, in seconds.
25	BAL_TIME	Float	Positive	U	sec	5	In the PID block, it may be used to specify the time constant at which the integral term will move to obtain balance when the output is limited and the mode is Auto, Cas, or Rcas.
26	RATE	Float	Positive	0	sec	s	Derivative term of the PID. It is the Td value.
27	BKCAL_IN	DS-65			OUT	N	The value and status from a lower block's BKCAL_OUT that is used to prevent reset windup and to initialize the control loop.
28	OUT_HI_LIM	Float	OUT_SCALE +/- 10%	100	OUT	S	Limits the maximum output value.
29	OUT_LO_LIM	Float	OUT_SCALE +/- 10%	0	OUT	S	Limits the minimum output value.
30	BKCAL_HYS	Float	0 to 50%	0.5%	%	S	The amount that the output must change away from its output limit before the limit status is turned off, expressed as a percent of the span of the output.
31	BKCAL_OUT	DS-65			PV	D/RO	The value and status required by an upper block's BKCAL_IN so that the upper block may prevent reset windup and provide bumpless transfer to closed loop control.
32	RCAS_IN	DS-65			PV	D	Target setpoint and status provided by a supervisory Host to a analog control or output block.
33	ROUT_IN	DS-65			OUT	D	Target output and status provided by a Host to the control block for use as the output (Rout mode).
34	SHED_OPT	Unsigned8	1: NormalShed, NormalReturn 2: NormalShed, NoReturn 3: ShedToAuto, NormalReturn 4: ShedToAuto, NoReturn 5: ShedToMan, NormalReturn 6: ShedToMan, NoReturn 7: ShedToRetainedT arget, NormalReturn 8: ShedToRetainedT arget, NormalReturn NormalReturn NormalReturn NormalReturn NormalReturn NormalReturn	0		S	Defines action to be taken on remote control device timeout.
35	RCAS_OUT	DS-65			PV	D/RO	Block setpoint and status after ramping - provided to a supervisory Host for back calculation and to allow action to be taken under limiting conditions or mode change.
36	ROUT_OUT	DS-65			OUT	D/RO	Block output and status - provided to a Host for back calculation in ROut mode and to allow action to be taken under limited conditions or mode change

ldx	Parameter	Data Type (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
37	TRK_SCALE	DS-68		0-100%	TRK	S / Man	The high and low scale values, engineering units code, and number of digits to the right of the decimal point, associated with TRK_VAL.
38	TRK_IN_D	DS-66			On/Off	D	This discrete input is used to initiate external tracking of the block output to the value specified by TRK_VAL.
39	TRK_VAL	DS-65			TRK	D	This input is used as the track value when external tracking is enabled by TRK_IN_D.
40	FF_VAL	DS-65			FF	D	The feed forward value and status.
41	FF_SCALE	DS-68		0-100%	FF	S	The feedforward input high and low scale values, engineering units code, and number of digits to the right of the decimal point.
42	FF_GAIN	Float		0	none	S/Man	The gain that the feed forward input is multiplied by before it is added to the calculated control output.
43	UPDATE_EVT	DS-73			Na	D	This alert is generated by any change to the static data.
44	BLOCK_ALM	DS-72			Na	D	The block alarm is used for all configuration, hardware, connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.
45	ALARM_SUM	DS-74	See Block Options		Na	S	The current alert status, unacknowledged states, unreported states, and disabled states of the alarms associated with the function block.
46	ACK_OPTION	Bitstring(2)	0: Auto ACK Disable 1: Auto ACK Enable	0	Na	S	Selection of whether alarms associated with the block will be automatically acknowledged
47	ALARM_HYS	Float	0 to 50 %	0.5%	%	S	Alarm hysteresis parameter. In order to clear the alarm the amount the PV must return within the alarm limit plus hysteresis.
48	HI_HI_PRI	Unsigned8	0 to 15	0		S	Priority of the high high alarm.
49	HI_HI_LIM	Float	PV_SCALE, +INF	+INF	PV	S	The setting for high high alarm in engineering units.
50	HI_PRI	Unsigned8	0 to 15	0		S	Priority of the high alarm.
51	HI_LIM	Float	PV_SCALE, +INF	+INF	PV	S	The setting for high alarm in engineering units.
52	LO_PRI	Unsigned8	0 to 15	0		S	Priority of the low alarm.
53	LO_LIM	Float	PV_SCALE, +INF	-INF	PV	S	The setting for low alarm in engineering units.
54	LO_LO_PRI	Unsigned8	0 to 15	0		S	Priority of the low low alarm.
55	LO_LO_LIM	Float	PV_SCALE, +INF	-INF	PV	S	The setting for low low alarm in engineering units.
56	DV_HI_PRI	Unsigned8	0 to 15	0		S	Priority of the deviation high alarm.
57	DV_HI_LIM	Float	0 to PV span, +INF	+INF	PV	S	The setting for deviation high alarm in engineering units.
58	DV_LO_PRI	Unsigned8	0 to 15	0		S	Priority of the deviation low alarm.
59	DV_LO_LIM	Float	-INF, -PV span to 0	-INF	PV	S	The setting for deviation low alarm in engineering units.
60	HI_HI_ALM	DS-71			PV	D	The status for high high alarm and its associated time stamp.

Function Blocks Instruction Manual – Library B

ldx	Parameter	Data Type (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
61	HI_ALM	DS-71			PV	D	The status for high alarm and its associated time stamp.
62	LO_ALM	DS-71			PV	D	The status for low alarm and its associated time stamp.
63	LO_LO_ALM	DS-71			PV	D	The status for low low alarm and its associated time stamp.
64	DV_HI_ALM	DS-71			PV	D	The status for deviation high alarm and its associated time stamp.
65	DV_LO_ALM	DS-71			PV	D	The status for deviation low alarm and its associated time stamp.

Legend: E – Enumerated parameter; Na – Dimensionless parameter; RO – Read only; D – dynamic; N – non-volatile; S - static

Gray Background Line: Default Parameters of Syscon

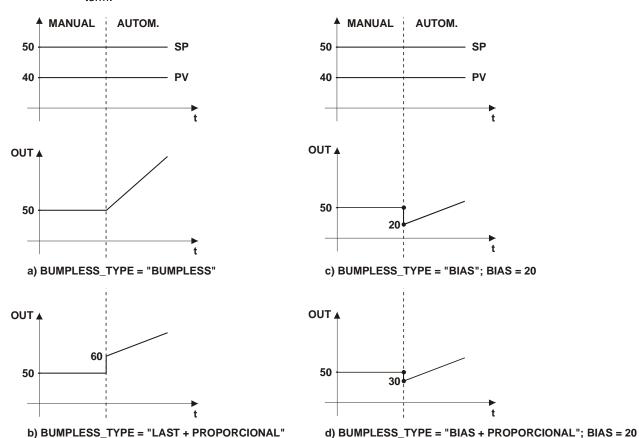
EPID – Enhanced PID Control

Description

The EPID block has all parameters of the PID block. Additionally if provides 4 types for bumpless transference from Manual mode to Auto mode, and also a special tretament for tracking outpus

Additional Parameters

1- Different type of transfer from a "manual" mode to an "automatic" mode.


The BUMPLESS_TYPE parameter provides four types of transfer from a "manual" mode to an "automatic" mode:

a.bumpless: This is the default value and the behavior of the standard PID block. The block starts to calculate from the last value in the "manual" mode.

b.Last + proportional: The block starts to calculate from the last value in the "manual" mode plus the proportional term

c. Bias: The block starts to calculate from the BIAS parameter.

d. Bias + proportional: The block starts to calculate from the BIAS parameter plus the proportional term.

2-. Special treatment to Output Tracking

Special treatment is made when the output tracking is enabled:

The algorithm generates an IFS status in the output in the following situations:

- When TRK_IN_D has an unusable status and the "IFS if Bad TRK_IN_D" bit in PID_OPTS is true.
- When TRK_VAL has an unusable status and the "IFS if Bad TRK_VAL" bit in PID_OPTS is true.

The mode is changed to Man when the tracking inputs are not usable in the following ways:

When the TRK_IN_D is not usable and the "Man if Bad TRK_IN_D" bit in PID_OPTS is true
then the mode will be Man and the OUT will be the last value. Optionally, if the "target to
Man if Bad TRK_IN_D" bit in the PID_OPTS is true, then the target mode will be changed
to Man too.

• When the TRK_VAL is not usable and the "Man if Bad TRK_VAL" bit in PID_OPTS is true, then the mode will be Man and the OUT will be the last usable value. Optionally, if the "target to Man if Bad TRK_VAL" bit in the PID_OPTS is true, then the target mode will be changed to Man too.

Optionally, the block target mode will be changed to Manual by the block algorithm when the "tracking" is active. To set this feature, the "Target to Man if tracking active" bit in the PID_OPTS parameter needs to be true.

The required actions are summarized in the following table:

Cityotian	DID OUTS	Мс	ode	Algorithm Action	
Situation	PID_OPTS	Target	Actual	Algorithm Action	
	0x00		"auto"	. Output tracking is not active.	
	0x00		auto	. The algorithm continues the normal calculation.	
			"auto" ->	. Output tracking is not active.	
				. The algorithm continues the normal calculation.	
	IFS if Bad TRK_IN_D		Iman	. OUT.Status is GoodC-IFS.	
TRK_IN_D is not usable				. When the output block goes to fault state, the upper blocks go to Iman.	
	Man if Bad TRK IN D		Man	. Output tracking is not active.	
	Man ii bau i kk_ii_D		Ivian	. The algorithm stops the calculation.	
	"Target to Man if Bad TRK_IN_D" ; "Man if Bad TRK_IN_D"	Man	Man	. Output tracking is not active. The target mode is changed to Man.	
	0x00		"auto"	. Output tracking is not active.	
	0.000		auto	. The algorithm continues the normal calculation.	
				. Output tracking is not active.	
			"auto" ->	. The algorithm continues the normal calculation.	
	IFS if Bad TRK_VAL		Iman	OUT.Status is GoodC-IFS.	
TRK_VAL is not usable				. When the output block goes to fault state, the upper blocks go to Iman.	
	Man if Bad TRK_VAL		Man	. Output tracking is not active.	
	Wall II Bad TKK_VAL		IVIAIT	. The algorithm stops the calculation.	
	"Target to Man if Bad TRK_VAL" ; "Man if Bad TRK_VAL"	Man	Man	. Output tracking is not active. the target mode is changed to Man.	
TRK_IN_D and TRK_VAL is usable, TRK_IN_D is active, output tracking is enabled			LO	Output Tracking is active.	

Optionally, the block target mode will be changed to Manual when the Device is in "Power Up". To set this feature, the "Target to Man if Power Up" bit in the PID_OPTS parameter needs to be true.

If the additional parameters of EPID block are configured with the default values, the block works as the standard PID block.

Parameters

ldx	Parameter	Туре	Valid Range/ Options	Default Value	Units	Mode To Change	Description
66	BUMPLESS_TYPE	Unsigned8	0: Bumpless 1: Last+Proportional 2: Bias 3: Bias+Proportional	0	E	S / Man	Options that defines the algorithm action to start the output when the block transfer from "manual" to "automatic" mode.
67	BIAS	Float		0	OUT	S	The bias value to use in the PID algorithm when the BUMPLESS type is "Bias" or "Bias+Proportional".
68	PID_OPTS	Bitstring(2)	See block options	0		S / O/S	The options for handling the additional features of the output tracking.

Legend: E - Enumerated parameter; Na - Dimensionless parameter; RO - Read only; D - dynamic; N - non-volatile; S - static

Gray Background Line: Default Parameters of Syscon

If DIAG.BEHAVIOR parameter is "Adapted":

The default value of BYPASS is OFF. The default value of SHED_OPT is NormalShed/NormalReturn.

The required mode for writing is the Actual mode for the parameters SP and OUT, regardless the Target mode.

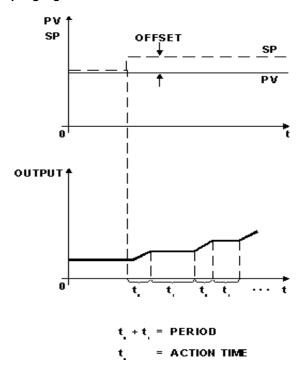
APID – Advanced PID Control

Overview

The advanced PID function block provides the following additional features comparing to the standard PID algorithm and the enhanced PID:

- Selection of the terms (proportional, integral, derivative) calculated on error or process variable
- PI Sampling algorithm
- Adaptive gain
- Configurable Limits of anti reset wind-up
- Special treatment for the error
- · Discrete output to indicate the actual mode

The standard features as well the enhanced ones are described in the PID and EPID blocks, respectively, therefore they will not be repeated here.


Description

Selection of the terms (proportional, integral, derivative) calculated on error or process variable.

The control algorithm can be ideal parallel or not iterative (ISA). For each algorithm can choose the terms (proportional, integral, and derivative) calculated on error or process variable by setting the PID_TYPE parameter. Where:

- PI.D The P and I terms are calculated based on the error and the D term on the PV.
- PID The P, I and D terms are calculated based on the error.
- I.PD The I is calculated based on the error and the P and D terms on the PV.

PI Sampling algorithm

The output is calculated based on the PI algorithm during time t_o . After that, the algorithm stops calculating and it holds the last value during time t_1 , The time t_o is adjusted by SAMP_ON, and t_1 by (SAMP_PER – SAMP_ON).

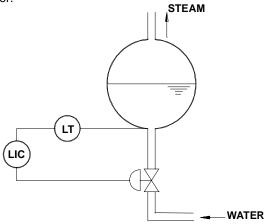
If the SAMP_PER is less than SAMP_ON or SAMP_ON is zero, then the algorithm works as an ordinary PI controller.

Adaptive gain

The adaptive gain permits to change the algorithm PID terms by a factor obtained in a curve established by CURVE_X and CURVE_Y parameters. This curve is based in SP, PV, Error, OUT or another value set in AD_GAIN_IN parameter. The algorithm actions that will be changed are defined

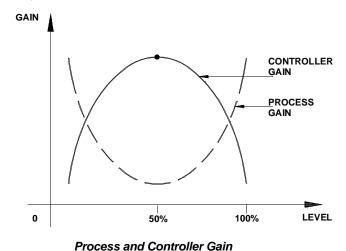
by the AD_GAIN_ACTION parameter. The AD_GAIN_IN_SEL parameter selects the input value to enter into the curve in order to get the adaptive gain.

The CURVE_X points of the curve are in the same engineering units of the selected variable. The CURVE_Y points are the adaptive gain. The adaptive gain (G) changes the PID constants GAIN, RESET and RATE to:

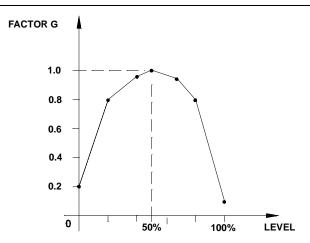

GAIN'= G * GAIN

RESET' = RESET / G

RATE' = G * RATE


If the curve has less than 20 configured points, the non-configured points shall be set with +INF. The curve must have crescent values in the X axis. Any configuration error will be indicated by the BLOCK_ALM parameter. If the curve has a configuration error, and thus the adaptive gain value will be the CURVE_Y corresponding to the highest CURVE_X point.

If the AD_GAIN_IN is selected and it has a bad status, the algorithm uses the last usable value to provide bumpless transfer.



The volume variations are nonlinear with the level variations. The dotted line of figure below shows the volume gain with the level. Note that the volume varies slowly (low gain), around 50% level and varies very fast (high gain) around the level extremes.

The control action must have a gain that is the inverse of the process gain. This is shown by the continuous line of the figure below.

The adaptative gain characteristic can be configured as shown in Fig 4.9.7. This curve can be represented by the following points of Curve 1: (X1 = 0 - Y1 = 0.2; X2 = 20 - Y2 = 0.8; X3 = 40 - Y3 = 0.96; etc.).

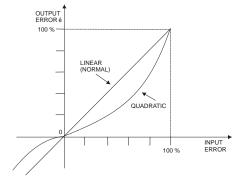
Gain Curve as a Function of PV

While planning the configuration, observe the following:

- 1. It is not necessary to use all 13 points of the curve.
- 2. It is fundamental to use the 0% and the 100% of the determining variable (-100 and +100% for the Error).
- 3. It is recommendable to program the variable up to 102%, since the variable may be above 100%.
- 4. Tuning is normally done for G = 1. In the example, the control becomes slower above or below 50% of the level.

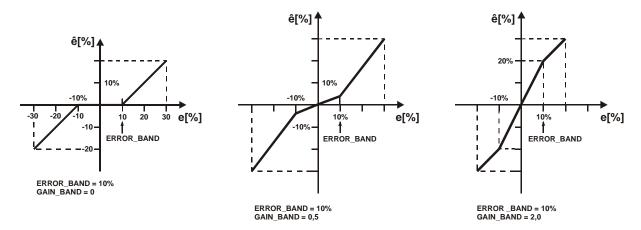
Adaptative Gain is also very useful for pH control.

Configurable Limits of anti reset wind-up


The saturation limits to integral term can be changed by the ARW_LOW and ARW_UP parameters. Then the control algorithm stops the integral calculation when the output signal reaches the anti-reset wind-up limits. The proportional and derivative calculations are not affected.

The Anti Reset Wind-up will not be stopped to the output limits, i.e., when the ARW_UP limit is greater than OUT_HI_LIM, the OUT is clamped in the OUT_HI_LIM value, but internally the algorithm continue the integral calculation until the ARW_UP limit. The user can avoid this case configuring the ARW_UP less or equal to OUT_HI_LIM. The same idea applies to the low limit.

Special treatment for the error


The treatment of the error in the control process can be chosen by the ERROR_TYPE parameter. The quadratic error can be applied on only integral term or on all PID terms. In the quadratic error, the considered error for the calculation will be:

$$\hat{e} = \frac{e^* |e|}{100}$$

In order to use the GAP control to consider the cases where the control is unstable over a band around SP due the dead band of the actuator or due the noise or other reasons, there is a special gain in the error type.

In order to use the ERROR_TYPE as special gain it is necessary to define the ERROR_BAND where it will be applied the special gain GAIN_BAND parameter on the error. If the ERROR_BAND is zero the algorithm will not apply the special gain.

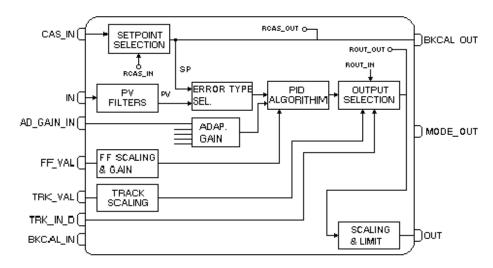
Mode indication

The MODE_IND parameter is used to configure which mode(s) types in the Actual mode will be indicated by a TRUE value in the discrete output MODE_OUT. If more than one mode type is chosen, then it will be used an OR logic.

Working as a standard PID

If the additional parameters of APID block is configured with the default values, then it works as the standard PID block.

BLOCK ERR


The BLOCK_ERR will reflect the following causes:

- Block Configuration Error the configuration error occurs when the BYPASS or SHED_OPT parameter has an invalid value or the curve has any of the following problems:
 - CURVE_X[i] > CURVE_X[I+1]
 - If the curve is not using effectively 20 points and any non-configured point is different from +INFINITY.
- Out of Service it occurs when the block is in O/S mode.

Supported modes

O/S, IMAN, LO, MAN, AUTO, CAS, RCAS and ROUT.

Schematic

Parameters

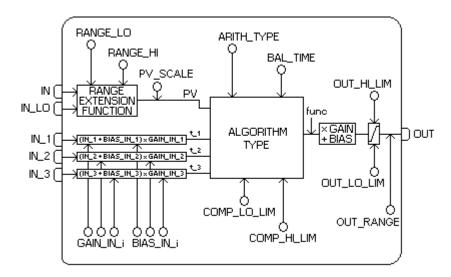
ldx	Parameter	Data Type (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
66	MODE_OUT	DS-66				D/RO	This output parameter indicates if one of selected modes in the parameter "MODE_IND" is the actual mode
67	MODE_IND	Bitstring	Actual mode bitstring	0		D	Selection of mode(s) to be indicated in the output parameter "MODE_OUT".
68	AD_GAIN_ACTION	Unsigned8	0: Disable 1: PID 2: PI 3: P 4: I 5: D	0	E	S / Man	It chooses the term(s) of PID algorithm multiplied by the adaptive gain.
69	AD_GAIN_IN_SEL	Unsigned8	0: SP 1: PV 2: Error 3: OUT 4: AD_GAIN_IN	0	E	S / Man	It selects the input to enter into the curve in order to get the adaptive gain. The option Error may be selected if ERROR_TYPE is Normal.
70	AD_GAIN_IN	DS-65				D	Input parameter to enter into the curve in order to get the adaptive gain.
71	CURVE_X	20 Floats		0's	EU of variable selected by AD_GAI N_IN_S EL	S	Curve input points. The \mathbf{x}_i points of the curve are defined by an array of twenty points.
72	CURVE_Y	20 Floats		0's	Na	S	Curve output points. The y_i points of the curve are defined by an array of twenty points.
73	ERROR_TYPE	Unsigned8	0: Normal 1: Quadratic (Integral) 2: Quadratic (all terms) 3: Special gain	0	E	S / Man	Type of error used by the PID algorithm. The options Quadratic and Special gain may be selected if AD_GAIN_IN_SEL is different of Error.
74	ERROR_BAND	Float	0-300%	0	%	s	It is applied a special treatment for error within the "ERROR_BAND".
75	GAIN_BAND	Float	0-10	0	Na	S	Special gain applied to the error, if it is selected in the ERROR_BAND.
76	PID_TYPE	Unsigned8	0:PI.D + ISA 1:PID + ISA 2:I.PD + ISA 3:PI Sampling + ISA 4:PI.D + Parallel 5:PID + Parallel 6:I.PD + Parallel 7:PI Sampling+Para Ilel	0	E	S	Type of PID algorithm.
77	SAMP_ON	Float	0-10800	0	Sec	S	Time interval of the PID algorithm activity, therefore (SAMP_PER – SAMP_ON) means the hold time.

ldx	Parameter	Data Type (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
78	SAMP_PER	Float	0-10800	0	Sec	S	Period of the PI sampling algorithm.
79	BUMPLESS_TYPE	Unsigned8	0: Bumpless 1: Last+Proportio nal 2: Bias 3: Bias+Proportio nal	0	E	S / Man	This parameter defines the type of transfer from a "manual" mode to an "automatic" mode.
80	BIAS	Float		0	OUT	S	The bias value to use in the PID algorithm when the BUMPLESS type is "Bias" or "Bias+Proportional".
81	ARW_UP	Float		+ INF	OUT	S	High limit for anti reset windup.
82	ARW_LOW	Float		- INF	OUT	S	Low limit for anti reset windup.
83	PID_OPTS	Bitstring(2)		0		S / O/S	A bit string for handling the additional characteristics of the output tracking.

Legend: E – Enumerated parameter; Na – Dimensionless parameter; RO – Read only; D – dynamic; N – non-volatile; S - static

Gray Background Line: Default Parameters of Syscon

ARTH - Arithmetic


Description

The ARTH block can be used in calculating measurements from combinations of signals from sensors. It is not intended to be used in a control path, so it does not support cascades or back calculation. It does no conversions to percent, so scaling is not supported. It has no process alarms.

The block has 5 inputs. The first two are dedicated to a range extension function that results in a PV, with status reflecting the input in use. The remaining three inputs are combined with the PV in a selection of four term math functions that have been found useful in a variety of measurements. The inputs used to form the PV must come from devices with the desired engineering units, so that the PV enters the equation with the right units. Each of the additional inputs has a bias and gain constant. The bias can be used to correct for absolute temperature or pressure. The gain can be used to normalize terms within a square root function. The output also has gain and bias constants for any further adjustment required.

Below are detailed the steps of the calculations according to schematic.

Schematic

PV Treatment

The range extension function has a graduated transfer, controlled by two constants referenced to IN. An internal value, g, is zero for IN less than RANGE_LO. It is one when IN is greater than RANGE_HI. It is interpolated from 0 to 1 over the range of RANGE_LO to RANGE_HI.

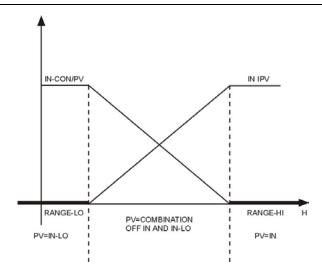
The equation for PV follows:

$$PV = g*IN + (1-g)*IN_LO$$

if:

 $IN < RANGE_LO$ or

IN_LO < RANGE_HI and status of IN is unusable and status of IN_LO is usable:


g = 0

IN > RANGE HI or

IN > RANGE_LO and status of IN is usable and status of IN_LO is unusable:

g = 1RANGE_LO \leq IN \leq RANGE_HI:

$$g = \frac{IN - RANGE_LO}{RANGE_HI - RANGE_LO}$$

If the status of IN_LO is unusable and IN is usable and greater than RANGE_LO, then g will be set to one. If the status of IN is unusable, and IN_LO is usable and less than RANGE_HI, then g will be set to zero. In each case the PV will have a status of Good until the condition no longer applies.

Otherwise, the status of IN_LO is used for the PV if g is less than 0.5, while IN is used for g greater than or equal to 0.5.

Auxiliary Inputs Treatment

Six constants are used for the three auxiliary inputs. Each has a BIAS_IN_i and a GAIN_IN_i. The output has a BIAS and GAIN static constant. For the inputs, the bias is added and the gain is applied to the sum. The result is an internal value called t_i in the function equations.

 $t_i = (IN_i + BIAS_IN_i) * GAIN_IN_i$

Algorithm Calculation

The flow compensation functions have limits on the amount of compensation applied to the PV, to assure graceful degradation if an auxiliary input is unstable.

The following equations have the compensation factor limited to COMP_HI_LIM and COMP_LO_LIM:

- flow compensation, linear
- flow compensation, square root
- flow compensation, approximate
- BTU flow
- · Traditional multiply divide

Arithmetic exceptions:

- a) Division by zero will produce a value equals to OUT_HI_LIM or OUT_LO_LIM, it depends on the sign of PV.
- b) Roots of negative numbers will produce the root of the absolute value, with a negative sign.

Output Calculation

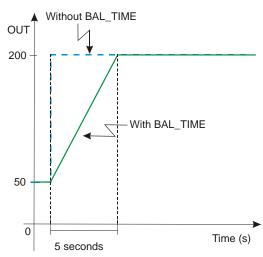
At the end of the algorithm calculation, the GAIN and the BIAS are applied at the final value. The output still can be limited using the absolute limits of high and low (OUT_HI_LIM and OUT_LO_LIM).

MINIMUM CONFIGURATION

RANGE_HI and RANGE_LO: If the range extension function is not used, these two parameters must be set to +INF and -INF, respectively. The inputs IN_1, IN_2 and IN_3 must be configured according to the equation type selected (see in the table the available equation types), or using INPUT OPTS to disable determined input. Therefore the PV will be a copy of IN.

If the ARITH_TYPE is one of five first equations, the COMP_HI_LIM and COMP_LO_LIM parameters must be set properly. The default value of COMP_HI_LIM parameter is zero.

As the default value of GAIN parameter is zero, it is necessary to set a suitable value.


Manual to Automatic Transition

The writing in the OUT is enabled when the block is in Man mode. During the Manual to Automatic transition, if the BALT_TIME parameter does not have configured, i.e., with the value equals to 0, the transition of the output from the written value to the calculated value will be performed with bump, such as a pulse (positive or negative). BAL_TIME parameter allows a bumpless transition for the output. It is set in seconds. See the example below:

Consider the values:
IN_1=10
GAIN_IN_1=10
BIAS_IN_1=5
IN_2=10
GAIN_IN_2=10
BIAS_IN_2=5
ARITH_TYPE=Traditional summer
BIAS=0
GAIN=2
BAL_TIME=5 (seconds)

OUT (calculated by block)=200

OUT(written by user)=50

BLOCK_ERR

The BLOCK ERR of the Arithmetic block will reflect the following causes:

- Block Configuration Error the configuration error occurs when the ARITH_TYPE has an
 invalid value:
- Out of Service When the block is in O/S mode.

Supported Modes

O/S, Man and Auto.

Status Handling

The status of PV depends on the factor "g", if it is less than 0.5, then it will be used the status of IN_LO, and otherwise it will be the status of IN.

The INPUT_OPTS parameter allows the usage of auxiliary inputs with less than good status. The status of unused inputs is ignored.

The status of the output will be that of the PV, except for when the status of PV is good and the status of a used auxiliary input is not good and INPUT_OPTS is not configured to use it. In this case, the status of OUT will be Uncertain.

Parameters

ldx	Parameter	DataType (length)	Valid Range/ Options	Default Value	Units	Store/ Mode	Description
1	ST_REV	Unsigned16		0	None	S/RO	
2	TAG_DESC	OctString(32)		Spaces	Na	S	
3	STRATEGY	Unsigned16		0	None	S	
4	ALERT_KEY	Unsigned8	1 to 255	0	None	S	
5	MODE_BLK	DS-69		O/S	Na	S	See Mode Parameter.
6	BLOCK_ERR	Bitstring(2)			E	D/RO	
7	PV	DS-65			PV	D/RO	Process analog value for use in executing the function.
8	OUT	DS-65			OUT	D / Man	The analog value calculated as a result of executing the function.
9	PRE_OUT	DS-65			OUT	D/RO	Displays what would be the OUT value and status if the mode was Auto or lower.
10	PV_SCALE	DS-68		0	PV	S	The engineering units index for display.
11	OUT_RANGE	DS-68		0	OUT	s	The engineering units of the output for display.
12	GRANT_DENY	DS-70		0	na	D	Options for controlling access of host computer and local control panels to operating, tuning and alarm parameters of the block.
13	INPUT_OPTS	Bitstring(2)		0	na	s/oos	Option bit string for handling the status of the auxiliary inputs.
14	IN	DS-65			PV	D	The primary input of the block
15	IN_LO	DS-65			PV	D	Input for the low range transmitter, in a range extension application.
16	IN_1	DS-65			None	D	Numbered input 1.
17	IN_2	DS-65			None	D	Numbered input 2.
18	IN_3	DS-65			None	D	Numbered input 3.
19	RANGE_HI	Float		0	PV	s	Constant value above which the range extension has switched to the high range transmitter.
20	RANGE_LO	Float		0	PV	s	Constant value below which the range extension has switched to the low range transmitter.
21	BIAS_IN_1	Float		0	None	S	The constant to be added to IN_1.
22	GAIN_IN_1	Float		0	None	s	The constant to be multiplied times (IN_1 + bias).
23	BIAS_IN_2	Float		0	None	S	The constant to be added to IN_2.
24	GAIN_IN_2	Float		0	None	s	The constant to be multiplied times (IN_2 + bias).
25	BIAS_IN_3	Float			None	S	The constant to be added to IN_3.
26	GAIN_IN_3	Float		0	None	s	The constant to be multiplied times (IN_3 + bias).
27	COMP_HI_LIM	Float		0	None	s	The high limit imposed on the PV compensation term.
28	COMP_LO_LIM	Float		0	None	s	The low limit imposed on the PV compensation term.

ldx	Parameter	DataType	Valid Range/	Default	Units	Store/	Description
IUA	raiailletei	(length)	Options	Value	Oilles	Mode	Description
29	ARITH_TYPE	Unsigned8	1= Flow comp. linear 2= Flow comp. square root 3= Flow comp. approx. 4= BTU flow 5= Traditional mult. div. 6= Average 7= Traditional summer 8= Fourth order polynomial 9= HTG comp. level	0	Е	S	It identifies the equation that will be used.
30	BAL_TIME	Float	Positive	0	Sec	S	This parameter specifies the time in order to have a bumpless transition in the output during the Manual to Automatic transition.
31	BIAS	Float		0	OUT	s	The bias value used in computing the function block output, expressed in engineering units.
32	GAIN	Float		0	None	s	Dimensionless value used by the block algorithm in calculating the block output.
33	OUT_HI_LIM	Float		100	OUT	S	Limits the maximum output value.
34	OUT_LO_LIM	Float		0	OUT	S	Limits the minimum output value
35	UPDATE_EVT	DS-73			Na	D	This alert is generated by any change to the static data.
36	BLOCK_ALM	DS-72			Na	D	The block alarm is used for all configuration, hardware, connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.

 $\label{lem:eq:$

Gray Background Line: Default Parameters of Syscon

If DIAG.BEHAVIOR parameter is "Adapted":

The default value of ARITH_TYPE is the Gas flow compensation for linear transmitters, equation type 1.

The required mode for writing is the Actual mode for the OUT parameter, regardless the Target mode.

Equation Types

ARITH_TYPE	Equation
1 Flow comp. Linear	$OUT = PV * f * GAIN + BIAS$ where $f = \left[\frac{T1}{T2}\right]$ (*)
2 Flow comp. Square root	$OUT = PV * f * GAIN + BIAS$ where $f = \left[\sqrt{\frac{T1}{T2*T3}} \right]$ (*)
3 Flow comp. Approx.	$OUT = PV * f * GAIN + BIAS$ where $f = \left[\sqrt{T1 * T2 * T3^2} \right]$ (*)
4 BTU flow	OUT = PV * f * GAIN + BIAS where $f = [T1 - T2]$ (*)
5 Traditional mult. div.	$OUT = PV * f * GAIN + BIAS$ where $f = \left[\frac{T1}{T2} + T3\right]$ (*)
6 Average	$OUT = \frac{PV + T1 + T2 + T3}{f} * GAIN + BIAS$ Where f is number of inputs used in computation (unusable inputs are not used)
7 Traditional summer	OUT = (PV + T1 + T2 + T3)*GAIN + BIAS
8 Fourth order polynomial	$OUT = (PV + T1^2 + T2^3 + T3^4) * GAIN + BIAS$
9 HTG comp. Level	$OUT = \frac{PV - T1}{PV - T2} * GAIN + BIAS$

^(*) It is limited by COMP_HI_LIM and COMP_LO_LIM parameters

Examples

ARITH_TYPE	Example	Example equation	Note
1	Gas flow compensation for linear transmitters (e.g. turbine)	$Q_b = Q_f * K * \frac{P}{T}$	
2	Gas flow compensation For DP transmitters.	$Q_b = Q_f * K* \sqrt{\frac{P}{T*Z}}$	Z may be constant or an input from other block (AGA3)
3	Approx. liquid & steam flow comp.	$Q_b = Q_f * K * \sqrt{(K + K * T + K * T^2)}$ $Q_b = Q_f * K * \sqrt{(K + K * P)}$	Temperature connected to 3 and 4
4	BTU meter (heat flow)	$Q_{HEAT} = K * Q_{VOL} * (t_1 - t_2)$	
5	Simple "hard" (non-cascade) ratio	$Q_{SP} = Q_{WILD} * RATIO$	output is setpoint to PID block
6	Average of four temperature measurements	$t_a = \frac{t_1 + t_2 + t_3 + t_4}{f}$	
7	Difference in pressure (or level)	$P_{bm} = P_b - P_m$	
9	Simple HTG compensated level	$h_{BT} = \frac{P_B - P_T}{P_B - P_M} * h_{BM}$	

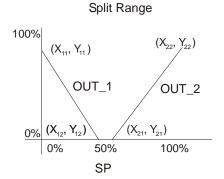
NOTE: Square root of the third power may be achieved by selecting ARITH_TYPE = 3 and connecting input to IN and IN_1. Square root of the fifth power may likewise be achieved by connecting the input to IN, IN_1 and IN_3.

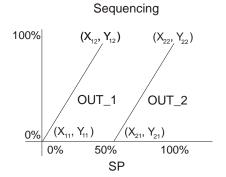
SPLT-Splitter

Description

The Splitter block provides the capability to drive multiple outputs from a single input, usually a PID. This block would normally be used in split ranging or sequencing of multiple valve applications. Included in the block features are the capability to open valves as part of a predetermined schedule and leave open or closed a given valve after the controller has transitioned off the valve. The splitter supports two outputs. Since this block will participate in the control path after a PID block, back calculation support is included.

The application(s) targeted for the splitter block would be a single output from a controller which is used to control up to two valves in either split ranging fashion or as sequenced operation. Split ranging is that application where two valves are used such as a reactor where heating and cooling must be applied by the same controller. The controller action, direct or reversing, is implicitly reversed owing to the change in slope of the function as the input increases or decreases. Sequencing as applied to this document is when two or more valves are used to manipulate the flow of some material and the controller action is not reversed implicitly or otherwise. An example is pH control where added valves are required to increase the loop rangeability.


The following parameters are used to specify the signal splitter operation:


X11, Y11 X12, Y12

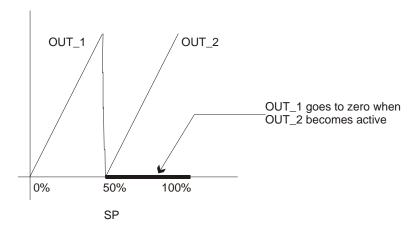
X21, Y21 X22, Y22

Where X_{nJ} is the value of CAS_IN associated with OUT_n and X_{n1} and X_{n2} refers to the 1st and 2nd coordinates respectively. The Y values are defined in the same way.

A graphical representation of OUT_1 and OUT_2 vs. SP is shown below. Both a Split range and Sequencing application are shown.


IN_A	IN_ARRAY								
1	X ₁₁								
2	X ₁₂								
3	X ₂₁								
4	X ₂₂								

OUT_ARRAY							
1	Y ₁₁						
2	Y ₁₂						
3	Y ₂₁						
4	Y ₂₂						


By specifying the coordinates as shown above the endpoints of the lines are defined. The contents of the respective X's and Y's are held in IN_ARRAY and OUT_ARRAY parameters. If a set of points is specified such that a region of the input range is not specified, then the block will interpolate to the endpoint of the input value, either high or low.

The parameter LOCKVAL provides an option to specify whether OUT_1 remains at its ending level when control is switched to OUT_2, or goes to zero. If LOCKVAL is true, OUT_1 remains at its current value when OUT_2 is non-zero. If LOCKVAL is false then as soon as the OUT_2 becomes non-zero then OUT_1 goes to zero. The parameter OUT_1 will be the initial value if LOCKVAL = FALSE and the parameter OUT_ARRAY must be "Sequencing".

In the situation below, LOCKVAL = TRUE.

In the situation below, LOCKVAL = FALSE.

The HYSTVAL parameter determines the hysteresis value in the switching point that may be required because the output may change by a full stroke of the valve. The OUT may be determined of the following way:

- If X <= X12-HYSTVAL, OUT_1 may be determined by the calculated y value.
- If X12-HYSTVAL < X < X12 and X has not reached X12 since it was less than X12-HYSTVAL, OUT_1 may be determined by the calculated y value.
- If X12-HYSTVAL < X < X12 and X has reached X12 since it was less than X12-HYSTVAL, OUT_1 may be determined by the LOCKVAL setting.
- If X12 < X, OUT_1 may be determined by the LOCKVAL setting.

BLOCK_ERR

The BLOCK_ERR of the Splitter block will reflect the following causes:

- Block Configuration Error there is configuration error when the Actual mode changes to OOS in the cases:
 - When the LOCKVAL parameter has an invalid value;
 - When the IN_ARRAY value (X axis) has one of the conditions: X21 < X11, X12<=X11, X22<=X21.
- Out of Service When the block is in O/S mode.

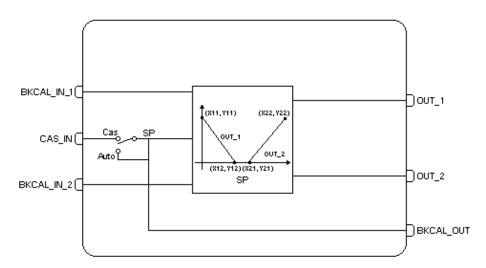
Supported Modes

O/S, IMAN, Auto and Cas.

Status Handling

Sub-status values received from CAS_IN will be passed to both outputs, except for those used in the cascade handshake.

The STATUS_OPTS "IFS if Bad CAS_IN" is supported.


If the STATUS_OPTS "Propagate Failure Backward" is selected, the block propagates the failure only if both BKCAL_IN inputs show failure status.

The cascade initialization is also required when there is a Auto to Cas transition. The actions that occur are summarized in the following table:

Actual mode	BKCAL_IN_1	BKCAL_IN_2	BKCAL_OUT	ACTION
Iman	NI	NI	NI	Not specified
Auto or Cas	NI	ОК	ОК	BKCAL_OUT limited to X21 low and X22 high
Auto or Cas	ОК	NI	OK	BKCAL_OUT limited to X11 low and X12 high
Iman	IR	NI	IR	Initialize cascade to value given by curve X1 vs Y1
Auto or Cas	IR	ОК	OK	Initialize OUT_1 using internal offset from Y1
Iman	NI	IR	IR	Initialize cascade to value given by curve X2 vs Y2
Auto or Cas	ОК	IR	ОК	Initialize OUT_2 using internal offset from Y2

Legend: NI-not invited; IR-initialization request; OK-working in cascade

Schematic

Parameters

ldx	Parameter	Data Type (length)	Valid Range/ Options	Default Value	Units	Store/ Mode	Description
1	ST_REV	Unsigned16		0	None	S/RO	
2	TAG_DESC	OctString(32		Spaces	Na	S	
3	STRATEGY	Unsigned16		0	None	S	
4	ALERT_KEY	Unsigned8	1 to 255	0	None	S	

ldx	Parameter	Data Type (length)	Valid Range/ Options	Default Value	Units	Store/ Mode	Description
5	MODE_BLK	DS-69		O/S	Na	S	See Mode Parameter.
6	BLOCK_ERR	Bitstring(2)			E	D/RO	
7	SP	DS-65				N / Auto	The analog set point.
8	OUT_1	DS-65			OUT1	D/RO	Numbered output parameter 1.
9	OUT_2	DS-65			OUT2	D/RO	Numbered output parameter 2.
10	OUT_1_RANGE	DS-68		0	Е	S	Scale range for the corresponding output.
11	OUT_2_RANGE	DS-68		0	E	S	Scale range for the corresponding output.
12	GRANT_DENY	DS-70		0	Na	D	Options for controlling access of host computer and local control panels to operating, tuning and alarm parameters of the block.
13	STATUS_OPTS	Bitstring(2)		0	Na	s/oos	Options which the user may select in the block processing of status.
14	CAS_IN	DS-65				D	This parameter is the remote setpoint value, which must come from another Fieldbus block, or a DCS block through a defined link.
15	BKCAL_OUT	DS-65				D/RO	The value and status required by an upper block's BKCAL_IN so that the upper block may prevent reset windup and provide bumpless transfer to closed loop control.
16	IN_ARRAY	4 Floats		0's		s	An array which contains the values of the input or X variables.
17	OUT_ARRAY	4 Floats		0's		s	An array which contains the values of the output or Y variables.
18	LOCKVAL	Unsigned8	1- No Lock 2 - Lock	0 - Unitialized	E	S	It allows to keep the OUT_1 when OUT_2 is different of zero.
19	BKCAL_IN_1	DS-65				N	The back calculated input required to initialize a lower cascade 1.
20	BKCAL_IN_2	DS-65				N	The back calculated input required to initialize a lower cascade 2.
21	BAL_TIME	Float		0	Sec	S	This specifies the time for the OUT_x (from BKCAL_IN value) reaches the work value after a cascade initialization with the down block in order to have a bumpless transition
22	HYSTVAL	Float	Positive or zero	0	None	S	It sets the hysteresis for the operation of the LOCKVAL parameter.
23	UPDATE_EVT	DS-73			Na	D	This alert is generated by any change to the static data.
24	BLOCK_ALM	DS-72			na	D	The block alarm is used for all configuration, hardware, connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.

Legend: E - Enumerated parameter; Na - Dimensionless parameter; RO - Read only; D - dynamic; N - non-volatile; S - static

Gray Background Line: Default Parameters of Syscon

If DIAG.BEHAVIOR parameter is "Adapted":

- The required mode for writing is the Actual mode for the SP parameter, regardless the Target mode.
- The Default value of LOCKVAL parameter is "No Lock".
- The Default value of IN_ARRAY parameter is [0,50,50,100] and OUT_ARRAY parameter is [100,0,0,100].

CHAR - Signal Characterizer

Description

The block calculates OUT_1 from IN_1 and OUT_2 from IN_2, according to a curve given by the points:

$$[X_1; y_1], [X_2; y_2], ..., [X_{21}; y_{21}]$$

Where x corresponds to the Input and y to the Output. The x-coordinates are given in engineering units of X RANGE. The y-coordinates are given in engineering units of Y RANGE.

The path is represented by IN_1 and OUT_1, and the path 2 is represented by IN_2 and OUT_2. OUT_1 is related to IN_1 and OUT_2 is related to IN_2 using the same curve, but there is no correlation between IN_1 and IN_2 or between OUT_1 and OUT_2.

In order to determine the output values, the linear correlation between two points of the curve is calculated according to the input.

The output will be limited when the input is lower than the minor value of the curve (x1;y1) or upper than the bigger value of the curve (xm;ym). The limit will be indicated in the output status.

For the correct action of the algorithm, the x values must be crescent.

If the curve has m points, m<21, the non-configured points, $[x_{m+1}; y_{m+1}]$, $[x_{m+2}; y_{m+2}]$,.... $[x_{21}; y_{21}]$ shall be set with +INF

The input status is passed to the corresponding output, so the block can be used in control mode

Inverting Path 2

Optionally, IN_2 and OUT_2 meanings can be inverted providing a back path of the value for the same curve. When the SWAP_2 parameter is set to "Swap", the inversion is done as follows:

- IN_1 = x and OUT_1 = y (it does not have changes)
- IN_2 = y and OUT_2 = x (the curve is inverted). In this situation, IN_2 uses the engineering units of Y_RANGE and OUT_2 uses the engineering units of X_RANGE.

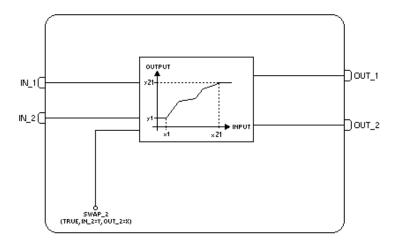
When using "Swap" option, the curve must be monotonic in y-axis too.

The curve is called monotonic when y-values always increase or decrease, and x-values increase, that is, there are neither tops nor bottoms in the curve.

BLOCK ERR

The BLOCK_ERR will reflect the following causes:

- Block Configuration Error the configuration error occurs when the SWAP_2 parameter is not initialized or the curve has any of the following problems:
 - CURVE_X[i] > CURVE_X[I+1]
 - If the curve is not using effectively 21 points and any non-configured point is different from +INF.
 - o If SWAP_2 is set to "Swap" and the curve is not monotonic.
- Out of Service it occurs when the block is in O/S mode.


Supported Modes

O/S and AUTO.

Status Handling

The quality and sub-status of OUT_1 and OUT_2 reflect the status of IN_1 and IN_2, respectively. If one of the curve limits is reached, the appropriate limit is indicated. Limits are reversed if the curve slope is negative.

Schematic

Parameters

ldx	Parameter	Data Type (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
1	ST_REV	Unsigned16		0	None	S/RO	
2	TAG_DESC	OctString(32)		Spaces	Na	S	
3	STRATEGY	Unsigned16		0	None	S	
4	ALERT_KEY	Unsigned8	1 to 255	0	None	S	
5	MODE_BLK	DS-69		O/S	Na	S	See Mode Parameter
6	BLOCK_ERR	Bitstring(2)			E	D/RO	
7	OUT1	DS-65			Υ	D/RO	Numbered output parameter 1. The interpolation result of IN_1.
8	OUT2	DS-65			X or Y	D/RO	Numbered output parameter 2. The interpolation result of IN_2.
9	X_RANGE	Unsigned16			E	S	The engineering unit of the variables corresponding to the x-axis for display.
10	Y_RANGE	Unsigned16			E	S	The engineering unit of the variables corresponding to the y-axis for display.
11	GRANT_DENY	DS-70		0	Na	D	Options for controlling access of host computer and local control panels to operating, tuning and alarm parameters of the block.
12	IN_1	DS-65				D	Numbered input parameter 1.
13	IN_2	DS-65				D	Numbered input parameter 2.
14	SWAP_2	Unsigned8	1 – No Swap 2 - Swap	0	Na	S	0 – Unintialized 1 – No Swap – It does not invert the curve to OUT_2 2 – Swap – It inverts the curve for OUT_2
15	CURVE_X	21 Floats		0's	х	S	Curve input points. The \mathbf{x}_i points of the curve are defined by an array of twenty points.
16	CURVE_Y	21 Floats		0's	Y	S	Curve output points. The y_i points of the curve are defined by an array of twenty points.
17	UPDATE_EVT	DS-73			na	D	This alert is generated by any change to the static data.

ldx	Parameter	Data Type (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
18	BLOCK_ALM	DS-72			na	D	The block alarm is used for all configuration, hardware, connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.

Legend: E - Enumerated parameter; Na - Dimensionless parameter; RO - Read only; D - dynamic; N - non-volatile; S - static

Gray Background Line: Default Parameters of Syscon

If DIAG.BEHAVIOR parameter is "Adapted": The default value of BYPASS is "No Swap". The default value of all elements of CURVE_X is +INF.

The default value of all elements of CURVE_Y is +INF.

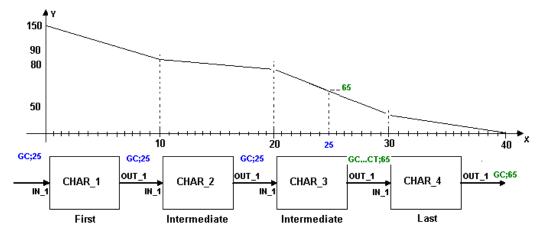
ECHAR – Enhanced Signal Characterizer

Description

The ECHAR block has all parameters of the CHAR block. Additionally it provides cascade operation. The CAS_CONTROL parameter allows the cascade operation for the block (it supports more than 21 points in the curve). To do this, it is necessary to configure in the CAS_CONTROL parameter as follows:

- Indicate which is the first (FIRST), the intermediate blocks (INTERMEDIATE) and the last block (LAST) of the CHAR series. Thus, the input parameters will be limited by the lower X value of the curve indicated by FIRST (Low Limit) and the upper X value of the curve indicated by LAST (High Limit).
- The first, intermediate and last values are for the two inputs: IN 1 and IN 2.
- When the CAS_CONTROL value is equal 0 (None), the block will work as "Alone".

To work in series, the CURVE_X parameter must be always crescent in relation to the points inside the block and also in relation to the other blocks of the CHAR cascade. For example, the order of the block configuration of the example below must be followed:


- 1. CHAR1 CAS_CONTROL = "First"
- 2. CHAR2 CAS_CONTROL = "intermediate"
- 3. CHAR3 CAS_CONTROL = "intermediate"
- 4. CHAR4 CAS_CONTROL = "Last"

If the order was not followed correctly, the blocks will not indicate configuration error, but the algorithm will not work correctly.

To work properly with the cascade, the first values X and Y of the block must be equal to the last value of the previous block. If the values are not equal to, the block will calculate the interpolation between the points.

The cascade will work as only one ECHAR block. Therefore, it supports more points than only one block. If a determined input is lower than the low X value of the first block, the last block will indicate the corresponding Y value with the output status "Low Limited". If the input is upper than the bigger X value of the last block, the corresponding Y value will be indicated with the "High Limited" status. The status are inverted if the angular coefficient of the curve is negative.

In the following example, it considers the input value for the "FIRST" block (CHAR_1) is 25. The value is repassed for the CHAR_1 and CHAR_2 blocks because the input value is out of the curve limits of these blocks. The value is "resolved" by the CHAR_3 block that repasses the Y correspondent value for the following block, as well the "Constant" Status Limit. Thus, the following blocks (CHAR_4 in the example), when check the input with "Constant" limit, know the value was already "resolved" and repass it for the output.

The Cascade Swap is supported, since the curve was monotonic in the whole extension(always increasing or decreasing). There is no check if the curve is monotonic for all cascade blocks, thus if the curve was not monotonic, the result will be the first Y value found.

The user must certify the curve is monotonic for all cascade blocks. If it is increasing in one part and decreasing in another, the cascade can nor work properly.

Parameters

The ECHAR block has all parameters of the CHAR block, plus the parameter showed below:

ldx	Parameter	Data Type (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
19	CAS_CONTROL	Unsigned8	0 – None 1 – First 2 – Intermediate 3 – Last	0	E	S/O/S	It allows the cascade block operation: 0 – it does not support CHAR cascade 1 – First – it is the first block of the curve 2 – Intermediate – it is the intermediate block of the curve 3 – Last – it is the last block of the curve

Legend: E – Enumerated parameter; Na – Dimensionless parameter; RO – Read only; D – dynamic; N – non-volatile; S - static

Gray Background Line: Default Parameters of Syscon

INTG - Integrator

Description

The Integrator Function Block integrates a variable in function of the time or accumulates the counting of a Pulse Input block. The integrated or accumulated value is compared to pre-trip and trip limits, generating discrete signals when these limits are reached. The integrated value may go up, starting from zero, or down, starting from the trip value (parameter SP). The block has two inputs to calculate flow. This block can be also used to calculate volume or mass variation in tanks.

In order to determine the sum of uncertain or bad readings, the block integrates the variables with bad or uncertain status, separately. The values used in this second integration are the good values before they change to uncertain or bad.

The basic function of the Integrator block is to integrate an analog value over time. It can also accumulate the count pulses coming from Pulse Input blocks or from another Integrator Block. This block is normally used to totalize flow, giving total mass or volume over a certain time, or totalize power, giving the total energy.

Inputs

The block has two dual purpose inputs: IN_1 and IN_2. Each input can receive a measurement per unit of time (rate) or an accumulated number of pulses. Each input can receive one of the following types of variables:

RATE – it is used when the variable connected is a rate (For example: 10 kg/s, 50 Gal/h, etc.). This input can come from the output OUT of a Pulse Input block or from the output of an Analog Input block.

ACCUM – (Accumulation) it is used when the input is an accumulation, it comes from a continuous accumulation of pulses, for example when it is connected to the OUT_ACCUM of a Pulse Input block. Another application can be an accumulation when it is connected to the Integrator block, in this case can be a relative totalization related to the first one.

The input type is configured in the bit string parameter INTEG_OPTS. The bits corresponding to IN_1 and IN_2 can be set to false when the input type is RATE, or true when the input type is ACCUM

For RATE input option

Each input needs a parameter to define the flow time unit: [TIME_UNIT1] or [TIME_UNIT2]. The time units are used to convert the two flows in units of mass, volume or energy per second.

The second analog input can be converted into the same units of the first input. This is achieved by a unit conversion factor, given by the parameter [UNIT_CONV].

Each flow, multiplied by the block execution time, gives the mass, volume or energy increment per block execution. This increment will be added or subtracted in a register, according to some rules defined ahead.

The following diagram is an example of using two inputs of RATE type:

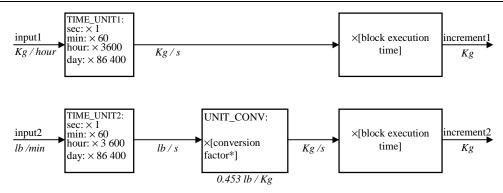


Fig. 1 - Increment calculation with rate input

For ACCUM input option

The counter inputs are originated in OUT_ACCUM output of the Pulse Input block. It can also be connected to the output of another Integrator block, and it has s relative totalization related to the first one.

The Integrator block shall determine the variation of the counter input readings since the last execution.

As the output ACCUM_OUT of the Pulse Input block wraps up when the counting reaches 999,999 and does not increment or decrement by more than 499,999 per cycle, the variation is determined as follows:

- a) If the difference between the reading in one cycle and the reading in the preceding cycle is smaller than 500,000 or larger than (-500,000), the difference will be taken as variation.
- If the difference between the reading in one cycle and the reading in the preceding cycle is larger or equal to (+500,000), add (-1.000,000) and use the result as the variation.
- c) If the difference between the reading in one cycle and the reading in the preceding cycle is smaller or equal to (-500,000), add (+1.000,000) and use the result as the variation.

If the output OUT of another Integrator block is used, that block should be programmed to have only increasing counting.

The variation of each input must be multiplied by the value, in engineering units, of each pulse given by: **PULSE_VAL1** and **PULSE_VAL2**. The result is the increment in engineering units of, for example, mass, volume or energy per block execution.

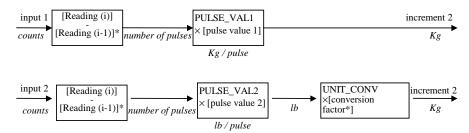


Fig. 2- Increment calculation with counter input

Net Flow

In order to distinguish forward and reverse flows, the Integrator block considers a negative sign as an indication of reverse flow. Some flow meters already indicate forward and reverse flows by adding a sign to the measurement value. Others use a separate binary signal.

This signal can be connected to the inputs REV_FLOW1 and REV_FLOW2, with the following options:

0 = False (not invert signal)

1 = True (invert signal)

Where True will invert the signal of the IN_i signal.

The net flow is obtained by adding the two increments. The net increment will have a positive or negative signal to indicate the net flow direction. In order to integrate the difference between the inflow and outflow of a tank, for example, the second one can be assigned to be negative.

The net flow direction to be considered in the totalization is defined in INTEG_OPTS. The following options are available:

FORWARD = only positive flows (after application of REV_FLOWi) are totalized. The negative values will be treated as zero. FORWARD is selected when the bit corresponding to Forward is set to *true*.

REVERSE = only negative flows are totalized. The positive values will be treated as zero. The option bit Reverse must be set to *true*.

TOTAL= both positive and negative values will be totalized. Both option bits Forward and Reverse must be set to *true* or to *false*.

Integration of Inputs

There are two values for the totalization:

TOTAL = The net increment is added every cycle, regardless of status.

ATOTAL = The absolute value of the net increment is added every cycle, regardless of status.

RTOTAL = The absolute value of the net increments with bad status (rejects) are added to this register.

The OUT has the value of the TOTAL register, and the RTOTAL has the value of the RTOTAL register.

The status that will be considered as usable for the algorithm are defined in INTEG_OPTS parameter:

USE UNCERTAIN = Use good and uncertain inputs when this bit is set to true.

USE_BAD = Use the last *good* or *uncertain* input before it went to *bad* when this bit is set to *true*.

Integration Types

The integration can start from zero and go up or it can start from a Setpoint value (TOTAL_SP) and go down. The totalization may be reset automatically, periodically or by batch. This is defined by the parameter INTEG_TYPE:

- UP_AUTO Counts up starting from zero with automatic reset when SP is reached
- UP_DEM Counts up starting from zero with demand reset
- DN_AUTO Counts down starting from SP with auto reset when zero is reached
- DN_DEM Counts down starting from SP with demand reset
- PERIODIC Counts up and is reset periodically according to CLOCK_PER
- DEMAND Counts up and is reset on demand
- PER&DEM Counts up and is reset periodically or on demand

Resetting the Totals

The block has a discrete input (RESET_IN) to reset the totalization. If this parameter is set to 1, the block will be in Reset. It initializes the totalization only after going to false. The operator can send an operator command by making OP_CMD_INT = RESET, because it has the same effect that the RESET_IN parameter.

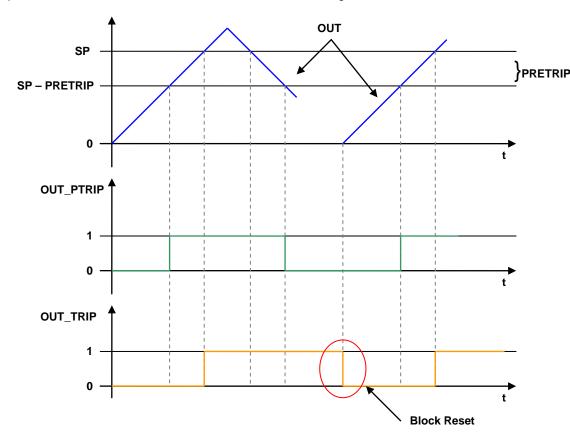
Block takes a snapshot of TOTAL(OUT), RTOTAL and TOTAL_SP prior the Reset and keeps the information in the registers STOTAL, SRTOTAL and SSP, respectively. The information is kept at least until the next reset.

The integrator shall reject reset requests for 5 seconds after a reset. This is to guarantee that the snapshots values are exposed to FIELDBUS before they can be overwritten. The option Confirm Reset in INTEG_OPTS, if set, prevents another reset from occurring until the value 1 has been written to RESET_CONFIRM. This provides a guarantee that another equipment has recorded the snapshot values before the next reset can occur.

The number of resets is counted in the register N_RESET. This counter can not be written or reset. It provides verification that the total has not been reset since N_RESET was last checked.

Reset always clears the internal registers Total, Atotal and Rtotal, except that when the option UP_AUTO or DN_AUTO is selected, a residual value beyond the trip value may be carried to the next integration if the option Carry is set in INTEG_OPTS. In this case, TOTAL_SP is subtracted from Total, leaving the residual value.

Batch Totalizer Outputs

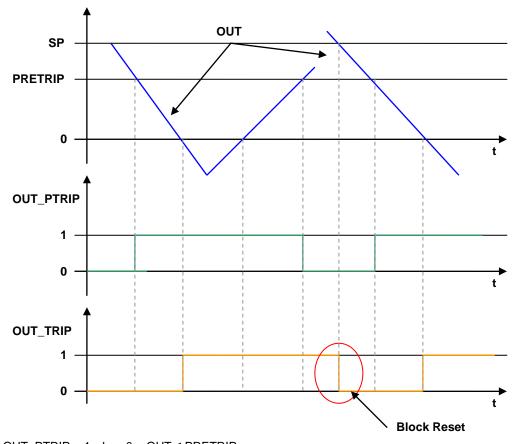

When the integration is counting up (type 1 or 2) and the value of OUT equals or exceeds a value given by TOTAL_SP minus PRE_TRIP then the discrete output OUT_PTRIP is set. When it equals or exceeds a value given by the parameter TOTAL_SP, the discrete output OUT_TRIP is set. OUT_PTRIP remains set.

When the integration is counting down (type 3 or 4), it starts from a value given by TOTAL_SP. When the value of OUT is equal to or less than PRE_TRIP, the discrete output OUT_PTRIP is set. When the count reaches zero, the discrete output OUT_TRIP is set. OUT_PTRIP remains set.

Examples for Positive and Negative Totalizations

- Positive Totalization

For positive totalization, the options UP_AUTO, UP_DEM and PERIODIC must be selected. The parameters OUT_TRIP and OUT_PTRIP will be as shown in figure below:



OUT_PTRIP = 1 when SP > OUT ≥SP-PRETRIP
OUT_PTRIP = 0 when OUT < SP-PRETRIP or OUT> SP
OUT_TRIP = 1 when OUT ≥ SP

OUT_TRIP = 0 when block has a Reset (OUT = 0)

Negative Totalization

For negative totalization, the options DN_AUTO and DN_DEM must be selected. The parameters OUT_TRIP and OUT_PTRIP will be as shown in figure below:

OUT_PTRIP = 1 when 0 < OUT ≤ PRETRIP OUT_PTRIP = 0 when OUT > PRETRIP or OUT ≤ 0

 $OUT_TRIP = 1$ when $OUT \le 0$

OUT_TRIP = 0 when block has a Reset (OUT = SP)

BLOCK ERR

The BLOCK_ERR of the INTG block will reflect the following causes:

- Block Configuration Error the configuration error occurs when TIME_UNIT1, TIME_UNIT2 or INTEG_TYPE parameters have an invalid value;
- Out of Service it occurs when the block is in O/S mode.

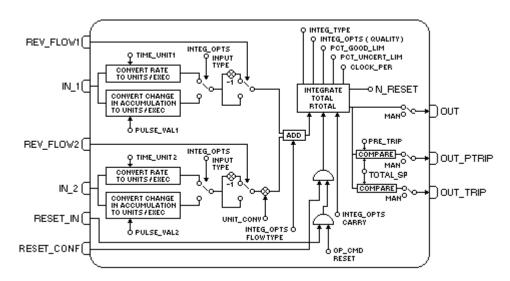
Supported Modes

O/S, MAN and AUTO.

Status

If IN_1 or IN_2 is not connected, it will be ignored. The configuration of INTEG_OPTS (Use Bad / Uncertain) will be applied to the worst status between IN_1 and IN_2. And OUT will receive the status determined by GOOD_LIM and UNCERT_LIM as explained below:

The option Add zero if bad in INTEG_OPTS causes the net increment to be zero if its status is bad.


The percentage of bad or uncertain and bad counts may be determined by calculating the value of PCT_INCL as follows:

The output status follows the rule:

• The acceptable limit for good status is established by GOOD_LIM. The acceptable limit for Uncertain status is established by UNCERT_LIM;

- When the block mode is Automatic, if PCT_INCL ≥ UNCERT_LIM the status will be Uncertain, or bad;
- If the block mode is Manual, the output status will be Good (NC), Non Specific, Constant. If the "Uncertain if Man" option in STATUS_OPTS parameter is set, the output status will be Uncertain, Non Specific.

Schematic

Parameters

ldx	Parameter	Data Type (length)	Valid Range/ Options	Default Value	Units	Store/ Mode	Description
1	ST_REV	Unsigned16		0	None	S/RO	
2	TAG_DESC	OctString(32)		Spaces	Na	S	
3	STRATEGY	Unsigned16		0	None	S	
4	ALERT_KEY	Unsigned8	1 to 255	0	None	S	
5	MODE_BLK	DS-69		O/S	Na	S	See Mode Parameter
6	BLOCK_ERR	Bitstring(2)			E	D/RO	
7	TOTAL_SP	Float			OUT	N / Auto	The analog set point for trip detection.
8	OUT	DS-65			OUT	N / Man	The output is the result of the corresponding totalization of the RTOTAL register
9	OUT_RANGE	DS-68		0	OUT	S	The engineering units of the output for display.
10	GRANT_DENY	DS-70		0	Na	D	Options for controlling access of host computer and local control panels to operating, tuning and alarm parameters of the block.
11	STATUS_OPTS	Bistring(2)	Bit8: Uncertain if Man	0	Na	S/O/S	See Block Options.
12	IN_1	DS-65		0		D	Input parameter for flow 1.
13	IN_2	DS-65		0		D	Input parameter for flow 2.
14	OUT_TRIP	DS-66		0	On/Off	D	Output parameter for trip indication.
15	OUT_PTRIP	DS-66		0	On/Off	D	Output parameter for pre-trip indication.
16	TIME_UNIT1	Unsigned8	1:seconds 2:minutes 3:hours 4:days	0	E	S/Man	Converts the rate time units in seconds.

ldx	Parameter	Data Type (length)	Valid Range/ Options	Default Value	Units	Store/ Mode	Description		
17	TIME_UNIT2	Unsigned8	1:seconds 2:minutes 3:hours 4:days	0	E	S/Man	Converts the rate time units in seconds.		
18	UNIT_CONV	Float		1	none	S/Man	Factor to convert the engineering units of input 2 into the engineering units of input 1.		
189	PULSE_VAL1	Float		0	none	S/Man	Determines the mass, volume or energy per pulse. It is used only in accum mode.		
20	PULSE_VAL2	Float		0	none	S/Man	Determines the mass, volume or energy per pulse. It is used only in accum mode.		
21	REV_FLOW1	DS-66	0=FORWARD 1=REVERSE		E	D	It indicates reverse flow in IN_1 when true.		
22	REV_FLOW2	DS-66	0=FORWARD 1=REVERSE		E	D	It indicates reverse flow in IN_2 when true.		
23	RESET_IN	DS-66	0:Off 1:Reset		E	D	Resets the totalizer.		
24	STOTAL	Float		0	OUT	D	Indicates the snapshot of the totalizer - OUT parameter just before a reset.		
25	RTOTAL	Float		0	OUT	D	Indicates the totalization of bad or bad uncertain inputs, according to INTEG_OPTS.		
26	SRTOTAL	Float		0	OUT	D	The snapshot of RTOTAL just before a reset.		
27	SSP	Float		0	OUT	D	The snapshot of SP.		
28	INTEG_TYPE	Unsigned8	1=UP_AUTO 2=UP_DEM 3=DN_AUTO 4=DN_DEM 5=PERIODIC 6=DEMAND 7=PER&DEM	0	E	S	Defines the type of counting (up or down) and the type of resetting (demand or periodic)		
29	INTEG_OPTS	Bitstring(2)			none	S	A bit string to configure the type of input (rate or accum.) used in each input, the flow direction to be considered in the totalization, the status to de considered in TOTAL and others. See Block Options.		
30	CLOCK_PER	Float		0	Sec	S	Establishes the period for periodic reset, in seconds.		
31	PRE_TRIP	Float		0	OUT	S	Adjusts the amount of mass, volume or energy that will set OUT_PTRIP when the integration reaches (SP-PRE_TRIP) when counting up or PRE_TRIP when counting down.		
32	N_RESET	DS-65			none	N / RO	Counts the number of resets. It can not be written nor reset.		
33	PCT_INCL	Float			%	D/RO	Indicates the percentage of inputs with good state compared to the ones with bad or uncertain an bad stati.		
34	GOOD_LIM	Float	0 to 100%	0.1	%	S	Sets the limit for PCT_INCL. Below this limit OUT receives the status good.		
35	UNCERT_LIM	Float	0 to 100%	0.2	%	S	Sets the limit for PCT_INCL. Below this limit OUT receives the status uncertain.		
36	OP_CMD_INT	Unsigned8	0=Undefined 1=Reset		E	D	Operator command. RESET. Resets the totalizer.		

ldx	Parameter	Data Type (length)	Valid Range/ Options	Default Value	Units	Store/ Mode	Description
37	OUTAGE_LIM	Float	Positive	0	Sec	S	The maximum tolerated duration for power failure. This feature is not supported.
38	RESET_CONFIRM	DS-66	0:Off] 1: Confirm		E	D	Discrete value of the Reset confirmation to enable new Resets. This options is enabled when "Confirm reset" is selected in the INTEG_OPTS parameter.
39	UPDATE_EVT	DS-73			na	D	This alert is generated by any change to the static data.
40	BLOCK_ALM	DS-72			na	D	The block alarm is used for all configuration, hardware, connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.

Legend: E – Enumerated parameter; Na – Dimensionless parameter; RO – Read only; D – dynamic; N – non-volatile; S - static

Gray Background Line: Default Parameters of Syscon

If DIAG.BEHAVIOR parameter is "Adapted":

The default value of TIME_UNIT1 is seconds.

The default value of TIME_UNIT2 is seconds.

The default value of INTEG_TYPE is UP_DEM.

The required mode for writing is the Actual mode for the SP and OUT parameters, regardless the Target mode.

AALM - Analog Alarm

Description

The Analog Alarm Block provides alarm condition for process variable. Alarm conditions include high, high-high, low, and low-low alarms. These limits are computed based on gains and biases from a process setpoint input, thus providing dynamic deviation alarming. An option to temporarily expand alarm limits after a setpoint change is provided. Also, an alarm condition may be ignored for a specified period of time to avoid nuisance alarm reporting.

This block can also be used as a comparator by comparing IN to PSP. And also, it has a discrete output to indicate if there are one or more alarm conditions.

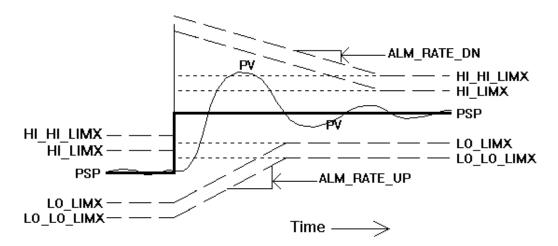
The input value, IN, is filtered according to the PV_FTIME time-constant, to become PV. PV is repassed by the alarm block.

Alarm limits may be dynamically calculated from process setpoint (PSP) or can be configured based on a fixed limit. The operating limits (same parameter names as limits, but suffixed with an "X") are calculated from specified gains and biases as follows:

HI_HI_LIMX = PSP * HI_GAIN + HI_HI_BIAS + EXPAND_UP (or default to HI_HI_LIM if any used parameter is undefined)

HI_LIMX = PSP * HI_GAIN + HI_BIAS + EXPAND_UP (or default to HI_LIM if any used parameter is undefined)

LO_LIMX = PSP * LO_GAIN - LO_BIAS - EXPAND_DN (or default to LO_LIM if any used parameter is undefined)


LO_LO_LIMX = PSP * LO_GAIN - LO_LO_BIAS - EXPAND_DN (or default to LO_LO_LIM if any used parameter is undefined)

Undefined means:

- HI_GAIN/HI_HI_BIAS = ± INF
- PSP_STATUS = BAD O/S

Expansion of the Alarm Limits

Effective alarm limits may be temporarily expanded on step setpoint changes to avoid nuisance alarms. The operating high alarm limits are increased by a calculated term, EXPAND_UP. The operating low alarm limits are decreased by a calculated term, EXPAND_DN. See the example in the following time chart:

Both the level 1 (advisory) and level 2 (critical) effective alarm limits are expanded after a setpoint change by the absolute value of the change to PSP. The expansions then decay toward the base limits at a rate determined by ALM_RATE_UP and ALM_RATE_DN parameters. The following rules are applied:

- The four limits initially expand by the same value, the setpoint change;
- The two high limits always expand by the same value, EXPAND_UP, and decay by the same rate, ALM_RATE_DN (which may differ from the low limits);
- The two low limits always expand by the same value, EXPAND_DN, and decay by the same rate, ALM_RATE_UP (which may differ from the high limits);
- The expansion feature may be suppressed in the upward direction by setting ALM_RATE_DN to zero or INF. The expansion feature may be suppressed in the downward direction by setting ALM_RATE_UP to zero or INF;
- Additional step setpoint changes prior to complete decay of a previous expansion will expand the alarm limits in each direction to the <u>maximum</u> of the remaining expansion value or new expansion value.

IGNORE_TIME

The existence of a new alarm condition may be temporarily ignored by setting the IGNORE_TIME parameter to the number of seconds to disregard the alarm. Both the reporting of the alarm and the possible change to PRE_OUT_ALM will be ignored during this time. This parameter does not delay the clearing of the existence of the alarm on return-to-normal. If the alarm condition does not persist for IGNORE_TIME seconds, it will not be reported.

OUT_ALM indication

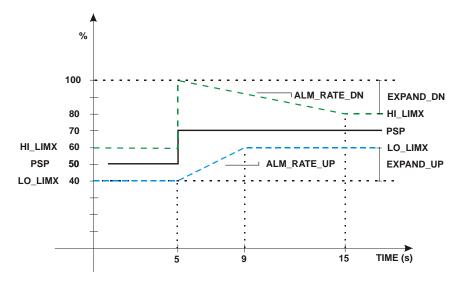
OUT_ALM parameter will be the PRE_OUT_ALM value when the block is in Auto mode.

PRE_OUT_ALM and OUT_ALM indicate the existence of one or more selected alarm conditions per the specification of the OUT_ALM_SUM parameter. Enumerated choices of the OUT_ALM_SUM parameter and their included alarm conditions are listed below:

OUT_ALM_ SUM	INCLUDED ALARM CONDITIONS											
	HI_HI_ALM	HI_ALM	LO_ALM	LO_LO_ALM								
ANY	✓	✓	√	✓								
LOWs			✓	✓								
HIGHs	✓	✓										
LEVEL1		✓	✓									
LEVEL2	✓			✓								
LO_LO				✓								
LO			√									
HI		✓										
HI_HI	✓											
NONE												

For example, if LOWs is chosen for OUT_ALM_SUM, either a LO_ALM or LO_LO_ALM being *true* will cause OUT_ALM to be set to *true*. If LEVEL1 is chosen for OUT_ALM_SUM, either a LO_ALM or HI_ALM being *true* will cause OUT_ALM to be set to *true*.

In order to the alarm occurs, the alarm conditions must be kept for more than 1 cycle of the block execution. It means that if in one execution cycle occurs one alarm and in the next cycle it stops, the alarm will not be notified, so it is possible to avoid nuisances.


The OUT_ALM parameter can be used for control purposes, for example, as an interlock signal, besides the basic function of alarm monitoring.

Example of Dynamic Alarm

There is an alarm example of LEVEL 1 type. It considers the values below:

- OUT_ALM_SUM = Level 1
- HI GAIN = 1
- HI_BIAS = 10
- LO_GAIN = 1
- LO_BIAS = 10
- ALM_RATE_DN = 2/seg
- ALM_RATE_UP = 5/seg

Initially, the PSP input is 50%, so the high alarm HI_LIMX is 60% and the low alarm LO_LIMX is 40%. In any time, the PSP input receives a step equals to 20, going to 70%. In this moment, the high alarm increases up to 100% and decreases in the ALM_RATE_DN rate. The low alarm decreases down to 40% and increases in the ALM_RATE_UP rate.

Simple alarm calculation: static alarm limits, no expansion and no delay to detection

The alarm limits will be static (HI_HI_LIM, HI_LIM, LO_LIM and LO_LO_LIM are the effective operating alarm limits) if the corresponding gain or bias is +/- INF, or the input PSP is left unconnected with status Bad – O/S.

The alarm limit expansion will be disabled by setting ALM_RATE_DN and ALM_RATE_UP to zero.

The detection of an alarm will be without delay setting IGNORE_TIME to zero.

Supported Modes

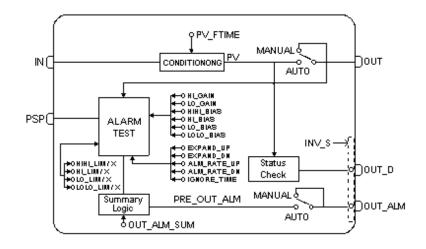
O/S, MAN and AUTO.

Status Handling

The block will not filter an IN value with a bad status or uncertain status (and "Use Uncertain" option in STATUS_OPTS is not set), but will instead, filter to the last usable value of PV and assign it the unusable status from IN. When the status of IN returns to a usable value (good or uncertain [and "Use Uncertain" option in STATUS_OPTS is set]), the value of PV will again be filtered toward the value of IN with the status of IN.

The status of OUT is set to the status of PV (and IN) when in auto mode.

If the worst quality of the stati of PV and PSP is bad, or uncertain (and "Use Uncertain" option in STATUS_OPTS is not set) the alarm test will not be performed and the status of PRE_OUT_ALM will be set to bad (non-specific). Otherwise, the alarm test will be performed and the quality of the status of PRE_OUT_ALM will be set to the worst quality of the stati of PV and PSP (good or uncertain). While the alarm condition is not being evaluated due to unusable stati, existing alarms will not be cleared and new alarms will not be generated. Prior alarm conditions may still be acknowledged.


In Auto mode, the status of OUT_ALM will be set to the status of PRE_OUT_ALM. In Man mode, the limits status of OUT_ALM is set to double-limited.

BLOCK_ERR

The BLOCK_ERR of the Analog Alarm block will reflect the following causes:

• Out of Service – When the block is in O/S mode.

Schematic

Parameters

ldx	Parameter	Data Type	Valid Range/	Default	Units	Store /	Description		
IUX	i arameter	(length)	Options	Value	Office	Mode	Description		
1	ST_REV	Unsigned16		0	None	S/RO			
2	TAG_DESC	OctString(32)		Spaces	Na	S			
3	STRATEGY	Unsigned16		0	None	S			
4	ALERT_KEY	Unsigned8	1 to 255	0	None	S			
5	MODE_BLK	DS-69		O/S	Na	S	See Mode Parameter		
6	BLOCK_ERR	Bitstring(2)			E	D/RO			
7	PV	DS-65			PV	D/RO	Process analog value. This is the IN value after pass over the PV filter.		
8	OUT	DS-65	OUT_SCALE +/- 10%		OUT	N / Man	The output value result of the block calculation.		
9	OUT_RANGE	DS-68		0-100%	OUT	S / Man	The high and low scale values to the OUT parameter.		
10	GRANT_DENY	DS-70		0	na	D	Options for controlling access of host comput and local control panels to operating, tuning ar alarm parameters of the block.		
11	STATUS_OPT S	Bitstring(2)	See Block Options	0	Na	S / O/S	See Block Options		
12	PV_FTIME	Float	Non-Negative	0	Sec	S	Time constant of a single exponential filter for the PV, in seconds.		
13	IN	DS-65			PV	D	The primary input value of the block, or PV value.		
14	PSP	DS-65			PV	D	This is the process setpoint, which may be used for alarm limit determination.		
15	HI_GAIN	Float		1.1		S	This gain multiplies PSP before addition of biases for HI_LIM and HI_HI_LIM.		
16	LO_GAIN	Float		0.9	Na	S	This gain multiplies PSP before subtraction of biases for LO_LIM and LO_LO_LIM.		
17	HI_HI_BIAS	Float	Positive	1.0	Out	S	This bias is added to PSP*HI_GAIN to determine HI_HI_LIM.		
18	HI_BIAS	Float	Positive	0.0	Out	S	This bias is added to PSP*HI_GAIN to determine HI_LIM.		
19	LO_BIAS	Float	Positive	0.0	Out	S	This bias is subtracted from PSP*LO_GAIN to determine LO_LIM.		
20	LO_LO_BIAS	Float	Positive	1.0	Out	S	This bias is subtracted from PSP*LO_GAIN to determine LO_LO_LIM.		
21	PRE_OUT_AL M	DS-66			E	D/RO	This parameter is the alarm summary variable of the analog alarm block. If the block is in Man mode, it will have the same value and status of OUT_ALM parameter.		

ldx	Parameter	Data Type (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
22	OUT_ALM	DS-66			E	D	This parameter is the alarm summary variable of the analog alarm block when in <i>Auto</i> mode and is the value specified by the operator/engineer in <i>Man</i> mode. It is a discrete parameter that indicates if the block is in alarm condition (value 1) or if not (Value 0).
23	OUT_ALM_SU M	Unsigned8	0:NONE 1:LO_LO 2:LO 3:LOWS 4:HI 6:LEVEL1 8:HI_HI 9:LEVEL2 12:HIGHS 15:ANY	0	E	S/Man	Specifies the alarms conditions which must be <i>true</i> in order for OUT_ALM to be set to <i>true</i> : ANY, LOWs, HIGHs, LEVEL1, LEVEL2, LO_LO, LO, HI, or HI_HI.
24	ALM_RATE_U P	Float	Positive	0.0	OUT/se c	S	Ramp rate at which downward alarm expansion due to step PSP changes is decayed in the upward direction. Expressed in engineering units per second. Expansion feature is disabled when ALM_RATE_UP = 0 or INF.
25	ALM_RATE_D N	Float	Positive	0.0	OUT/se c	Ø	Ramp rate at which upward alarm expansion due to step PSP changes is decayed in the downward direction. Expressed in engineering units per second. Expansion feature is disabled when ALM_RATE_DN = 0 or INF.
26	EXPAND_UP	Float			OUT	D/RO	Amount, in engineering units, that base HI and HI_HI limits are expanded after a setpoint change. Dynamically calculated by block. Initially expanded by the amount of a setpoint change and decayed at the rate of ALM_RATE_UP. (Positive)
27	EXPAND_DN	Float			OUT	D/RO	Amount, in engineering units, that base LO and LO_LO limits are expanded after a setpoint change. Dynamically calculated by block. Initially expanded by the amount of a setpoint change and decayed at the rate of ALM_RATE_DN. (Positive)
28	IGNORE_TIME	Float	Positive	0.0	Sec	S	The time, in seconds, to ignore the existence of a new alarm condition. There is no delay on clearing the existence of the alarm on return to normal. If the alarm does not persist for IGNORE_TIME seconds, it will not be reported. Does not apply to self-clearing (transient) type alarms.
29	UPDATE_EVT	DS-73			Na	D	This alert is generated by any change to the static data.
30	BLOCK_ALM	DS-72			Na	D	The block alarm is used for all configuration, hardware, connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.
31	ALARM_SUM	DS-74	See Block Options		Na	S	The current alert status, unacknowledged states, unreported states, and disabled states of the alarms associated with the function block.
32	ACK_OPTION	Bitstring(2)	0: Auto ACK Disable 1: Auto ACK Enable	0	Na	S	Selection of whether alarms associated with the block will be automatically acknowledged
33	ALARM_HYS	Float	0 to 50 %	0.5%	%	S	Alarm hysteresis parameter. In order to clear the alarm the amount the PV must return within the alarm limit plus hysteresis.
34	HI_HI_PRI	Unsigned8	0 to 15 OUT_SCALE,	0		S	Priority of the high high alarm. The setting for high high alarm in engineering
35	HI_HI_LIM	Float	+INF	+INF	OUT	S	units.

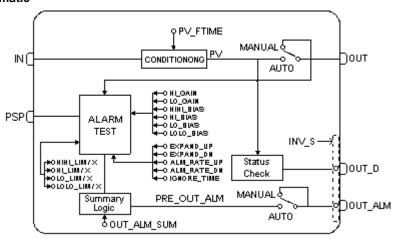
ldx	Parameter	Data Type (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
36	HI_HI_LIMX	Float	OUT_SCALE, +INF	+INF	OUT	D/RO	The setting for high high alarm in engineering units.
37	HI_PRI	Unsigned8	0 to 15	0		S	Priority of the high alarm.
38	HI_LIM	Float	OUT_SCALE, +INF	+INF	OUT	s	The setting for high alarm in engineering units.
39	HI_LIMX	Float	OUT_SCALE, +INF	+INF	OUT	D/RO	The setting for high alarm in engineering units.
40	LO_PRI	Unsigned8	0 to 15	0		S	Priority of the low alarm.
41	LO_LIM	Float	OUT_SCALE, - INF	-INF	OUT	s	The setting for low alarm in engineering units.
42	LO_LIMX	Float	OUT_SCALE, - INF	-INF	OUT	D/RO	The setting for low alarm in engineering units.
43	LO_LO_PRI	Unsigned8	0 to 15	0		S	Priority of the low alarm.
44	LO_LO_LIM	Float	OUT_SCALE, - INF	-INF	OUT	S	The setting for low alarm in engineering units.
45	LO_LO_LIMX	Float	OUT_SCALE, - INF	-INF	OUT	D/RO	The setting for low alarm in engineering units.
46	HI_HI_ALM	DS-71			OUT	D	The status for high alarm and its associated time stamp.
47	HI_ALM	DS-71			OUT	D	The status for high alarm and its associated time stamp.
48	LO_ALM	DS-71			OUT	D	The status for low alarm and its associated time stamp.
49	LO_LO_ALM	DS-71			OUT	D	The status for low low alarm and its associated time stamp.

Legend: E - Enumerated parameter; Na - Dimensionless parameter; RO - Read only; D - dynamic; N - non-volatile; S - static Gray Background Line: Default Parameters of Syscon

If DIAG.BEHAVIOR parameter is "Adapted": The required mode for writing is the Actual mode for the OUT parameter, regardless the Target mode.

EAALM – Enhanced Analog Alarm

Description


The EAALM block has all parameters of the AALM block. Additionally, it provides an output to indicate when the input has no usable status, and also it has the option to invert the outputs OUT_D e OUT_ALM.

Additional Characteristics

The EAALM block has also the following characteristics:

- The OUT_D indicating that IN is not usable. When IN.Status is Bad or Uncertain and the STATUS_OPTS does not have the "Use Uncertain as Good" option selected, the OUT_D value will be 1.Otherwise, it will be 0;
- Optionally, OUT_D and OUT_ALM can be inverted when the corresponding bits in the INVERT_OPTS parameter are set.

Schematic

Parameters

It has all parameters of the AALM block plus these additional parameters:

ldx	Parameter	Data Type (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description		
50	OUT_D	DS_66				1 11/12(1)	True: Indicate if the IN input is unusable with bor uncertain status.		
51	INVERT_OPTS	Bitstring(2)				S/O/S	Parameter for inversion of the block discrete outputs.		

ISEL - Input Selector

Description

The signal selector block provides selection of up to four inputs and generates an output based on the configured action. This block would normally receive its input from an AI. In addition to signal selection the block can also perform max, min, mid, avg and first good selection. The SELECTED output shows the input that is being used by the algorithm.

The purpose of this block is providing the selection of the control signal only for the direct path. It is not developed to support input signals from a controller, so it does not support back calculations.

Input Processing

If DISABLE_n is true, the corresponding input is not used.

The inputs with bad or uncertain status are ignored (if the "Use uncertain as good" option of the STATUS_OPTS parameter is selected).

MIN_GOOD specifies the minimum number of good inputs for the selection process. If there are no good inputs, or the number of good inputs is lower than the specified in MIN_GOOD, so OUT status will be bad and the SELECTED value will be zero.

Selection Process

OP_SELECT input selects an input for the output. This option has priority over the SELECT_TYPE calculation. If the OP_SELECT is higher than zero, OUT will follow the selected input in OP_SELECT, ignoring the SELECT_TYPE selection.

If SELECT_TYPE = Maximum, OUT receives the higher value of all good inputs connected. SELECTED will show the selected input.

If SELECT_TYPE = Minimum, OUT receives the lower value of all good inputs connected. SELECTED will show the selected input.

If SELECT_TYPE = Middle, OUT receives the middle value of all good inputs connected. If there are 3 or 4 values, the upper and lower values will be discarded. If there are at least 2 values, the middle is done with them. SELECTED will be zero when the middle is done between the inputs, or it will show the selected input.

If SELECT_TYPE = First Good, OUT will be the first good input encountered based on ascending evaluation of the inputs, from IN_1 to IN_4. SELECTED will show the selected input.

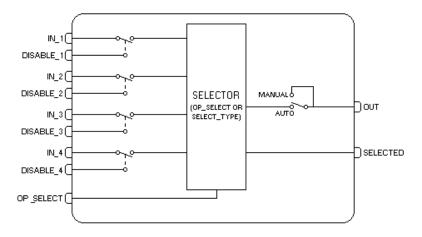
If SELECT_TYPE = Average, OUT will be the average of all good inputs connected. SELECTED will show the number of the inputs used to calculate the average.

BLOCK ERR

The BLOCK_ERR of the ISEL block will reflect the following causes:

- Block Configuration Error the configuration error occurs when the SELECT_TYPE parameter has an invalid value;
- Out of Service it occurs when the block is in O/S mode.

Supported Modes


O/S, MAN and AUTO.

Status Handling

If there are no usable inputs or the number of inputs is less than MIN_GOOD, so the output status will be Bad Non Specific.

The status of OUT will be a copy of the selected input, but if the output is an average of inputs the status will be Good Non-cascade – Non-specific.

Schematic

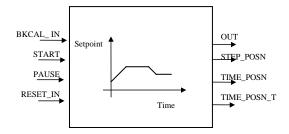
Parameters

ldx	Parameter	Data Type (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
1	ST_REV	Unsigned16		0	None	S/RO	
2	TAG_DESC	OctString(32)		Spaces	Na	S	
3	STRATEGY	Unsigned16		0	None	S	
4	ALERT_KEY	Unsigned8	1 to 255	0	None	S	
5	MODE_BLK	DS-69		O/S	Na	S	See Mode Parameter
6	BLOCK_ERR	Bitstring(2)			Е	D/RO	
7	OUT	DS-65	XD_SCALE		OUT	D / Man	The primary analog value calculated as a result of executing the function.
8	OUT_UNITS	Unsigned16		0	Е	S	The engineering units of the output for display.
9	GRANT_DENY	DS-70		0	Na	D	Options for controlling access of host computer and local control panels to operating, tuning and alarm parameters of the block.
10	STATUS_OPTS	Bitstring(2)	See Block Options	0	Na	S/O/S	See Block Options
11	IN_1	DS-65				D	Numbered input parameter 1.
12	IN_2	DS-65				D	Numbered input parameter 2.
13	IN_3	DS-65				D	Numbered input parameter 3.
14	IN_4	DS-65				D	Numbered input parameter 4.
15	DISABLE_1	DS-66				D	Parameter to switch off the input from being used. If this parameter is true then don't use this input IN_1 determining the output.
16	DISABLE_2	DS-66				D	Parameter to switch off the input from being used. If this parameter is true then don't use this input IN_2 determining the output.
17	DISABLE_3	DS-66				D	Parameter to switch off the input from being used. If this parameter is true then don't use this input IN_3 determining the output.
18	DISABLE_4	DS-66				D	Parameter to switch off the input from being used. If this parameter is true then don't use this input IN_4 determining the output.

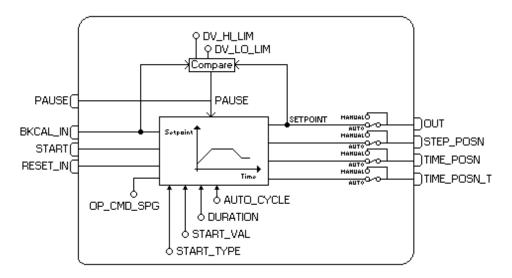
ldx	Parameter	Data Type	Valid Range/	Default	Units	Store /	Description
1617	i aramoto.	(length)	Options	Value	0	Mode	200011,011
19	SELECT_TYPE	Unsigned8	1=First good 2=Minimum 3=Maximum 4=Middle 5=Average	0	E	S	selector action max = select the max from all the connected and good inputs min = select the min from all the connected and good inputs mid = select the mid value from all the connected and good inputs, if less than MIN_GOOD inputs are connected then an error code is generated. An error code is also generated if less than MIN_GGOD values have good status. Not intended for use with 2 or 4 inputs. First Good = determine the first good input encountered based on ascending evaluation of the inputs, see text for further discussion avg = compute the average for all the connected and good inputs, if less than two inputs are connected then set the output equal to the input an generate an error code. An error code is also generated if less than MIN_GOOD inputs have good status
20	MIN_GOOD	Unsigned8	0 through 4	0		s	If the number of inputs which are good is less than the value of MIN_GOOD then set the out status to bad.
21	SELECTED	DS-66	None, 1= 1 2= 2 3= 3 4= 4			D/RO	Number to identify which input is selected.
22	OP_SELECT	DS-66	0 = Normal Operation 1= Selects IN1 2= Selects IN2 3= Selects IN3 4= Selects IN4		None	D	An operator adjustable parameter to force a given input to be used. Selecting 0 will indicate normal operation while choosing 1 to 4 will indicate the input to be used.
23	UPDATE_EVT	DS-73			na	D	This alert is generated by any change to the static data.
24	BLOCK_ALM	DS-72			na	D	The block alarm is used for all configuration, hardware, connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.

E – Enumerated Parameter; NA – Dimensionless Parameter; RO – Read Only; D – Dynamic; N – Non volatile; S – Static; Legend:

Gray Background Line: Default Parameters in Syscon


If DIAG.BEHAVIOR parameter is "Adapted": The default value of SELECT_TYPE is First good.

The required mode for writing is the Actual mode for the OUT parameter, regardless the Target mode


SPG - Setpoint Ramp Generator

Description

The Setpoint generator block is normally used to generate a Setpoint to a PID block in applications like temperature control, batch reactors, etc. In those applications, the Setpoint shall follow a certain profile in function of the time.

Schematic

1) The profile is determined by up to ten segments or steps. Each segment is defined by a starting value [START_VAL] and a time duration [DURATION]. The starting value of the next segment determines if the previous segment ramps up, down or remains constant. The curve is given by t

START_VAL (Starting value) - Eleven floating point values defining the initial value of each segment, in engineering units.

TIME_DURATION (Time duration) - Ten floating point values defining the duration, in seconds, of each segment. A zero value defines the last segment.

2) The two arrays define the Setpoint value (y-axis) in function of the time (t-axis). Between two given points, the Setpoint is calculated by interpolation. As each segment is defined by $[START_VAL]_i$, $[TIME_DURATION]_i$ and $[START_VAL]_{i+1}$, a profile with " \mathbf{n} " segments will need $\mathbf{n+1}$ starting values and \mathbf{n} time durations. As example, the two following arrays define the profile shown on Fig. 1:

	1	2	3	4	5	6
START_VAL	25	50	50	100	100	25
TIME_DURATION	60	60	120	60	60	0

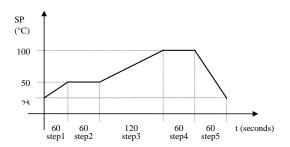


Fig.1 - Setpoint profile

- 3) The position in the time axis (t-axis) is controlled by an internal timer. This timer is started by a transition from false to true at START input, or by the OP_CMD_SPG="Start" parameter. Once started, it runs while the mode is Auto up to reach the sum of the durations calculated by TIME_DURATION parameter.
- 4) The timer resets (that is, it is positioned in the starting point of the curve), if the OP_CMD_SPG="Reset" or the RESET_IN input is 1. After resetting, a new Start is waited in order to reinitialize the timer again. When the RESET_IN input is used and while its value is 1, the block is kept in Reset. So, the timer will be available to start only after the RESET_IN parameter changes to 0.
- 5) The timer may be interrupted at any moment changing the Auto mode to any mode. When the mode returns to Auto mode, the timer will reinitialize from the point that is stopped. And also, it will be interrupted if START_TYPE is "Cascade" (See item 17) and the cascade initialization is in progress, where the Actual mode is IMan.
- 6) The timer may be interrupted if PAUSE changes from false to true. It will restart when PAUSE is set to false and none condition interrupts the timer.
- 7) The timer is also interrupted by a PAUSE caused by the deviation between BKCAL_IN and the generated Setpoin (Deviation=BCKAL_IN PRE_OUT)t. If the deviation exceeds DV_HI_LIM or DV_LO_LIM, an alarm is indicated in DV_HI_ALM or DV_LO_ALM, respectively. Both alarms stop the timer and return to normal operation when the deviation is within the prescribed limits.
- 8) The Setpoint is in the "y" axis, while the time is in the "t" axis. The Setpoint value is available at output OUT. It is also available in PRE_OUT even when the block is in Man mode.
- 9) Three outputs inform the current point of the profile:

STEP_POSN - Informs the current segment or step.

TIME_POSN - Informs the time elapsed since the beginning of the current step.

TIME POSN T - Informs the time elapsed since the beginning of the profile.

- 10) With the block in Manual, the operator can write on the outputs STEP_POSN, TIME_POSN and TIME_POSN_T in order to select a particular point of the profile. The outputs are not independent. If TIME_POSN_T changes, it causes changes in TIME_POSN and STEP_POSN. If STEP_POSN changes, it causes changes in TIME_POSN_T and STEP_POSN is reset to zero. If TIME_POSN changes, it causes changes in TIME_POSN_T but it can not be moved to out of the segment. When the block is switched back to auto, the profile will start from that point.
- 11) With the block in manual, the operator can also modify OUT. The value can be different of PRE_OUT and there are no bumps when the mode is changed to Auto. In this situation, OUT starts from the actual value and reaches the PRE_OUT_D value according the value configured in BAL_TIME.
- 12) Another operation that can be done with the block in Manual, is to advance or return the time through the following operator commands (OP_CMD_SPG):

ADVANCE – it puts the timer in the beginning of the next step. REPEAT – it puts the timer in the beginning of the current step.

- 13) The outputs can only be modified with the block is in Manual mode.
- 14) If the AUTO_CYCLE parameter is "Auto Cycle", the timer will return to zero (Reset) and will restart (START) the curve automatically.
- 15) The operation status is given by the parameter SPG_STATE

READY - When the block is at the beginning of the curve, waiting for the starting signal (START). The block is in this state after a Reset.

ACTIVE - When the timer is "on". The block is in this state after a Start or when it exits from Pause.

PAUSE - When the timer is stopped (see the reason in the PAUSE_CAUSE parameter). The timer will be active just after the PAUSE condition stops.

AT_END - When the timer reaches the last point of the curve. To start the curve is necessary a Reset and a new Start.

16) The parameter PAUSE_CAUSE enumerates the cause of the PAUSE state:

PAUSE_CAUSE	Cause
Mode	The timer is stopped due to the Actual mode is not Auto (see item 5)
Logic	The timer is stopped due to the PAUSE input is active. (see item 6)
Alarm	The timer is stopped due to the deviation alarm is active. (see item 7)

If there are more than one Pause condition, it will be indicates in the PAUSE_CAUSE parameter. After stopping the condition that caused the pause in the timer, the timer starts from the point that was before the pause condition.

- 17) It is possible to start the curve from the BKCAL_IN value when it is connected. When the timer starts, its initial value depends on the selection configured in the START_TYPE parameter:
- 1 Cascade The curve starts as specified by START_VAL and TIME_DURATION. For this situation, BKCAL_IN is connected to BKCAL_OUT from the control block. The cascade initialization is used. When the BKCAL_IN value is out of the curve, a bumpless starting may be used through the BAL_TIME parameter.
- 2 Use Duration The timer starts from zero. START_VAL for the first segment is equals to BKCAL_IN, temporarily, when it is connected. If the BKCAL_IN is not connected, the initial value will be START_VAL [1].
- 3 Use Rate The curve starts from the BKCAL_IN value (when it is connected) and uses the rate specified by the first values of START_VAL and the first value of TIME_DURATION. If the BKCAL_IN is not connected, the initial value will be START_VAL [1].

Procedure to Activate the Algorithm of the SPG Block

- Reset the block. The reset of the block can occur in two ways: through a pulse in the input RESET_IN (value change from 0 to 1 and after to 0) or OP_CMD_SPG=REST_IN. In this case the algorithm is stopped and it is ready to start the curve, then the parameter SPG_STATE=READY.
- 2) Start the algorithm. The initialization of the algorithm occurs through a pulse in the input START. At this moment the algorithm executes the curve, then SPG_STATE=ACTIVE.
- 3) The algorithm can be interrupted momentarily at any moment of execution of the curve (Pause) through the input PAUSE=1. In this case the SPG_STATE=PAUSE and the parameter PAUSE CAUSE indicate the stop condition.
- 4) When the end of the algorithm is detected, the SPG_STATE=AT_END.
- 5) To restart the algorithm, it is necessary to return to the step 1.

BLOCK ERR

The BLOCK_ERR of the SPG block will reflect the following causes:

- Block Configuration Error the configuration error occurs when the START_TYPE parameter has an invalid value;
- Out of Service it occurs when the block is in O/S mode.

Supported Modes

O/S. IMAN. MAN and AUTO.

Status Handling

If the status of any used input becomes bad or uncertain and the option "Use uncertain as Good" of the STATUS_OPTS parameter is not set, the, the block Actual mode will be forced to Manual. The option "Target to Man if Bad IN" of the STATUS_OPTS parameter can also be used.

The OUT status will be "Good Cascade" when START_TYPE is "Cascade", or it will be "Good Non Cascade" for the other situations.

Parameters

ldx	Parameter	DataType (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
1	ST_REV	Unsigned16		0	None	S/RO	
2	TAG_DESC	OctString(32)		Spaces	Na	S	
3	STRATEGY	Unsigned16	1 to 255	0	None	S	
5	ALERT_KEY MODE BLK	Unsigned8 DS-69	1 to 255	0 O/S	None Na	S	See Mode Parameter
6	BLOCK_ERR	Bitstring(2)		0/3	E	D/RO	See Wode Farameter
7	OUT	DS-65	OUT_SCALE +/- 10%		OUT	N / Man	The analog value calculated as a result of executing the function.
8	OUT_RANGE	DS-68		0-100%	OUT	S / Man	The high and low scale values to the OUT parameter only for display.
9	GRANT_DENY	DS-70		0	na	D	Options for controlling access of host computer and local control panels to operating, tuning and alarm parameters of the block.
10	STATUS_OPTS	Bitstring(2)	Bit 2: Use Unc as Good Bit 5: Target to Man if bad IN	0	Na	S / O/S	See Block Options
11	START_VAL	11 Floats					An array of up to eleven points defines the starting point of each segment of the Setpoint profile, in engineering units.
12	TIME_DURATIO N	10 Floats		0's	Sec	S	An array of up to ten points defines the duration of each segment of the Setpoint profile, in seconds.
13	TIME_UNITS	Unsigned8	1=seconds 2=minutes 3=hours 4=days 5=[day- [hr:[min[:sec]]]]	0		E	Display Time Units for TIME_POSN and TIME_POSN_T only for display.
14	BKCAL_IN	DS-65			OUT	N	The value and status from a lower block's BKCAL_OUT that is used to initialize the control loop.
15	START	DS-66			On/Off	D	The timer is started when a transition from false to true occurs, and the timer is in the beginning of the curve (SPG_STATE=Ready)
16	START_TYPE	Unsigned8	1=Cascade 2=Use Duration 3=Use Rate	0	E	S	This parameter selects the initialization type: Cascade – it starts from the curve values. Use Duration – It starts from the BKCAL_IN value with the duration of the first segment. Use Rate – it starts from the BKCAL_IN value and the rate between the 2 first START_VALs and the duration of the first segment.
17	PAUSE	DS-66				D	Stops the timer when set to <i>true</i> . It restarts when the time is set back to <i>false</i> .
18	PAUSE_CAUSE	Unsigned8	0=Not paused 1=Mode Pause 2=Logic Pause 4=Alarm Pause 3=Mode & Logic 5=Mode & Alarm 6=Logic & Alarm 7=Mode & Logic			E	This parameter enumerates the PAUSE causes (Two conditions can occur simultaneously): Mode – The timer stopped due to changes in the Auto mode. Logic – The timer stopped due to the PAUSE parameter is active. Alarm – The timer stopped due to the
							deviation alarm. When set the option "AutoCycle", the block
19	AUTO_CYCLE	Unsigned8	1:AutoCycle	0	E	S	automatically resets the time to the beginning of the first step and restarts the timer.
20	STEP_POSN	DS-66	0=none 1=step1 2=step 2 n=step n	0	E	D/ Man	Determine the current step or segment of the profile in auto mode. Direct the timer to the step specified by the operator when in manual mode.

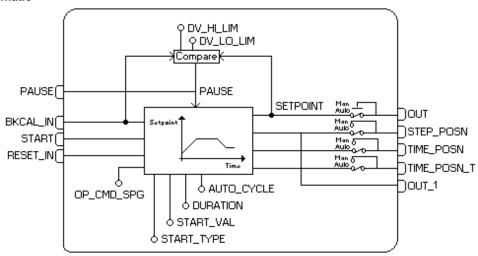
ldx	Parameter	DataType	Valid Range/	Default Value	Units	Store / Mode	Description
21	TIME_POSN	(length) DS-65	Options	value	Sec	D / Man	Determine the time elapsed since the beginning of the step in auto mode. The operator can set the time since the beginning of the current step when operating in manual.
22	TIME_POSN_T	DS-65			Sec	N / Man	Determine the time elapsed since the beginning of the curve in auto mode. The operator can set the time since the beginning of the curve when operating in manual. Enable the positioning in the curve. The
23	OP_CMD_SPG	Unsigned8	0=No Action 1=RESET 2=START 3=ADVANCE 4=REPEAT	0	Е	D	options are: RESET – it clears the timer. It puts the timer in the beginning of the curve. START – It starts the timer. ADVANCE – it puts the timer in the beginning of the next segment (only when in Man mode). REPEAT – it puts the timer in the beginning of the actual segment (only when in Man mode) After writing in one of the options, the parameter returns to No Action.
24	SPG_STATE	Unsigned8	0=UNDEFINED 1=READY 2=ACTIVE 3=PAUSE 4=DONE		E	N/RO	It indicates the actual state of the block operation. The available options are: READY – when the timer is in the beginning of the curve waiting a signal to start. ACTIVE – when the timer is on. PAUSE – when the timer is stopped (see the cause in the PAUSE_CAUSE parameter) DONE – When the timer reaches the last point of the curve.
25	PRE_OUT	DS-65				D	Displays what would be the OUT value and status if the mode was Auto or lower.
26	RESET_IN	DS-66	0:Off 1:Reset		E	D	When the RESET_IN value is 1, it clears the timer and puts it in the beginning of the curve. The block will exist from the Reset only when the value returns to zero.
27	BAL_TIME	Float	Positive	0	sec	S	It specifies the time for OUT reaches the PRE_OUT when the block changes from Manual mode (or IMan – in the cascade initialization) to Auto mode.
28	OUTAGE_LIM	Float	Positive	0	Sec	S	The maximum tolerated duration for power failure. This feature is not supported.
29	UPDATE_EVT	DS-73			Na	D	This alert is generated by any change to the static data.
30	BLOCK_ALM	DS-72			Na	D	The block alarm is used for all configuration, hardware, connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.
31	ALARM_SUM	DS-74	See Block Options		Na	S	The current alert status, unacknowledged states, unreported states, and disabled states of the alarms associated with the function block.
32	ACK_OPTION	Bitstring(2)	0: Auto ACK Disable 1: Auto ACK Enable	0	Na	S	Selection of whether alarms associated with the block will be automatically acknowledged
33	ALARM_HYS	Float	0 to 50 %	0.5%	%	S	Alarm hysteresis parameter. In order to clear the alarm the amount the PV must return within the alarm limit plus hysteresis.
34	DV_HI_PRI	Unsigned8	0 to 15			S	Priority of the high deviation alarm. The setting for high deviation alarm in
35	DV_HI_LIM	Float	+(OUT_SCALE) or +(INF)	+INF	OUT	S	engineering units.
36	DV_LO_PRI	Unsigned8	0 to 15			S	Priority of the low deviation alarm.

ldx	Parameter	DataType (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
37	DV_LO_LIM	Float	-(OUT_SCALE) or -(INF)	-INF	OUT	S	The setting for low deviation alarm in engineering units.
38	DV_HI_ALM	DS-71			OUT	D	The status for high deviation alarm and its associated time stamp.
39	DV_LO_ALM	DS-71			OUT	D	The status for low deviation alarm and its associated time stamp.

Legend: E – Enumerated parameter; Na – Dimensionless parameter; RO – Read only; D – dynamic; N – non-volatile; S - static

Gray Background Line: Default Parameters of Syscon

If DIAG.BEHAVIOR parameter is "Adapted":


The default value of START_TYPE is "Use Curve". The required mode for writing is the actual mode, regardless the target mode: OUT, TIME_POSN, TIME_POSN_T and STEP_POSN

ESPG – Enhanced Setpoint Ramp Generator

Description

The Enhanced Setpoint Ramp Generator has all the features of the SPG block, and it has also an additional output parameter as it is possible to see in the schematic below. The OUT_1 output indicates the current step or segment of profile like the SPG parameter STEP_POSN. But the OUT_1 format is float.

Schematic

Parameters

It has all parameters of the SPG block added of the

ldx	Parameter	DataType (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
40	OUT_1	DS-65	0=None 1= Step1 2= Step2 3= Step 3 4= Step 4	0	E	D/RO	This parameter identifies the current step or segment of profile. Similar to the STEP_POSN parameter but the format in this case is float.

Legend: E - Enumerated parameter; Na - Dimensionless parameter; RO - Read only; D - dynamic; N - non-volatile; S - static

Gray Background Line: Default Parameters of Syscon

TIME – Timer and Logic

Description

The Timer and Logic function block provides logic combination and timing functions including the following:

- Combine multiple inputs as OR, AND, vote, or EXACTLY count.
- Measure the duration of the combined discrete input signal
- Accumulate, until reset, the duration of the combined input signal
- Count changes of the combined discrete input signal
- Set a discrete output if the duration of the combined input signal exceeds a limit
- Extend, Delay, Pulse, or Debounce the combined input as an output
- Provide outputs indicating amount of time expired and amount of time remaining
- Selectively invert any connected discrete input or output
- Reset timer

Inputs Combination

Up to four inputs may be combined logically (AND, OR), voted (any 2 or more true, any 3 or more true), or counted (exactly 1 true, exactly 2 true, exactly 3, odd count, or even count). The combined input value is specified by the combination type (COMB_TYPE) enumeration. Choices are indicated in the table below.

Connected inputs may have the values of true (1) or false (0). Values are different of 0 and 1 will be represented as false.

COMB_TYPE	PV_D value						
OR	true if one or more used inputs are true						
ANY2	true if two or more used inputs are true						
ANY3	true if three or more used inputs are true						
AND	true if all used inputs are true						
EXACTLY1	true if exactly 1 used input is true						
EXACTLY2	true if exactly 2 used inputs are true						
EXACTLY3	true if exactly 3 used inputs are true						
EVEN	true if exactly 0, 2 or 4 used inputs are true						
EVEN	(OR non exclusive)						
ODD	true if exactly 1 or 3 used inputs are true						
ODD	(OR exclusive)						

Timer Processing

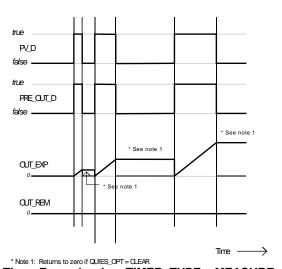
The timer processing type is specified by TIMER_TYPE. It may operate to produce a measurement, delay, extension, pulse (non-re-triggerable or re-triggerable) or debounce, of the combined input signal.

TIMER_SP is the specification for the time duration of delay, extension, pulse, debounce filter, or comparison limit.

OUT_D output will be the PRE_OUT_D value when the block is in Auto mode. PRE_OUT_D is configured according to TIMER_TYPE.

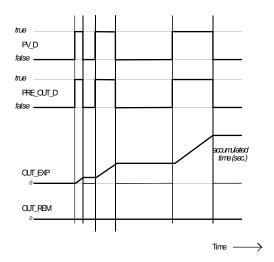
OUT_EXP indicates the time elapsed and OUT_REM indicates the remaining time when TIME_TYPE is equal to the measurement, comparison, delay, extension, debounce, or pulse. See TIMER_TYPE for details.

QUIES_OPT allows the user to select the behavior for OUT_EXP and OUT_REM when the timer is quiescent-- that is, the timer is stopped waiting to start. The following table enumerates the definition of quiescent state for each option of TIMER TYPE:

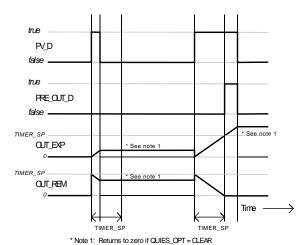

	Definition of quiescent state start and end as a function of TIMER_TYPE								
TIMER_TYPE	Quiescence state starts when combined input (PV_D):	Quiescence state ends when combined input (PV_D):							
MEASURE	returns to false	changes from false-to-true							
ACCUM	[QUIES_OPT does not apply]	[QUIES_OPT does not apply]							
COMPARE	returns to false	changes from false-to-true							
DELAY	returns to false	changes from false-to-true							
EXTEND	returns to true	changes from true-to-false							
DEBOUNCE	has changed and timer has expired	changes							
PULSE	has returned to false and timer has expired	changes from false-to-true							
RT_PULSE	has returned to false and timer has expired	changes from false-to-true							

The CLEAR enumeration of QUIES_OPT will cause both OUT_EXP and OUT_REM to be set to zero during quiescence. The LAST enumeration of QUIES_OPT will cause both OUT_EXP and OUT_REM to be held to their values when the block becomes quiescent. That is, the time expired and time remaining will remain available until the quiescence ends with the start of the next activation. Note that a false-to-true transition on RESET_IN will also reset OUT_EXP and OUT_REM.

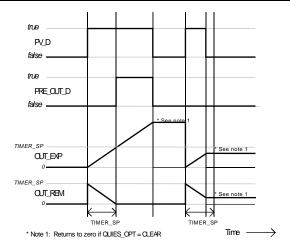
N_START is a count of the number of starts (false-to-true) transitions of the combined input, PV_D, since the last false-to-true change seen on RESET_IN.


TIMER_TYPE may be one of the following, operating on the combined input signal:

- MEASURE Indicate the duration of the most recent true signal
- ACCUM Accumulate the durations of a true signal
- COMPARE Compare a true signal duration to specified duration
- DELAY Delay a false-to-true transition, eliminating it if short
- EXTEND Extend a true-to-false transition, eliminating it if short
- DEBOUNCE Delay any transition, eliminating it if short
- PULSE Generate a true pulse on a false-to-true transition, non-retriggerable
- RT_PULSE Generate a true pulse on a false-to-true transition, retriggerable
- If TIMER_TYPE is **MEASURE**, PRE_OUT_D will be the same as the combined input, PV_D. OUT_EXP indicates the length of time, in seconds, that the combined signal is true. OUT_REM is set to 0.


Timer Example when TIMER_TYPE = MEASURE

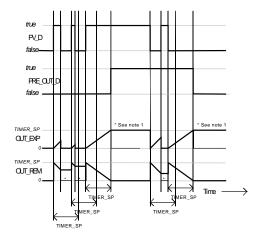
If TIMER_TYPE is ACCUM, PRE_OUT_D will be the same as the combined input, PV_D. OUT_EXP indicates the accumulated length of time, in seconds, that the combined signal has been true. Unlike TIMER_TYPE = MEAS, it will not be automatically reset by the time of the next occurrence of a false-to-true change of PV_D. Instead, it will continue to accumulate "on" time or "run" time until reset to 0 by a false-to-true change on RESET_IN. OUT_REM is unused (set to 0.0) for this timer type.


Timer Example when TIMER_TYPE = ACCUM

• If TIMER_TYPE is **COMPARE**, the block will measure the time since a false-to-true change on the combined input, PV_D. The current duration will be indicated by OUT_EXP. OUT_REM will indicate the time remaining between the current expired duration, OUT_EXP, and current limit, TIMER_SP. If OUT_EXP does not exceed TIMER_SP, PRE_OUT_D will be set to false. If OUT_EXP equals or exceeds TIMER_SP, PRE_OUT_D will be set to true and OUT_REM will be set to zero. When the combined input returns to false, either with or without exceeding the limits specified by TIMER_SP, OUT_D will be set to false. [Note that this type of behavior is the same as TIMER_TYPE = DELAY. The difference is merely in the application perspective

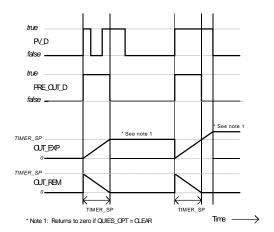
Timer Example when TIMER_TYPE = COMPARE

If TIMER_TYPE is **DELAY**, a false-to-true change on the combined input, PV_D, will be delayed at the output, PRE_OUT_D, until the amount of time specified by TIMER_SP has been expired. If the combined input returns to false before the time expires, the output will remain as false, concealing the input transitions. If the PRE_OUT_D output has been set to true because the time has expired, a true-to-false transition in the combined input will be presented to PRE_OUT_D immediately. [Note that this type of behavior is the same as TIMER_TYPE = COMPARE. The difference is merely in the application perspective.]

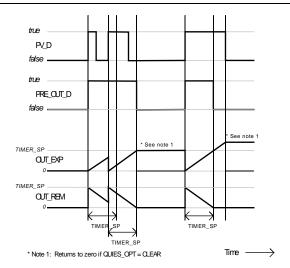

Timer Example when TIMER_TYPE = DELAY

• If TIMER_TYPE is EXTEND, a true-to-false change on the combined input, PV_D, will be delayed at the output, PRE_OUT_D, until the amount of time specified by TIMER_SP has been expired. If the combined input returns to true before the time expires, the output will remain as true, concealing the input transitions. If the PRE_OUT_D output has been set to false because the time has expired, a false-to-true transition in the combined input will be presented to PRE_OUT_D immediately.

Timer Example when TIMER_TYPE = EXTEND


• If TIMER_TYPE is **DEBOUNCE**, and if PRE_OUT_D is false, a false-to-true change on the combined input, PV_D, will be delayed at the output, PRE_OUT_D, until the amount of time specified by TIMER_SP has been expired. If the combined input returns to false before the time expires, the output will remain as false, concealing the input transitions. If PRE_OUT_D is true, a true-to-false change on the combined input, PV_D, will be delayed at the output, PRE_OUT_D, until the amount of time specified by TIMER_SP has been expired. If the combined input returns to true before the time expires, the output will remain as true, concealing the input transitions. This both delays true initiations and extends true terminations, acting as a filter for intermittent state changes.

* Note 1: Returns to zero if QUIES_OPT = CLEAR


Timer Example when TIMER_TYPE = DEBOUNCE

If TIMER_TYPE is PULSE, a false-to-true change on the combined input, PV_D, will initiate a
true pulse at PRE_OUT_D whose duration is determined by the TIMER_SP value. At the end of
the time duration, the output, will return to false. Further false-to-true transitions of the
combined input while PRE_OUT_D is true will be ignored.

Timer Example when TIMER_TYPE = PULSE

• If TIMER_TYPE is **RT_PULSE**, (Re-Triggerable pulse type) a false-to-true change on the combined input, PV_D, will initiate a true pulse at PRE_OUT_D whose duration is determined by the TIMER_SP value. At the end of that time duration PRE_OUT_D will return to false. If the combined input returns to false and presents a subsequent false-to-true transition while the timer is timing, the timer shall be reinitialized and PRE_OUT_D shall continue to be true.

Timer Example when TIMER_TYPE = RT_PULSE

RESET_IN is a discrete input which, on a false-to-true transition, resets the timer. OUT_EXP output is set to 0, and then the timer follows processing described in "Initialization Treatment" for the values PRE_OUT_D and OUT_REM.

INVERT_OPTS allows invert the discrete input or output values. Each input or output can be set individually.

In Man mode, the block allows change the OUT_D outputs, the calculations is kept and PRE_OUT_D is calculated. In Auto mode, PRE_OUT_D is passed to the OUT_D.

If the "Use Uncertain" option is selected in the STATUS_OPTS, inputs with Uncertain status will be represented as Good (usable). If this option is not set, inputs with Uncertain status will be interpreted as Bad (Not usable).

When any one of the inputs receives a non usable status, the output will receive the non usable status and then the timer will stop the measurement. When the outputs return to usable status, the timer returns to the measurement and the OUT_EXP and OUT_REM status will be set to Uncertain while they are in quiescent state or a Reset occurs.

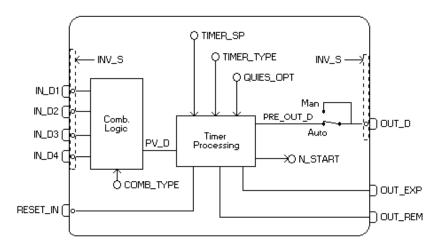
Initialization Treatment

The following table summarizes the values of PRE_OUT_D, OUT_EXP and OUT_REM after the initial execution, as a function of TIMER_TYPE and the initial value of the combined input, PV_D:

TIMER_TYPE	PV_D	PRE_OUT_D	OUT_EXP	OUT_REM	Timer Status
MEASURE	False	False	0.0	0.0	Inactive
MEASURE	True	True	0.0	0.0	Inactive
ACCUM	False	False	0.0	0.0	Inactive
ACCUM	True	True	0.0	0.0	Inactive
COMPARE	False	False	TIMER_SP †	0.0	Inactive
COMPARE	True	False	0.0	TIMER_SP †	Active
DELAY	False	False	TIMER_SP †	0.0	Inactive
DELAY	True	False	0.0	TIMER_SP †	Active
EXTEND	False	True	0.0	TIMER_SP †	Active
EXTEND	True	True	TIMER_SP †	0.0	Inactive
DEBOUNCE	False	False	TIMER_SP †	0.0	Inactive
DEBOUNCE	True	True	TIMER_SP †	0.0	Inactive
PULSE	False	False	0.0	0.0	Inactive
PULSE	True	False	TIMER_SP †	0.0	Inactive
RT_PULSE	False	False	0.0	0.0	Inactive
RT_PULSE	True	False	TIMER_SP †	0.0	Inactive

† Initialize to TIMER_SP value if QUIES_OPT = LAST, initialize to 0.0 if QUIES_OPT = CLEAR.

BLOCK_ERR


The BLOCK_ERR of the TIME block will reflect the following causes:

- Block Configuration Error the configuration error occurs when the TIME_UNITS or QUIES_OPT parameters have an invalid value;
- Out of Service it occurs when the block is in O/S mode.

Modes Supported

O/S, MAN and AUTO.

Schematic

Parameters

ldx	Parameter	Data Type	Valid Range/	Default Value	Units	Store / Mode	Description
1	ST REV	(length) Unsigned16	Options	value 0	None	S/RO	
—							
2	TAG_DESC	OctString(32)		Spaces	Na	S	
3	STRATEGY	Unsigned16		0	None	S	
4	ALERT_KEY	Unsigned8	1 to 255	0	None	S	
5	MODE_BLK	DS-69		O/S	Na	S	See Mode Parameter
6	BLOCK_ERR	Bitstring(2)			E	D/RO	This is the timer duration used by the timer block for delay, extension, debouncing, and pulse time-processing.
7	PV_D	DS-66				RO	Either the primary discrete value for use in executing the function, or a process value associated with it.
8	OUT_D	DS-66				D	The primary discrete value calculated as a result of executing the function.
9	TIMER_SP	Float	Positive	0	Sec	s	Time used by the TIME block to set the delay, extend, debouncing and processing the pulse time.
10	PV_STATE	Unsigned16		0		S	Index to the text describing the states of a discrete PV.
11	OUT_STATE	Unsigned16		0		S	Index to the text describing the states of a discrete output.
12	GRANT_DENY	DS-70		0	Na	D	Options for controlling access of host computer and local control panels to operating, tuning and alarm parameters of the block.
13	INVERT_OPTS	Bitstring(2)	See Block Options	0	Na	s / o/s	See Block Options
14	STATUS_OPTS	Bitstring(2)	See Block Options	0	Na	S / O/S	See Block Options
15	IN_D1	DS-66				D	Numbered discrete input parameter 1.
16	IN_D2	DS-66				D	Numbered discrete input parameter 2.
17	IN_D3	DS-66				D	Numbered discrete input parameter 3.
18	IN_D4	DS-66				D	Numbered discrete input parameter 4.

ldx	Parameter	Data Type (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
19	COMB_TYPE	Unsigned8	0=AND 1=OR 2=ANY2 3=ANY3 21=EXACTLY1 22=EXACTLY2 23=EXACTLY3 40=EVEN 41=ODD	1	E	S/Man	Determines how the inputs IN_D[i] are combined.
20	TIMER_TYPE	Unsigned8	0=MEASURE 1=ACCUM 2=COMPARE 3=DELAY 4=EXTEND 5=DEBOUNCE 6=PULSE 7=RT_PULSE	0	E	S/Man	Type of processing applied to PV_D to determine the PRE_OUT_D.
21	PRE_OUT_D	DS-66				RO	This parameter is the combined and time-processed output of the timer block.
22	N_START	Unsigned16			None	D/RO	Count of <i>false</i> -to- <i>true</i> transitions of the combined input, PV_D. Reset by <i>false</i> -to- <i>true</i> transition of RESET_IN.
23	OUT_EXP	DS-65			Sec	N/RO	This is the time expired. Stops when TIMER_SP is reached. Reset to zero (1) by RESET_IN, (2) at start of next timer event if QUIES_OPT = LAST, or (3) when block becomes quiescent if QUIES_OPT = CLEAR.
24	OUT_REM	DS-65			Sec	N/RO	This is the time remaining if the timer is active. Stops when event ceases (block becomes quiescent). Reset to 0.0 if QUIES_OPT = CLEAR, and the timer is inactive.
25	RESET_IN	DS-66	0=Off 1=Reset				Resets the timer.
26	QUIES_OPT	Unsigned8	1=CLEAR 2=LAST	0	E	S / O/S	Behavior option for OUT_EXP and OUT_REM during quiescence. CLEAR resets them to zero. LAST causes last values to be held.
27	TIME_UNITS	Unsigned8	1=seconds 2=minutes 3=hours 4=days 5=[day- [hr:[min[:sec]]]]	0	E	S	This parameter has fixed unit: seconds. TIME_UNITS is not used.
28	UPDATE_EVT	DS-73			na	D	This alert is generated by any change to the static data.
29	BLOCK_ALM	DS-72			na	D	The block alarm is used for all configuration, hardware, connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.

Legend: E - Enumerated parameter; Na - Dimensionless parameter; RO - Read only; D - dynamic; N - non-volatile; S - static

Gray Background Line: Default Parameters of Syscon

If DIAG.BEHAVIOR parameter is "Adapted":

The default value of TIME_UNITS is "Seconds".

The default value of QUIES_OPT is "CLEAR".

LLAG - Lead Lag

Description

The LLAG block provides dynamic compensation of the IN parameter. The block can function as a lead, lag, or both. The user would configure the LEAD_TIME and LAG_TIME parameters to obtain the desired input/output relationship.

The LAG_TIME parameter specifies the time constant for the block. Based on a step change to the input this is the time to reach 63.2% of the final value.

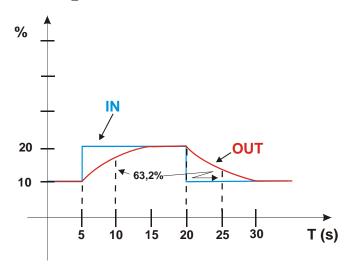
The LEAD_TIME parameter specifies the gain or impulse applied to the input parameter.

The FOLLOW parameter is used to start internal parameters. When FOLLOW is true, it forces OUT tracks IN.

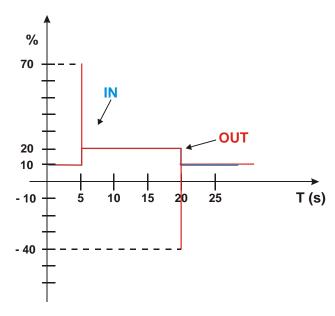
The generalized form of the equation describing the action is as follows:

$$G(s) = \frac{(T_1s + 1)}{(T_2s + 1)}$$

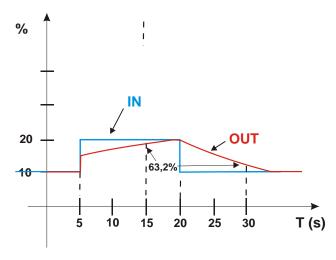
Where:


 T_1 = Lead time Constant

 T_2 = Lag Time Constant

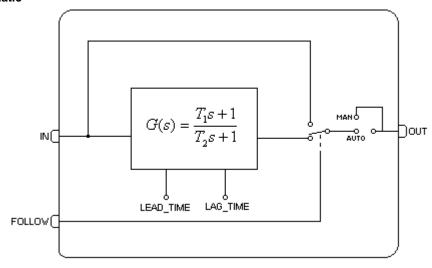

Examples for Applications

Initially, it considers an input signal IN = 10. This input receives a positive step change equals to 10% in t = 5s. In t = 20s, the input receives a negative step change equals to 10%. The LLAG action can be observed for the following cases:


1) LEAD_TIME = 0 and LAG_TIME = 5

2) LEAD_TIME = 5 and LAG_TIME = 0

3) LEAD_TIME = 5 and LAG_TIME = 10


Man to Auto Transition

When the block in is Man mode, it is possible writing in OUT. During the transition from Manual mode to Auto mode, if the BAL_TIME parameter is not configured, that is, it is zero; the transition from the written value to the calculated value will be done with bump, such as a pulse (Positive or negative). Through the BAL_TIME configuration, given in seconds, a bumpless transition can be performed from the written value to the calculated value

Supported Modes

O/S, MAN and AUTO.

Schematic

ldx	Parameter	Data Type (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
1	ST_REV	Unsigned16		0	None	S/RO	
2	TAG_DESC	OctString(32)		Spaces	Na	S	
3	STRATEGY	Unsigned16		0	None	S	
4	ALERT_KEY	Unsigned8	1 to 255	0	None	S	
5	MODE_BLK	DS-69		O/S	Na	S	See Mode Parameter
6	BLOCK_ERR	Bitstring(2)			Е	D/RO	
7	OUT	DS-65			OUT	D	The primary analog value calculated as a result of executing the function.
8	OUT_RANGE	DS-68		0	E	S	Defines the display scale for the output.
9	GRANT_DENY	DS-70		0	Na	D	Options for controlling access of host computer and local control panels to operating, tuning and alarm parameters of the block.
10	STATUS_OPTS	Bitstring(2)	Bit 2: Use Unc as Good	0	Na	S / O/S	See Block Options
11	IN	DS-65				D	The primary input value of the block, required for blocks that filter the input to get the PV.
12	FOLLOW	DS-66	True=follow		Na	D	Tracking input, when true causes the output to track the input.
13	LAG_TIME	Float			Sec	D	Specifies the lag time constant for the block. Based on a step change to the input this is the time to reach 63.2% of the final value.
14	LEAD_TIME	Float			Sec	D	Specifies the lead time constant applied to the input parameter.
15	BAL_TIME	Float	Positive	0	Sec	S	This specifies the time for the internal working value of bias or ratio to return to the operator set bias or ratio, in seconds.
16	OUTAGE_LIM	Float	Positive	0	Sec	S	The maximum tolerated duration for power failure.
17	UPDATE_EVT	DS-73			na	D	This feature is not supported. This alert is generated by any change to the static data.

ld	Parameter	Data Type (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
18	BLOCK_ALM	DS-72			na	D	The block alarm is used for all configuration, hardware, connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.

Legend: E – Enumerated parameter; Na – Dimensionless parameter; RO – Read only; D – dynamic; N – non-volatile; S - static

Gray Background Line: Default Parameters of Syscon

If DIAG.BEHAVIOR parameter is "Adapted":

The required mode for writing is the actual mode, regardless the target mode: OUT.

OSDL - Output Signal Selector and Dynamic Limiter

Description

The output signal selector and dynamic limiter block (OSDL) provides two different algorithms types:

As Output Selector the cascade input may be routed for one of two outputs based on the value of the OP_SELECT input parameter. The output not selected may have two ways: keeping the last value when not selected, or receive a internal value.

As Dynamic Limiter the cascade input is transferred to both output, but it is limited by the secondary inputs multiplied by a gain, plus a bias. The Dynamic LIMITER is extremely useful in one of its most important applications: combustion control with double cross limits.

The OSDL_TYPE parameter determines the algorithm used by the OSDL block. In order to change the OSDL_TYPE the block must be in Out of Service mode.

Output Signal Selector

The SP value may be controlled by an operator (Auto mode) or through a cascade control (Cas mode). In the cascade control the SP is supplied by another function block through the CAS_IN parameter. The inputs IN and IN_1 are not applied to this algorithm. It means that the block ignores the status and values of IN and IN_1 when the OSDL_TYPE is Output Selector.

The OP_SELECT is a discrete input parameter that selects one of two outputs to receive SP parameter. When the OP_SELECT is zero, the OUT parameter receives the SP parameter. Otherwise the OUT_1 parameter receives the SP parameter.

When the OP_SELECT status is not usable, the block changes to Auto, but the algorithm goes on working with the unusable value.

Most of the times, the SP is transferred to the selected output whatever is the status. Therefore, an unusable value and status in the CAS_IN will be reflected to the selected output. Only the status of upper cascade initialization will not be copied to the selected output.

Handling the non-selected output

There are two ways to handle the non-selected output, if the "Keep last value if not selected" bit in OSDL_OPTS parameter is true, the non-selected output will keep the last value. Otherwise, the outputs OUT and OUT_1 will receive the value contained in the NOT_SEL_VAL and NOT_SEL_VAL_1, respectively.

The non-selected output receives the uncertain status indicating to the downstream block that it is not selected any more. The configuration of the STATUS_OPTS in the downstream block will define how to deal with it.

IFS status propagation

If the "IFS only for selected output" bit in OSDL_OPTS parameter is true, the fault state status will be propagated only to selected output. Otherwise the status GoodCascade -IFS is propagated to both outputs, that is the default configuration.

Downstream block is not in cascade

If the downstream block of the selected output is not in cascade mode, the OSDL block goes to Iman mode. And the status of BKCAL_OUT will be GoodCascade – Not Invited, it will force the upstream block to Iman mode too.

If the downstream block of the non-selected output is not in cascade mode, the OSDL block will ignore it.

Dynamic Limiter

As a dynamic limiter algorithm, the outputs are the value of the "CAS_IN" parameter limited by the following values:

```
OUT
```

```
High limit = HI_GAIN_1 * IN_1 + HI_BIAS_1
Low limit = LO_GAIN_1 * IN_1 - LO_BIAS_1
```

OUT_1:

High limit = HI_GAIN * IN + HI_BIAS Low limit = LO_GAIN * IN - LO_BIAS After the limitation, the parameters GAIN and GAIN_1 are applied as gain for the outputs OUT and OUT_1, respectively.

The normal mode of operation for the OSDL block is Cas, as well the two downstream blocks. If one downstream block is not in cascade mode, indicated by not invited status (NI) on its BKCAL_OUT, the OSDL block still continues in cascade mode. Only if both downstream blocks are not in cascade, then the OSDL changes to Iman mode and its BKCAL_OUT output changes to NI.

If the OSDL block is in Iman mode, when the cascade is initialized with a IR by a downstream block, the respective output (OUT or OUT_1) sends a IA for the downstream block and the BKCAL_OUT of the OSDL block receive the value of the respective BKCAL_IN. The OSDL block remains in IMAN mode until the downstream cascade is initialized. Then OSDL block goes to Auto mode and it sends an IR to upstream block to initialize the cascade.

After a downstream cascade initialization, the corresponding output must ramp from the last BKCAL_IN to the calculated value in BAL_TIME seconds.

The required actions as a dynamic limiter algorithm are summarized in the following table:

Mode Target/Actual	BKCAL_IN	BKCAL_IN1	BKCAL_OUT	ACTION
Cas/Iman	NI or IR	NI or IR	NI	
Cas/Cas	NI or IR	ОК	ОК	BKCAL_OUT receive the CAS_IN value
Cas/Cas	ОК	NI or IR	ОК	BKCAL_OUT receive the CAS_IN value.
Cas/Cas	ОК	ОК	ОК	BKCAL_OUT receive the CAS_IN value.

Legend: NI-not invited; IR-initialization request; OK-working in cascade

Optionally, when the block is working as "Dynamic Limiter, it can choose if the return value for the upper block through the BKCAL_OUT output will be SP, Out or OUT_1, as showed below:

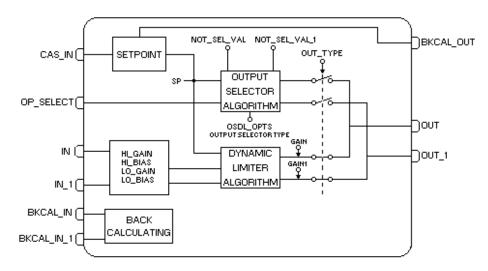
- BKCAL_OUT = SP (default)
- BKCAL_OUT = OUT (when OSDL_OPTS = "Use OUT for BKCAL_OUT").
- BKCAL_OUT = OUT_1 (When OSDL_OPTS = "Use OUT_1 for BKCAL_OUT_1").

BLOCK ERR

The BLOCK_ERR of the OSDL block will reflect the following causes:

- Block Configuration Error the configuration error occurs when the OUT_TYPE parameter
 has an invalid value.
- Out of Service When the block is in O/S mode.

Supported Modes


O/S, IMAN, AUTO and CAS.

Status Handling

Standard, plus the following:

When one or both of the IN's input are Bad, special limiting action must be taken. If the "IFS if Bad IN_x " or "IFS if Bad CAS_IN" bit is true in the OSDL_OPTS parameter and the respective input is Bad, both output status go to "good IFS". If the bit is not true, the block goes to AUTO mode. Sub-Status values received in CAS_IN will be passed onto both outputs, except for those used in the cascade initialization. An IFS will go to both the selected and the non-selected output.

Schematic

ldx	Parameter	Data Type (length)	Valid Range/ Options	Default Value	Units	Store/ Mode	Description
1	ST_REV	Unsigned16		0	None	S/RO	
2	TAG_DESC	OctString(32		Spaces	Na	S	
3	STRATEGY	Unsigned16		0	None	S	
4	ALERT_KEY	Unsigned8	1 to 255	0	None	S	
5	MODE_BLK	DS-69		O/S	Na	S	See Mode Parameter
6	BLOCK_ERR	Bitstring(2)			Е	D/RO	
7	CAS_IN	DS-65				D	This parameter is the remote setpoint value, which must come from another Fieldbus block, or a DCS block through a defined link.
8	SP	DS-65				N / Auto	The analog set point.
9	IN	DS-65				D	The primary input value of the block.
10	IN_1	DS-65				D	Numbered input parameter 1.
11	OP_SELECT	DS-66	0 thru 4		None	D	An operator adjustable parameter to force a given input to be used.
12	OUT	DS-65				D/RO	The primary analog value calculated as a result of executing the function.
13	OUT_1	DS-65				D/RO	Numbered output parameter 1.
14	GRANT_DENY	DS-70		0	Na	S / O/S	Options for controlling access of host computer and local control panels to operating, tuning and alarm parameters of the block.
15	OUT_TYPE	Unsigned8	0 : Invalid Value 1 : Output Selector 2 : Dynamic Limiter	0	E	S / Man	This parameter specifies the algorithm type that will be calculated.
16	OSDL_OPTS	Bitstring(2)		0	Na	S / O/S	Option bit string for handling the block processing.
17	HI_GAIN	Float		1.1	None	S	It is used to calculate the high limit for OUT_1. This gain multiplies IN before adding HI_BIAS.
18	HI_BIAS	Float	Positive	0		S	It is used to calculate the high limit for OUT_1. This bias is added to IN after multiplying by HI_GAIN.

ldx	Parameter	Data Type (length)	Valid Range/ Options	Default Value	Units	Store/ Mode	Description
19	LO_GAIN	Float		0.9	None	S	It is used to calculate the low limit for OUT_1. This gain multiplies IN before subtracting LO_BIAS.
20	LO_BIAS	Float	Positive	0		S	It is used to calculate the low limit for OUT_1. This bias is subtracted of IN after multiplying by LO_GAIN.
21	HI_GAIN_1	Float		1.1	None	S	It is used to calculate the high limit for OUT. This gain multiplies IN_1 before adding HI_BIAS_1.
22	HI_BIAS_1	Float	Positive	0		S	It is used to calculate the high limit for OUT. This bias is added to IN_1 after multiplying by HI_GAIN_1.
23	LO_GAIN_1	Float		0.9	None	S	It is used to calculate the low limit for OUT. This gain multiplies IN_1 before subtracting LO_BIAS_1.
24	LO_BIAS_1	Float	Positive	0		S	It is used to calculate the low limit for OUT. This bias is subtracted of IN_1 after multiplying by LO_GAIN_1.
25	GAIN	Float		1	None	S	Gain applied to OUT after limiting.
26	GAIN_1	Float		1	None	S	Gain applied to OUT_1 after limiting.
27	BKCAL_IN	DS-65				N	The value and status from a lower block's BKCAL_OUT that is used to prevent reset windup and to initialize the control loop.
28	BKCAL_IN_1	DS-65				N	The back calculated input required to initialize a lower cascade 1.
29	BKCAL_OUT	DS-66				D	The value and status required by an upper block's BKCAL_IN so that the upper block may prevent reset windup and provide bumpless transfer to closed loop control.
30	BAL_TIME	Float		0	Sec	S	This specifies the time for the internal working value of bias or ratio to return to the operator set bias or ratio, in seconds.
27	NOT_SEL_VAL	Float		0		S	Contained parameter that will set the respective output when OUT is not selected by the OP_SELECT.
28	NOT_SEL_VAL_1	Float		0		S	Contained parameter that will set the respective output when OUT_1 is not selected by the OP_SELECT.
33	UPDATE_EVT	DS-73			na	D	This alert is generated by any change to the static data.
34	BLOCK_ALM	DS-72			na	D	The block alarm is used for all configuration, hardware, connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.

Legend: E - Enumerated parameter; Na - Dimensionless parameter; RO - Read only; D - dynamic; N - non-volatile; S - static

Gray Background Line: Default Parameters of Syscon

If DIAG.BEHAVIOR parameter is "Adapted":

The default value of OUT_TYPE is "Dynamic limiter".

The required mode for writing is the actual mode, regardless the target mode: SP.

DENS - Density

Overview

This function block has an algorithm to calculate density in different kinds of engineering units, as Plato degree, Brix, TC and INPM.

Description

The algorithm to calculate the density is based on the pressure in two points of the tank in a known difference height. The calculation is done using the average from the sensor pressure samples (the number of the samples is determined by the NUM_SAMPLES parameter). Then, the previous density is calculated using the following formula:

$$D = \frac{\text{Conv}_f \text{actor} * (\overline{P}_1 - \overline{P}_2)}{\text{HEIGHT} * \text{GRAVITY}} \left[g / \text{cm}^3 \right]$$

Where in the formula above the average pressure is given by:

$$\overline{P_{-}i} = \frac{\displaystyle\sum_{j=1}^{NUM_SAMPLES} IN_{-}i}{NUM_SAMPLES} [PRESSURE_UNITS]$$

Conv_Factor is a factor to transform the formula coefficients in the same units.

HEIGHT and GRAVITY ≠ 0

The temperature is compensated in the density calculation. The DENS_OUT parameter is the compassed density in g/cm³. The OUT parameter is the compensated density in a different engineering unit for chosen by the EU_SEL parameter.

The density block provides alarm condition and the discrete alarm output to be used any block. If the density exceeds HI_LIM or LO_LIM an alarm is indicated in HI_ALM or LO_ALM and the output OUT_D will be set to true. If one or both of the limit parameters are set +/- INF this indicate that this alarm is disabled.

The RESET_IN is a discrete input, which on a false-to-true transition resets the density block, including the previous density, the round buffer and all outputs of the block. The status will be the same as the last cycle.

BLOCK_ERR

The BLOCK ERR of the DENS block will reflect the following causes:

Out of Service – it occurs when the block is in O/S mode.

Supported Modes

O/S, MAN and AUTO.

Mode Handling

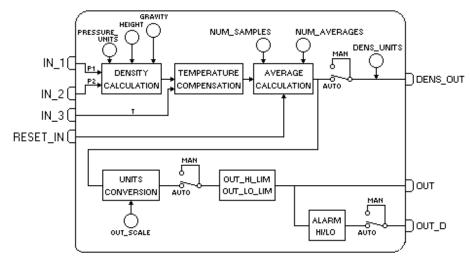
Manual mode disconnects the outputs from the algorithm and permits manual substitution of the OUT, DENS_OUT, OUT_D values for test or other purposes. Although the OUT_D parameter is also disconnected from the alarm, the alarm and the limits (OUT_HI_LIM and OUT_LO_LIM) continue to check the output.

Status Handling

The primary input status (IN_1 and IN_2 parameters) are propagated to the outputs.

If the status of any primary input becomes bad or uncertain and their respective option "use uncertain" of STATUS_OPTS is not set, the actual mode block will be forced to manual and the algorithm stops the calculation.

If the secondary input (IN_3 parameter) is unusable, the algorithm uses the last usable value and the output status will be Uncertain.


A bad status in RESET IN input does not stop the algorithm.

If target mode is Man then the output status is Good.

Valid Pressure Units

Index	Unit
1130	PA
1133	KPA
1132	MPA
1137	BAR
1138	MBAR
1139	TORR
1140	ATM
1141	PSI
1144	GCM2
1145	KGCM2
1148	INH20
1147	INH204C
1151	MMH20
1150	MMH204C
1154	FTH20
1156	INHG
1158	MMHG

Schematic

ldx	Parameter	DataType (length)	Valid Range/ Options	Default Value	Units	Store/ Mode	Description
4	ST_REV	Unsigned16		0	None	S/RO	
5	TAG_DESC	OctString(3 2)		Spaces	Na	S	
6	STRATEGY	Unsigned16		0	None	S	
4	ALERT_KEY	Unsigned8	1 to 255	0	None	S	
5	MODE_BLK	DS-69		O/S	Na	S	See Mode Parameter

ldx	Parameter	DataType (length)	Valid Range/ Options	Default Value	Units	Store/ Mode	Description
6	BLOCK_ERR	Bitstring(2)			E	D/RO	
7	OUT	DS-65	OUT_SCALE +/- 10%		OUT	D / Man	The analog value calculated as a result of executing the function.
8	OUT_SCALE	DS-68		0-100%	OUT	S / Man	The high and low scale values to the OUT parameter.
9	EU_SEL	Unsigned8	0:Plato degree 1:Brix 2:TC 3:INPM	0	E	S / Man	Selection of engineering unit for density.
10	GRANT_DENY	DS-70		0	na	D	
11	STATUS_OPTS	Bitstring(2)	See Block Options	0	Na	S / O/S	See Block Options
12	IN_1	DS-65				D	The first input (pressure P1) must have the same engineering units of IN_2.
13	IN_2	DS-65				D	The second input (pressure P2) must have the same engineering units of IN_1.
14	IN_3	DS-65				D	The third input. (Temperature T in Degrees Celsius)
15	PRESSURE_UNITS	Unsigned1 6	See valid pressure units	1144 (g/cm²)	E	s	This is the pressure engineering unit of IN_1 and IN_2.
16	HEIGHT	Float	Positive	1000.0	mm	S	Distance between the two pressure transmitters. The engineering units must be compatible to the inputs IN_1 and IN_2. If it is mmH20, the EU of HEIGHT is mm.
17	GRAVITY	Float	Positive	9.80665	m/s²	s	The gravity acceleration used in the density calculation, the EU of GRAVITY is m/s².
18	NUM_SAMPLES	Unsigned16	1-1000	10	Na	S	Number of samples.
19	NUM_AVERAGES	Unsigned16	1-30	10	Na	S	Number of averages in the round buffer.
20	DENS_OUT	DS-65			g/cm³	D / Man	The density compensated by the temperature.
21	DENS_UNITS	Unsigned16		1100	g/cm ³	S/RO	This is the engineering unit of DENS_OUT that is fixed in g/cm³.
22	OUT_D	DS-66				D	This is a discrete output parameter to indicate alarm state.
23	RESET_IN	DS-66				D	When it is true, it resets the average calculation and it clears the round buffer of averages.
24	OUT_HI_LIM	Float		100	OUT	S	High limit for OUT.
25	OUT_LO_LIM	Float		0	OUT	S	Low limit for OUT.
26	UPDATE_EVT	DS-73			Na	D	This alert is generated by any change to the static data.
27	BLOCK_ALM	DS-72			Na	D	The block alarm is used for all configuration, hardware, connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.
28	ALARM_SUM	DS-74			Na	S	The current alert status, unacknowledged states, unreported states, and disabled states of the alarms associated with the function block.
29	ACK_OPTION	Bitstring(2)	0: Auto ACK Disable 1: Auto ACK Enable	0	Na	S	Selection of whether alarms associated with the block will be automatically acknowledged

ldx	Parameter	DataType (length)	Valid Range/ Options	Default Value	Units	Store/ Mode	Description
30	ALARM_HYS	Float	0 to 50 %	0.5%	%	S	Alarm hysteresis parameter. In order to clear the alarm the amount the PV must return within the alarm limit plus hysteresis.
31	HI_PRI	Unsigned8	0 to 15			S	Priority of the high alarm.
32	HI_LIM	Float	OUT_SCALE, +INF	+INF	OUT	S	The setting for high alarm in engineering units.
33	LO_PRI	Unsigned8	0 to 15			S	Priority of the low alarm.
34	LO_LIM	Float	OUT_SCALE, - INF	-INF	OUT	S	The setting for low alarm in engineering units.
35	HI_ALM	DS-71			OUT	D	The status for high alarm and its associated time stamp.
36	LO_ALM	DS-71			OUT	D	The status for low alarm and its associated time stamp.

Legend: E – Enumerated parameter; Na – Dimensionless parameter; RO – Read only; D – dynamic; N – non-volatile; S - static

Gray Background Line: Default Parameters of Syscon

If DIAG.BEHAVIOR parameter is "Adapted":

The required mode for writing is the actual mode, regardless the target mode: OUT, DENS_OUT,

CTRW – Constant and Contained RW

Overview

The Constant function block generates constant values to use in input parameters of other blocks. It can also read/write in contained parameters of other blocks into the same device.

Description

The Constant function block has two functions:

As Constant:

It generates constant values to use in input parameters of other blocks. This block allows up to 6 discrete constant and 6 analogical constant.

As Contained RW:

The input writes in contained parameters of any other block into the same device.

The output reads data of the contained parameters of any other block into the same device.

> Generating Constant Values for other Blocks

This block can generate up to six discrete outputs and 6 analogic outputs, where:

- The OUT_1 to OUT_4 and OUT_D1 to OUT_D4 outputs become available in the output the constant values of CT_VALxx and CT_STATUS_xx.
- The OUT_5, OUT_6, OUT_D5 and OUT_D6 outputs have the feature Reading of Contained Parameter of other blocks and are associated with the LOC_OUT_xx parameter. If these parameters are not configured, the output will show the CT_VAL_xx abd CT_STATUS_xx constant values.

If the Mode is Man, it is allowed the manual substitution of all ouput values. In the Auto mode, the output values are the respective constant values.

> Reading or Writing from/to Contained Variables of other blocks

The writing and/or reading in the contained parameters of other blocks is associated to the block execution in the Auto mode.

Input Treatment – Writing in Contained Parameters

During the block execution in the Auto mode, the block writes the value of the IN_xx parameter in a parameter of any other block in the same device. The value will be written in the parameter configured in the following

situations:

While the value had a usable value the IN xx input (i.e.

- While the value had a usable value in the IN_xx input (i.e., IN_xx Status was Good or Uncertain and the option "Use Uncertain as Good" in STATUS_OPTS was set).
- The DISABLE_IN_xx input is usable and with FALSE value, or when the IN_xx input was with an usable value.
- For the IN_Dx inputs will just be done the writing when the actual value was different of the previous. This avoids cyclical writing in static parameters which causes a cyclical increment of the ST_REV and event generation by the UPD_EVT.
- For the IN_x inputs will just be done the writing when the actual value was upper or lower that DEAD_BAND_x. In this range would not have writing in the parameter. When the DEAD_BAND_X parameter is equal zero, it means continued writing.

If the writing does not accomplish in the desired block, the input with failure will be indicated in the BAD_STATUS parameter.

Output Treatment – Reading of the Contained Parameters

During the block execution in the Auto mode, the block reads the parameter value of any other block in the same device and become available in the OUT_xx. VALUE parameter (where xx is only for the OUT_5, OUT_6, OUT_D5 and OUT_D6 outputs). The Ouput status will be GoodNonCascade in this case.

If the block does not read the parameter, the correspondet output with failure will be indicated in the BAD_STATUS parameter, and also OUT_xx.STATUS = Bad No Comm.

When BLOCK_TAG_OUT_xx parameter is not configured (BLOCK_TAG = Spaces), then the OUT_xx output becomes available the corresponding constant value and status (CT_VAL_xx and CT_STATUS_xx).

Configuration of Contained Parameter to be Read/Write

To address the contained parameter, the respective input or output will have a LOC xxx parameter composed of the following structure (DS-262):

Element Name	Data Type	Size	Description
BLOCK_TAG_xxx	VisibleString(32)	32	Block Tag for monitoring (this tag is case sensitive).
INDEX_RELATIVE_xxx	Unsigned16	2	Relative Index of parameter.
SUB_INDEX_xxx	Unsigned8	1	Parameter subindex started by 1. When the parameter is a structure (DS_yyy), it indicates the number of the structure element. When it was a Bitstring parameter, it indicates the byte of the parameter to be considered. In simple parameters, this sub index is not considered.

In the table below, xxx means the selected input or output (IN1,IN2,IN_D1,etc). For example, to address IN_1, the configuration parameters are BLOCK_TAG_IN1, INDEX_RELATIVE_IN1, SUB_INDEX_IN1.

The Input/Output is considered **NOT CONFIGURED** when **BLOCK_TAG_xxx** is **blank** or **INDEX_RELATIVE_xxx** and SUB_INDEX_xxx are equals to **zero**.

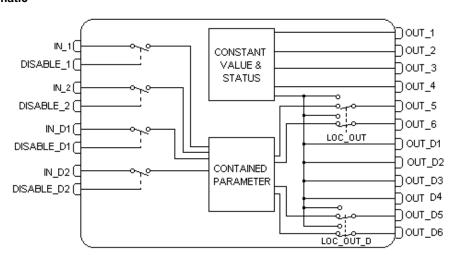
When there was a configuration error in the contained parameter, the correspondent bit of the input/output in CONFIG_STATUS will be set and the BLOCK_ERR will indicate "Configuration Error".

¹The reading or writing is not supported in all parameter types. The table below summarizes the operations supported by the block:

Parameter	Data	Dire	ction	Data Type of/ Parameter of
Input/Output	Туре	From	То	Other Supported Block
IN_x	Float	ln_x	Other Block Parameter	Boolean * Float Integer8 * Integer16 * Integer32 Unsigned8 * Unsigned16 * Unsigned32 Bitstring *
In_Dx	Unsigned8	ln_Dx	Other Block Parameter	Boolean Float Integer8 Integer16 Integer32 Unsigned8 Unsigned16 Unsigned32 Bitstring *
Out_x	Float	Other Block Parameter	Out_x	Boolean Float Integer8 Integer16 Integer32 Unsigned8 Unsigned16 Unsigned32 Bitstring
Out_Dx	Unsigned8*	Other Block Parameter	Out_Dx	Boolean Float Integer8 Integer16 Integer32 Unsigned8 Unsigned16 Unsigned32 Bitstring

Note 1: The data type assigned with * means the block will cut the values out

of range of the correspondent type:


- Unsigned 8 / Bitstring 0 to 255
- Integer 8 (-127) a (+127)
- Boolean 0 e 1
- Unsigned16 0 to 65535
- Integer16 (-32767) to (+32767)

Note 2: For the BitString type, the Subindex identifies the correspondent Byte.

Note 3: The reading or writing in contained parameters are not supported in the same block Constant.

Supported modes O/S, MAN, AUTO

Schematic

ldx	Parameter	Data Type (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
1	ST_REV	Unsigned16		0	None	S/RO	
2	TAG_DESC	OctString(32		Spaces	Na	S	
3	STRATEGY	Unsigned16		0	None	S	
4	ALERT_KEY	Unsigned8	1 to 255	0	None	S	
5	MODE_BLK	DS-69		O/S	Na	S	See Mode Parameter
6	BLOCK_ERR	Bitstring(2)			Е	D/RO	
7	OUT_1	DS-65				N / Man	This output is determined by the constant CT_VAL_1. It can not be used to read contained parameters.
8	OUT_2	DS-65				D / Man	This output is determined by the constant CT_VAL_2. It can not be used to read contained parameters.
9	OUT_3	DS-65				D / Man	This output is determined by the constant CT_VAL_3. It can not be used to read contained parameters.
10	OUT_4	DS-65				D / Man	This output is determined by the constant CT_VAL_4. It can not be used to read contained parameters.
11	OUT_5	DS-65				D / Man	This output can have the value of a constant CT_VAL_5 or the value of a contained parameter from another block depends on BLK_TAG_OUT5.

ldx	Parameter	Data Type (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
12	OUT_6	DS-65				D / Man	This output can have the value of a constant CT_VAL_6 or the value of a contained parameter from another block depends on BLK_TAG_OUT6.
13	OUT_D1	DS-66				N / Man	This output is determined by the constant CT_VAL_D1. It can not be used to read contained parameters.
14	OUT_D2	DS-66				D / Man	This output is determined by the constant CT_VAL_D2. It can not be used to read contained parameters.
15	CT_VAL_1	Float		0		s	Analog constant value transferred to the output OUT_1.
16	CT_VAL_2	Float		0		s	Analog constant value transferred to the output OUT_2.
17	CT_VAL_3	Float		0		s	Analog constant value transferred to the output OUT_3.
18	CT_VAL_4	Float		0		S	Analog constant value transferred to the output OUT_4.
19	CT_VAL_5	Float		0		s	Analog constant value transferred to the output OUT_5.
20	CT_VAL_6	Float		0		S	Analog constant value transferred to the output OUT_6.
21	CT_VAL_D1	Unsigned8		0		S	Discrete constant value transferred to the output OUT_D1.
22	CT_VAL_D2	Unsigned8		0		S	Discrete constant value transferred to the output OUT_D2.
23	UPDATE_EVT	DS-73			Na	D	This alert is generated by any change to the static data.
24	BLOCK_ALM	DS-72			Na	D	The block alarm is used for all configuration, hardware, connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.
25	CT_VAL_D3	Unsigned8		0		S	Discrete constant value transferred to the output OUT_D3.
26	CT_VAL_D4	Unsigned8		0		s	Discrete constant value transferred to the output OUT_D4.
27	CT_VAL_D5	Unsigned8		0		S	Discrete constant value transferred to the output OUT_D5.
28	CT_VAL_D6	Unsigned8		0		S	Discrete constant value transferred to the output OUT_D6.
29	CT_STATUS_1	Unsigned8		GNC		S	Constant Status transferred to the output OUT_1.
30	CT_STATUS_2	Unsigned8		GNC		S	Constant Status transferred to the output OUT_2.
31	CT_STATUS_3	Unsigned8		GNC		S	Constant Status transferred to the output OUT_3.
32	CT_STATUS_4	Unsigned8		GNC	_	S	Constant Status transferred to the output OUT_4.
33	CT_STATUS_5	Unsigned8		GNC		S	Constant Status transferred to the output OUT_5.
34	CT_STATUS_6	Unsigned8		GNC		S	Constant Status transferred to the output OUT_6.
35	CT_STATUS_D1	Unsigned8		GNC		S	Constant Status transferred to the output OUT_D1.
36	CT_STATUS_D2	Unsigned8		GNC		S	Constant Status transferred to the output OUT_D2.

ldx	Parameter	Data Type (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
37	CT_STATUS_D3	Unsigned8		GNC		S	Constant Status transferred to the output OUT_D3.
38	CT_STATUS_D4	Unsigned8		GNC		S	Constant Status transferred to the output OUT_D4.
39	CT_STATUS_D5	Unsigned8		GNC		S	Constant Status transferred to the output OUT_D5.
40	CT_STATUS_D6	Unsigned8		GNC		S	Constant Status transferred to the output OUT_D6.
41	OUT_D3	DS-66				D/Man	This output is determined by the constant CT_VAL_D3. It can not be used to read contained parameters.
42	OUT_D4	DS-66				D/Man	This output is determined by the constant CT_VAL_D4. It can not be used to read contained parameters.
43	OUT_D5	DS-66				D/Man	This output can have the value of a CT_VAL_D5 or the value of a contained parameter from another block depends on BLK_TAG_OUT_D5.
44	OUT_D6	DS-66				D/Man	This output can have the value of a CT_VAL_D6 or the value of a contained parameter from another block depends on BLK_TAG_OUT_D6.
45	IN_1	DS-65				D	Analog input that writes to a contained parameter configured in BLK_TAG_IN1.
46	DISABLE_1	DS-66				D	Disable the IN_1 writing in the correspondent contained parameter.
47	BLK_TAG_IN1	Visible(32)		Blank		S/OOS	Block tag that will be written by IN_1.
48	INDEX_RELATIVE _IN1	Unsigned16		0		S/OOS	Relative index of the block parameter that will be written by IN_1.
49	SUB_INDEX_IN1	Unsigned8		0		S/OOS	Subindex of the block parameter that will be written by IN_1.
50	DEAD_BAND_1	Float		1.0	IN_1	S	Dead band for the IN_1 input where the variation into this range would not cause writing in the block parameter.
51	IN_2	DS-66				D	Analog input that writes to a contained parameter configured in BLK_TAG_IN2.
52	DISABLE_2	DS-66				D	Disable the IN_2 writing in the correspondent contained parameter.
53	BLK_TAG_IN2	Visible(32)		Blank		S/OOS	Block tag that will be written by IN_2.
54	INDEX_RELATIVE _IN2	Unsigned16		0		s/oos	Relative index of the block parameter that will be written by IN_2.
55	SUB_INDEX_IN2	Unsigned8		0		s/oos	Subindex of the block parameter that will be written by IN_2.
56	DEAD_BAND_2	Float		1.0	IN_2	S	Dead band for the IN_2 input where the variation into this range would not cause writing in the block parameter.
57	IN_D_1	DS-66				D	Discrete input that writes to a contained parameter configured in BLK_TAG_IN_D1.
58	DISABLE_D1	DS-66				D	Disable the IN_D1 writing in the correspondent contained parameter
59	BLK_TAG_IN_D1	Visible(32)		Blank		S/00S	Block tag that will be written by IN_D_1.
60	INDEX_RELATIVE _IN_D1	Uns16		0		s/oos	Relative index of the block parameter that will be written by IN_D_1.
61	SUB_INDEX_IN_D 1	Uns8		0		S/OOS	Subindex of the block parameter that will be written by IN_D_1.
62	IN_D_2	DS-66				D	Discrete input that writes to a contained parameter configured in BLK_TAG_IN_D2.
63	DISABLE_D2	DS-66				D	Disable the IN_D2 writing in the correspondent contained parameter
64	BLK_TAG_IN_D2	Visible(32)		Blank		S/OOS	Block tag that will be written by IN_D_2.
65	INDEX_RELATIVE _IN_D2	Uns16		0		S/OOS	Relative index of the block parameter that will be written by IN_D_2.

ldx	Parameter	Data Type (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
66	SUB_INDEX_IN_D 2	Uns8		0		S/OOS	Subindex of the block parameter that will be written by IN_D_2.
67	BLK_TAG_OUT5	Visible(32)		Blank		S/00S	Block tag that will be written by OUT_5.
68	INDEX_RELATIVE _OUT5	Uns16		0		S/OOS	Relative index of the block parameter that will be written by OUT_5.
69	SUB_INDEX_OUT 5	Uns8		0		s/oos	Subindex of the block parameter that will be written OUT_5.
70	BLK_TAG_OUT6	Visible(32)		Blank		S/00S	Block tag that will be written by OUT_6.
71	INDEX_RELATIVE _OUT6	Uns16		0		S/OOS	Relative index of the block parameter that will be written by OUT_6.
72	SUB_INDEX_OUT 6	Uns8		0		S/OOS	Subindex of the block parameter that will be written OUT_6.
73	BLK_TAG_OUT_D 5	Visible(32)		Blank		S/OOS	Block tag that will be written by OUT_D5.
74	INDEX_RELATIVE _OUT_D5	Uns16		0		S/OOS	Relative index of the block parameter that will be written by OUT_D5.
75	SUB_INDEX_OUT _D5	Uns8		0		S/OOS	Subindex of the block parameter that will be written OUT_D6.
76	BLK_TAG_OUT_D 6	Visible(32)		Blank		S/OOS	Block tag that will be written by OUT_D6.
77	INDEX_RELATIVE _OUT_D6	Uns16		0		S/OOS	Relative index of the block parameter that will be written by OUT_D6.
78	SUB_INDEX_OUT _D6	Uns8		0		S/OOS	Subindex of the block parameter that will be written OUT_D6.
79	BAD_STATUS	Bitstring(2)				D/RO	Writing/reading status of the parameter. The set bit indicates the algorithm does not get read/write the specified "Block.Parameter".
80	CONFIG_STATUS	Bitstring(2)				D/RO	Indicates which input or output is with configuration error.
81	STATUS_OPTS	Bitstring(2)				S/ OOS	See the parameter description in "Function Block Options".

Legend: E – Enumerated parameter; Na – Dimensionless parameter; RO – Read only; D – dynamic; N – non-volatile; S - static

Gray Background Line: Default Parameters of Syscon

If DIAG.BEHAVIOR parameter is "Adapted":

The required mode for writing is the actual mode, regardless the target mode: OUT_1, OUT_2, OUT_3, OUT_4, OUT_5, OUT_6, OUT_D1 and OUT_D2.

BAD_STATUS and **CONFIG_STATUS** Bitstring

Bit	Description
0	IN_1
1	IN_2
2	IN_D1
3	IN_D2
4	OUT_5
5	OUT_6
6	OUT_D5
7	OUT_D6

FFET - Flip-Flop and Edge Trigger

Overview

It can be configured to work as:

- SR flip-flop
- RS flip-flop
- D-latch
- Rising edge trigger
- Falling edge trigger
- Bi-directional edge trigger

Description

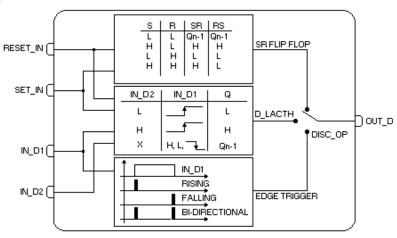
The following tables summarize the block behavior:

RESET_IN	SET_IN	OUT_D (SR flip-flop)	OUT_D (RS flip-flop)
L	L	Q _{n-1}	Q _{n-1}
Н	L	L	L
L	Н	Н	Н
Н	Н	Н	L

RESET_IN	SET_IN	IN_D1	IN_D2	OUT_D (D-latch)
L	Н	X	X	Н
Н	L	X	X	L
Н	Н	X	X	Н
L	L	Rising	L	L
L	L	Rising	Н	Н
L	L	H,L or Falling	X	OUT_D _{n-1}

RESET_IN	SET_IN	IN_D1	OUT_D (Rising Edge)	OUT_D (Falling Edge)	OUT_D (Bi-directional)
L	L	Rising	Н	L	Н
L	L	Falling	L	Н	Н
L	L	No transition	L	L	L
X	Н	X	Н	Н	Н
Н	L	X	L	L	L

BLOCK ERR


The BLOCK_ERR of the FFET block will reflect the following causes:

- Out of Service – When the block is in O/S mode.

Supported Modes

O/S, MAN and AUTO.

Schematic

Parameters

ldx	Parameter	DataType	Valid Range/	Default	Units	Store /	Description
lux	Farailletei	(length)	Options	Value	Ullits	Mode	Description
1	ST_REV	Unsigned16		0	None	S/RO	
2	TAG_DESC	OctString(32		Spaces	Na	S	
3	STRATEGY	Unsigned16		0	None	S	
4	ALERT_KEY	Unsigned8	1 to 255	0	None	S	
5	MODE_BLK	DS-69		O/S	Na	S	See Mode Parameter
6	BLOCK_ERR	Bitstring(2)			E	D/RO	
7	DISC_OP	Unsigned8	0 : SR flip-flop 1 : RS flip-flop 2 : D-latch 3 : rising edge 4 : falling edge 5 : bi-directional edge		E	S / Man	Selection of discrete operation.
8	STATUS_OPTS	Bitstring(2)				S / O/S	
9	IN_D1	DS-66				D	Numbered discrete input 1.
10	IN_D2	DS-66				D	Numbered discrete input 2.
11	SET_IN	DS-66	0 : Off 1 : set			D	The set input.
12	RESET_IN	DS-66	0 : Off 1 : reset			D	The reset input.
13	OUT_D	DS-66				N / Man	The output of flip-flop.
14	UPDATE_EVT	DS-73			Na	D	This alert is generated by any change to the static data.
15	BLOCK_ALM	DS-72			Na	D	The block alarm is used for all configuration, hardware, connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.

 $Legend: \textit{E-Enumerated parameter; Na-Dimensionless parameter; RO-Read only; \textit{D-dynamic; N-non-volatile; S-static} \\$

Gray Background Line: Default Parameters of Syscon

If DIAG.BEHAVIOR parameter is "Adapted":

The required mode for writing is the actual mode, regardless the target mode : OUT_D.

AEQU – Advanced Equations

Overview

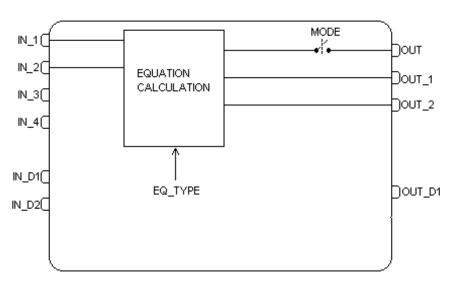
This block was specially designed to support specific calculations.

Description

As this block has a general purpose, some parameters may not be used by a selecteled equation. It follows a description of each equation type, as well the meaning of used parameters:

Parameter	Description	Inputs	Configurable Parameters	Outputs
Ln x	It calculates the natural logarithm	IN_1: input to the function, x	None	OUT: result of natural logarithm
Log x	It calculates base 10 logarithm	IN_1: input to the function, x	None	OUT: result of base 10 logarithm
Ехр х	It calculates e to power of x	IN_1: input to the function, x	None	OUT: result of e to power of x
Dew point temperature	It calculates the dew point temperature, water vapor saturation pressure (psia) and water vapor pressure (pw)	IN_1: dry bulb temperature (F) IN_2: relative humidity (percent)	None	OUT: dew point temperature OUT_1: water vapor saturation pressure (psia) OUT_2: water vapor pressure (pw) Especial: Reserved option

BLOCK_ERR


The BLOCK_ERR of the AEQU block will reflect the following causes:

- Out of Service When the block is in O/S mode.
- Block Configuration Error When an abnormal result occurs (+/- INF, NaN).

Supported modes

O/S, MAN, AUTO.

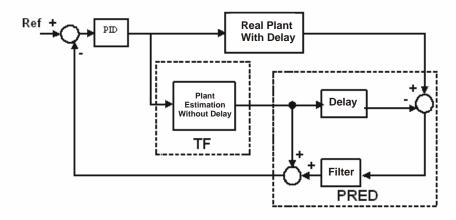
Schematic

ldx	Parameter	Data Type (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description	
1	ST_REV	Unsigned16		0	None	S/RO		
2	TAG_DESC	OctString(32)		Spaces	Na	S		
3	STRATEGY	Unsigned16		0	None	S		
4	ALERT_KEY	Unsigned8	1 to 255	0	None	S		
5	MODE_BLK	DS-69		O/S	Na	S	See Mode Parameter	
6	BLOCK_ERR	Bitstring(2)			E	D/RO		
7	EQ_TYPE	Unsigned8	0: Ln x 1: Log x 2: Exp x 3: Dew Point Temperature	0	E	S / Man	Equation type	
	INI 4	DS-65	255 : Special			-	Numbered input 4	
8	IN_1					D	Numbered input 1.	
9	IN_2 IN_3	DS-65 DS-65				D	Numbered input 2. Numbered input 3.	
11	IN_3 IN_4	DS-65				D	Numbered input 4.	
12	IN_4 IN_D1	DS-66				D	Numbered discrete input 1.	
13	IN_D2	DS-66				D	Numbered discrete input 1.	
14	OUT	DS-65				D / Man	Primary output.	
15	OUT_D1	DS-66				D / Man	Numbered discrete output 1.	
16	OUT_1	DS-65				D/RO	Numbered output 1.	
17	OUT_2	DS-65				D/RO	Numbered output 2.	
18	CT_VAL_1	Float		0		S	Constant value 1.	
19	CT_VAL_2	Float		0		S	Constant value 2.	
20	CT_VAL_3	Float		0		S	Constant value 3.	
21	CT_VAL_4	Float		0		S	Constant value 4.	
22	CT_VAL_5	Float		0		S	Constant value 5.	
23	CT_VAL_6	Float		0		S	Constant value 6.	
24	CT_VAL_D1	Unsigned8		0		S	Integer constant value 1.	
25	CT_VAL_D2	Unsigned8		0		S	Integer constant value 2.	
26	OUT_HI_LIM	Float		100	OUT	S	High limit for OUT.	
27	OUT_LO_LIM	Float		0	OUT	S	Low limit for OUT.	
28	BLOCK_ALM	DS-72			Na	D	The block alarm is used for all configuration, hardware, connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.	

Legend: E – Enumerated parameter; Na – Dimensionless parameter; RO – Read only; D – dynamic; N – non-volatile; S - static

Gray Background Line: Default Parameters of Syscon

PRED - Smith Predictor


Description

The delay is the main part of several industrial processes. For systems with low delay, the PID controls the process through setting the parameters properly. The derivative term must be set correctly because it represents the linear prediction.

When the delay is upper than two times of the time constant of the process, PID has limited action, and in many situations it is not possible to control the process in order to obtain responses more quickly when comparing closed loops and opened loops. In these situations, another control type or with delay compensation should be selected.

The PRED block, with TF block (Transfer Function) allow to the user develops a control strategy using PID blocks in order to control systems with considerable delay times.

The Predictor block is an implementation of the scheme below:

Scheme using Smith Predictor

This block has three inputs and one output:

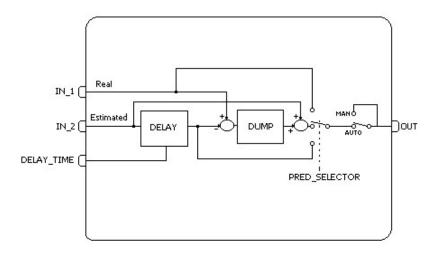
- <u>In 1</u> Input for the Real system with delay.
- In 2 Input for the Plant Estimation without delay.
- **Delay Time** Input providing the delay value, in seconds. This value can not be higher than the *Sample time*.
- Out Block configurable output.

The block output can be configured by three different ways, according to the PRED_SELECTOR parameter:

- <u>Bypass</u> Output will have the same value of the IN_1 input.
- Delay Block will have only the delay function, if the signal was received by IN_2 input.
- <u>Smith Predictor</u> Block will have the Smith Predictor function.

Optionally, a filter can be used (as showed in the picture above). The filter provides robustness to the systems with errors in high frequency between the profile and the real process. The filter has the following configuration:

$$G(s) = \frac{1}{Ts + 1}$$


In the equation above, T coefficient is configured by user through the FILTER parameter.

OS → Auto Transition

When a block transition from OS to Auto occurs and the block is configured in Smith Predictor, this block will need a time (the same of the DELAY_TIME) to store data, while this the block will work in the Bypass option.

Supported Modes O/S, MAN and AUTO.

Schematic

ldx	Parameter	Data type (lenght.)	Valid Range / Options	Default Value	Unids	Store /Mode	Description
1	ST_REV	Unsigned16		0	None	S	
2	TAG_DESC	OctString(32)		Spaces	Na	S	
3	STRATEGY	Unsigned16		0	None	S	
4	ALERT_KEY	Unsigned8	1 to 255	0	None	S	
5	MODE_BLK	DS-69	O/S,MAN,AUTO	O/S	Na	S	See Mode parameter.
6	BLOCK_ERR	Bitstring(2)			Е	D	
7	IN_1	DS-65				D	Input for the Real system with delay.
8	IN_2	DS-65				D	Input for the Plant Estimation without delay.
9	DELAY_TIME	DS-65			Sec	D	Input providing the delay value, in seconds.
10	OUT	DS-65				D / Man	Block configurable output.
11	PRED_SELECTOR	Unsigned8	0 = Bypass 1 = Delay 2 = Smith Preditor	0	E	S	Output selector: Bypass – Output will have the same value of the IN_1 input; Delay – The output will be the signal of the IN_2 input with delay. Smith Predictor – The output will be according to the Smith Predictor algorithm.
12	FILTER	float	Positive	0	Sec	S	Parameter to configure the block filter.
13	PRED_SAMPLE_TIME	float	Positive	1	Sec	S	Sample time to collect data.
14	STATUS_OPTS	Bitstring(2)	Bit 2 – Uncertain as Good	0	Na	S/OOS	See Block Option.
15	UPDATE_EVT	DS-73			Na	D	This alert is generated by any change to the static data.
16	BLOCK_ALM	DS-72			Na	D	

Legend: E – Enumerated parameter; Na – Dimensionless parameter; RO – Read only; D – dynamic; N – non-volatile; S - static

Gray Background Line: Default Parameters of Syscon

TF - Transfer Function

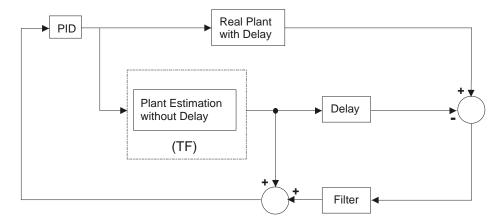
Description

The Transfer Function block (TF) must represent systems up to 2nd order, through the configuration of the coefficients A, B, C, D, E and F of the transfer function as:

$$G(s) = \frac{As^2 + Bs + C}{Ds^2 + Es + F}$$

This block has one output and one input.

System Representation

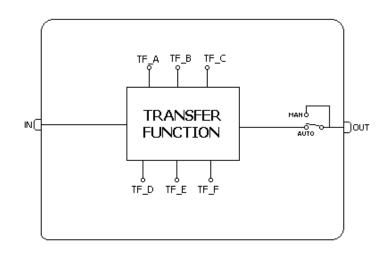

A system to be accomplished should have the denominator degree higher than the numerator degree, thus when D parameter was equal zero, A parameter must be zero too.

The parameters D and E can not be zero.

TF Block Application

For systems with delay is difficult to control the system using only the PID controller. It is necessary to make a scheme that supplies to the PID the value of the process variable without delay. A scheme used is the *Predictor Smith* and its configuration is showed below:

To represent the plant estimation without delay, it is necessary to use the TF block.


Scheme using Smith Predictor

Another application which the TF block can be used is using the Constant block to make multimodel systems. One example of this application type is the conic tank, where it is possible to determine its operation points and for each point is possible to configure different transfer functions.

Supported Modes

O/S, MAN and AUTO.

Schematic

ldx	Parameter	Data type (lenght)	Valid Range/ Options	Default Value	Units	Store/ Mode	Description
1	ST_REV	Unsigned16		0	None	S	
2	TAG_DESC	OctString(32)		Spaces	Na	S	
3	STRATEGY	Unsigned16		0	None	S	
4	ALERT_KEY	Unsigned8	1 to 255	0	None	S	
5	MODE_BLK	DS-69	O/S,MAN,AUTO	O/S	Na	S	See Mode parameter.
6	BLOCK_ERR	Bitstring(2)			E	D	
7	IN	DS-65				D	System analog input.
8	OUT	DS-65				D / Man	System analog output.
9	TF_A	Float		0.0		S	Transfer function coefficient.
10	TF_B	Float		0.0		S	Transfer function coefficient.
11	TF_C	Float		0.0		S	Transfer function coefficient.
12	TF_D	Float		0.0		S	Transfer function coefficient.
13	TF_E	Float		0.0		S	Transfer function coefficient.
14	TF_F	Float		0.0		S	Transfer function coefficient.
15	TF_BAL_TIME	Float	Positive	0.0	Sec	S	Specifies the time from the last output value returning to the calculate algorithm value when the block is changing from Manual to Automatic Mode, providing bumpless start up.
16	STATUS_OPTS	Bitstring(2)	Bit 2 : Uncertain as Good	0	Na	S/OOS	See Block options.
17	UPDATE_EVT	DS-73			Na	D	This alert is generated by any change to the static data.
18	BLOCK_ALM	DS-72			Na	D	

Legend: E – Enumerated parameter; Na – Dimensionless parameter; RO – Read only; D – dynamic; N – non-volatile; S - static

Gray Background Line: Default Parameters of Syscon

LCF – Liquid Correction Factors

Description

This block calculates the correction factors (CTL, CPL and BSW in operation temperature) for liquid measurement.

Product Configuration

Using the PRODUCT_TYPE parameter is possible to select the product type to be used in the calculation. There is also the selection of the density type in the DENSITY_TYPE parameter, the application of the correction for the glass density mester (HYDROMETER_CORRECTION) and the coefficient of Thermal Expansion in base temperature or equilibrium absolute pressure.

CCF Calculation

If the TEMPERATURE_METER and DENSITY_METER inputs are connected, the CTL_OIL factor will be calculated. And if the PRESSURE_METER input is also connected, the CPL_OIL factor will be also calculated.

If the CALL_BSW parameter is configured to accomplish the BSW calculation, thus: CCF = CTL * CPL * MF * (1 - X $_{w,m}$) * SF

Block Inputs

Input	Link Necessity	Description
TEMPERATURE_METER	mandatory	Liquid flow temperature If the system has an online density meter, the temperature which the density measurement is being accomplished must be lower than the variation of the acceptable limits related to the flow temperature in the flow meter.
PRESSURE_METER	Optional	Flow manometric pressure If this input is not connected, CPL = 1.
DENSITY_METER	mandatory	Density of the measured product (emulsão), which can be in the flow conditions or in base conditions, it depends on the DENSITY_TYPE configuration

Block Outputs

This block provides four outputs described below. In the applications which the CPL factor is not calculated and the PRESSURE_METER input is not connected, thus the CPL_OIL output will indicate 1.

Output	Description	Value in the exception condition (*)
BASE_DENS	Density in base condition. It is defined by the LKD block.	DENSITY_METER
CTL_OIL	Temperature Correction Factor	1.0000
CPL_OIL	Pressure Correction Factor	1.0000
CCF_OUT	Combined Correction Factor	1.0000

(*) Situation which is impossible to accomplish the calculation. It can be because of the input status or it is out of range specified by the correspondent standard.

TEMPERATURE_METER and DENSITY_METER	PRESSURE_METER	CALC_BSW	CCF
No connected	•	-	1
Connected	No connected	None	CTL * MF
Connected	Connected	None	CTL * CPL * MF
Connected	No connected	Dual range / Lab analysis	MF * (1 - X _{w,m}) * CTL * SF
Connected	Connected	Dual range / Lab analysis	MF * (1 - X _{w,m}) * CTL * CPL * SF

The CCF_OUT output results of the three factors multiplication (CTL, CPL and MF), if any calculation of these factors is impossible, thus the value in the exception conditions must be used.

Temperature Correction Factor for Liquid Hydrocarbon (CTL_OIL)

The density used in the CTL calculation depends on the configuration, as indicated below:

Density used	Configuration	Comments		
DENSITY_METER	There are two conditions: CALC_BSW set to Dual range and LO_SW is 100%. CALC_BSW set to None.	The dry oil density in operation or base conditions (configured in DENSITY_TYPE) indicated in DENSITY_METER input is used in the CTL_OIL calculation.		
LAB_DENS_OIL	CALC_BSW set to Dual range and LO_SW is different of 100%.	The DENSITY_METER input is the emulsion density (not compliant for the CTL_OIL calculation CTL_OIL), which is used for the DWS calculation in operation condition		
	CALC_BSW set to Lab analysis.	The DENSITY_METER input is not used because the dry oil density must be obligatorily supplied for the BSW calculation.		

For the measurement of crude oil, general products, MTBE and lubrificant oil is used API-11.1 standard. For the measurement of light liquid hydrocarbon are used GPA-TP25 and GPA-TP15 standards.

Compressibility Factor - F

The Compressibility Factor for the measured liquid is calculted using the base density and flow temperature. If it is impossible to calculate the compressibility factor, the F parameter will be zero.

The CPL factor is calculted using compressibility factor, flow manometric pressure and equilibrium pressure.

If the selected product is water, the compressibility factor will be zero and the CPL factor is 1.

The standards used for the compressibility factor calculation are API-11.2.1 and API-11.2.1.M for crude oil, general products, MTBE and lubrificant oil. For the measurement of light hydrocarbon liquid are used API-11.2.2 and API-11.2.2.M standards.

Meter factor - MF

If the meter is submitted to the proving, thus the meter factor value obtained must be written in the MF parameter. Otherwise, the default value of the MF parameter must be keept, that is, 1.

BSW Calculation- Dual range

If the CALC_BSW parameter is set to "Dual range", the FLOWING_SW_OUT paremeter is the SW_METER input, if this input was lower than LO_SW. Otherwise, the BSW will be calculated using the result of laboratory analysis and emulsion density in flow condition.

If LO SW = 0.0, thus BSW will be always calculated

If LO_SW = 100.0, thus the FLOW_SW_IN input will be always used.

Block Inputs

The inputs used are indicated below:

Input	Link Necessity	Description
TEMPERATURE_METER	mandatory	Liquid flow temperature
DENSITY_METER	mandatory	Density of the measured product which is must be in flow condition obligatorily for the Dual range option.
SW_METER	Optional	Input with the value of the BSW measured online for values lower than the configured values in LO_SW parameter, up to the value of BSW will be used. If this input is not connected, it will be ignored, thus the BSW will be always calculated.

Output Blocks

Outputs	Description				
FLOWING_SW_OUT	If the value of the SW_METER input is lower than the LO_SW parameter, this output will follow the FLOW_SW_IN input. Otherwise, it will be calculated the value.				
CTL_WATER	Temperature correction factor for water.				
BASE_SW	BSW calculated for base temperature condition				

BSW Calculation- LAB_DENS_OIL and LAB_DENS_WATER

The BSW is calculated using the dry oil and water densities in laboratory analysis condition, the density in flow condition and the flow temperature. All factors are measured online.

These calculations assume constant features (base density) of the oil and water made.

FLOWING_SW_OUT Calculation:

• It calculates : DENS_{óleo,T} = f(DENS_{óleo,Tlab}, T)

Where:

 $\mathsf{DENS}_{\mathsf{\acute{o}leo},\mathsf{T}}$: dry oil density in flow temperature

DENS_{óleo,Tlab} = LAB_DENS_OIL : dry oil density in laboratory analysis temperature

T: flow temperature

It calculates : DENS_{água,T} = f(DENS_{água,15/60}, T)

Where:

DENS água, T: water density in flow temperature

DENS_{água,lab} = LAB_DENS_WATER: water temperature in laboratory analysis temperature

T : flow temperature

It calculates BSW_T (FLOWING_SW_OUT parameter).

Where:

BSW_T: BSW in flow temperature

 $BSW_T = \frac{DENS_{emulsão,T} - DENS_{\acute{o}leo,T}}{DENS_{\acute{a}gua,T} - DENS_{\acute{o}leo,T}}$

BASE SW Calculation:

- CTL_A = f(DENS_{água,15/60}, Tb) is the CTL_WATER parameter, which converts the volume in flow temperature to base temperature.
- CTL_o = f(DENS_{óleo,Tlab}, Tlab,Tb), which converts the volume in laboratory analysis temperature to flow temperature

It calculates BSW_{Tb} (BASE_SW parameter).

$$BSW_{Tb} = BSW_{T} * CTL_{A}$$

$$BSW_{T} * CTL_{A} + (1 - BSW_{T}) * CTL_{0}$$

BSW Calculation – Lab analysis

If the CALC_BSW parameter is set to "Lab analysis", the value of the FLOWING_SW_OUT output will be calculated using only the laboratory analysis results. This assumes the stability/regularity of the oil base density and BSW (changes occurred from the temperature changes and the difference of the water thermal expansion and oil thermal expansion coefficients).

This equation is calculated as indicated in the API-201 standard. – Allocation measurement, located in the B Appendix

Block Inputs

The input is:

Input	Link Necessity	Description
TEMPERATURE_METER mandatory		Liquid flow temperature.

Block Outpus

Outputs	Description
FLOWING_SW_OUT	Value calculated for the BSW parameter in flow condition.
CTL_WATER	Temperature correction factor for water.
BASE_SW	BSW calculated for base temperature condition

BSW - LAB_DENS_OIL, LAB_DENS_WATER and XWS Calculations

The BSW is calculated using the laboratory analysis results: dry oil density, water density and BSW in laboratory analysis temperature. These calculations assume constant features (base density) for oil and water made.

FLOWING_SW_OUT Calculation:

The equation below must be calculated:

$$\begin{array}{l} X_{w,m} = \underbrace{X_{w,lab}}^{*}\underbrace{(CTL_{w,lab} / CTL_{w,m})}_{X_{w,lab}} * \underbrace{(CTL_{w,lab} / CTL_{w,m})}_{(CTL_{w,m})} + \underbrace{(1 - X_{w,lab})}_{*} * \underbrace{(CTL_{o,lab} / (CTL_{o,m} * SF))}_{*} \end{array}$$

Where:

X w.m: BSW in flow condition

X w.lab: BSW in laboratory analysis condition

CTL_{w,lab}: Temperature correction factor for water, from the temperature of the laboratory analysis to to a 15 °Celsius temperature (LD_UNITS= Kg/m³); or to a 60 Fahrenheit temperature (LD_UNITS=API/SG).

 $CTL_{w,m}: Temperature\ correction\ factor\ for\ water,\ from\ the\ flow\ temperature\ to\ a\ 15\ ^oCelsius\ temperature\ (LD_UNITS=Kg/m^3),\ or\ to\ a\ 60\ Fahrenheit\ temperature\ (LD_UNITS=API/SG).$

CTL_{o,lab}: Temperature correction factor for oil, from the temperature of laboratory analysis to a 15 °Celsius temperature (LD_UNITS=Kg/m³), or to a 60 Fahrenheit temperature (LD_UNITS=API/SG). CTL_{o,m}: Temperature correction factor for oil, from the flow temperature to a15 °Celsius

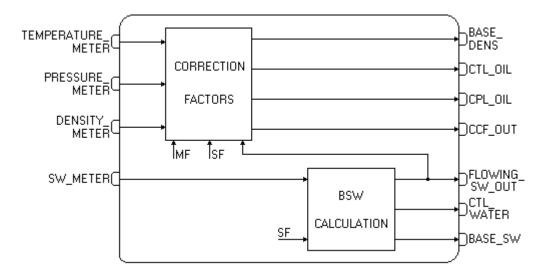
temperature (LD_UNITS=Kg/m³), or to a 60 Fahrenheit temperature (LD_UNITS=API/SG).

SF: oil shrinkage temperature

Diagnosing and Correcting Problems

- 1. BLOCK_ERR. Block configuration: The Temperature or Density Inputs are not connected.
- 2. BLOCK_ERR. Out of Service: LCF block can continue in Out of service mode, although the target mode is Auto, because the Resource block is in O/S.

Special Indications for BATCH STATUS


"Abnormal Conditions" - Problems in the BSW calculation.

The input values for SW are out of range 0-100 % (caso CALC_BSW ="Dual Range").

Supported Modes

O/S and AUTO.

Schematic

ldx	Type/ View	Parameter	Data Type	Valid Range / Options	Default Value	Units	Store./ Mode	Description
1	1,2,3,4	ST_REV	Unsigned16		0	None	S/RO	
2		TAG_DESC	OctString(32)		Spaces	Na	S	If this parameter is configured with a string other than blank spaces, then this parameter will replace the block tag in the QTR report.
3 (A2)	4	STRATEGY	Unsigned16	0 to 4	0	None	S	This parameter identifies the number of the measured flow.
4	4	ALERT_KEY	Unsigned8	1 to 255	0	None	S	
5	1,3	MODE_BLK	DS-69		O/S	Na	S	See Mode parameter.
6	1,3	BLOCK_ERR	Bitstring(2)			E	D/RO	
7	I,1,3	TEMPERATURE_M ETER	DS-65			T_UNITS	N / RO	Temperature used to calculate the correction factor for the thermal expansion of a liquid.
8	I,1,3	PRESSURE_METE R	DS-65			P_UNITS	N/RO	Manometric pressure used to calculate the correction factor for the liquid compressibility.
9	I,1,3	DENSITY_METER	DS-65			LD_UNIT S	N/RO	Density used to calculate the factors CPLm and CTLm.
10	I,1,3	SW_METER	DS-65			%	N/RO	Percentage of sand and water mixed in the oil.
11	0,1,3	BASE_DENS	DS-65			LD_UNIT S	N/RO	Base density of the dry oil. This parameter is calculated.
12	0,1,3	CTL_OIL	DS-65				N/RO	Temperature Corrention Factor.
13	0,1,3	CPL_OIL	DS-65				N/RO	Pressure Correction Factor.
14	0,1,3	CCF_OUT	DS-65				N/RO	Combined Correction Factor.
15	O,1,3	FLOWING_SW_OU T	DS-65			%	N/RO	Percentage calculated of sand and water mixed in the oil.
16	0,1,3	CTL_WATER	DS-65				N/RO	Temperature Correction Factor.
17	O,1,3	BASE_SW	DS-65			%	N / RO	Percentage of sand and water mixed in the oil calculated in base conditions.
18	4	BASE_PRESSURE	Float	101.325 kPa or 14.696 psi	101.325 kPa	P_UNITS	s	Base pressure for the fluid according to the selected unit in the P_UNITS parameter.

ldx	Type/ View	Parameter	Data Type	Valid Range / Options	Default Value	Units	Store./ Mode	Description
19	4	BASE_TEMPERAT URE	Float	15.0 °C or 20.0 °C or 60.0 °F	15.0 °C	T_UNITS	s	Base temperature for the fluid according to the selected unit in the T_UNITS parameter.
20	4	T_UNITS	Unsigned16	1000=Kelvin 1001=Celsius 1002=Fahrenheit 1003=Rankine	Celsius	E	S	Engineering Unit for temperature.
21	4	P_UNITS	Unsigned16	1130=Pa 1132=Mpa 1133=kPa 1137=bar 1138=mbar 1139=torr 1140=atm 1141=psi 1144=g/cm² 1145=kgf/cm² 1147=inH2O 4°C 1148=inH2O 68 °F 1150=mmH2O 4°C 1151= mmH2O 68 °F 1154=ftH2O 68 °F	KPa	Е	Ø	Engineering Unit for static pressure
22	4	LD_UNITS	Unsigned16	1097= Kg/m ³ 1113=API 1599 = relatve density/SG	Kg/m³	E	S	Engineering Unit for liquid density. The selection of this unit indicates which table uses for the correction factor calculations (CTL and CPL).
23	4	PRODUCT_TYPE	Unsigned8	0=Crude oil(Table suffix A) 1=Generalized products (Table suffix B) 2=MTBE (Table suffix C) 3=Lubricating oil (Table suffix D) 4=Water 5=Light hydrocarbon (NGL&LPG)	0	Е	S	Product type.
24	4	DENSITY_TYPE	Unsigned8	1=Density at base 2=Measured density	1	Е	S	Density type.
25	4	HYDROMETER_CO RRECTION	Unsigned8	0=No correction 1=Correction is done	0	E	S	Hydrometer correction.
26	4	COEF_OF_THERM AL_EXP	Float	>= 0.0	0.0		S	If the selected product is MTBE, the thermal expansion coefficient is in base temperature. If the selected product is Light hydrocarbon, the absolute equilibrium pressure is at 100 °F.
27	2	MF	Float	0.8 to 1.2	1.0	Na	S	MF used for the combined correction factor (CCF).

ldx	Type/ View	Parameter	Data Type	Valid Range / Options	Default Value	Units	Store./ Mode	Description
28	4	CALC_BSW	Unsigned8	0=None 1=Dual range 2=Lab analysis	0	Na	S	It selects one of the ways of calculating the BSW.
29	2	LO_SW	Float	0.0 to 100.0 0.0 = Always calculated 100.0 = Never calculated	0.0	%	S	Lower limit to calculate the BSW, if the "Dual range" option is selected in CALC_BSW.
30	2	LAB_TEMP	Float		15	T_UNITS	S	Temperature which the laboratory analysis is accomplished to obtain the XWS.
31	2	LAB_DENS_WATE R	Float	>= 0.0	1000	LD_UNIT S	S	Water density in laboratory analysis condition (LAB_TEMP).
32	2	LAB_DENS_OIL	Float	>= 0.0	900	LD_UNIT S	S	Oil density in laboratory analysis condition (LAB_TEMP).
33	2	LAB_SW	Float	0 to 100	0	%	S	BSW value obtained in laboratory analysis condition (LAB_TEMP).
34	2	SF	Float	1=disabled 0< SF <= 1	1	Na	S	Shrinkage factor obtained in laboratory analysis.
35	3	F	Float			1/P_UNI TS	N/RO	Compressibility factor
36	3	STATUS_CURREN T	Bitstring[2]	See Block Options	0	Na	N/ RO	Current status. Similar to BATCH_STATUS.
37		PE_TF	Float			P_UNITS	N/RO	Equilibrium pressure in flow conditions.
38		UPDATE_EVT	DS-73			Na	D	This alert is generated by any change to the static data.
39		BLOCK_ALM	DS-72			Na	D	The block alarm is used for all configuration, hardware and connection failure, or system problems in the block. The cause of the alert is indicated in the subcode field. The first active alert will set the Active status in the Status attribute. When the Unreported status is removed by the alert reporting task, another block alert can be reported without clearing the Active status, if the subcode has been changed.

Legend: E – Enumerated Parameter; NA – Dimensionless Parameter; RO – Read Only; D – Dynamic; N – Non volatile; S – Static; I – Input Parameter; O - Output Parameter

Gray Background Line: Default Parameters in Syscon

FMTH – Flexible Mathematical Block

Description

This block provides mathematical expression execution with inputs, outputs and auxiliary variables generated by the user, and also including conditional expressions.

The FMTH block has the following characteristics:

- It allows execute several mathematical expressions "customized" by user with input and output values, and also using auxiliary variables in these expressions.
- Friendly edition of the mathematical expressions, similar to the Microsoft Excel;
- It allows the usage of the following operations described in the table below:

Operation	Representation	Variable Type
AND	and(Num;Num)	Real
Arc Sine	asin(Num)	[-1;1]
Arco Cosine	acos(Num)	[-1;1]
Making around to down	floor(Num)	Real
Making around to up	ceil(Num)	Real
Making around to nearest	round(Num)	Real
Status Bad	bad(Status)	Status Variable
Cosine	cos(Num)	Radian
Separation	/	Real
Exponential	exp(Num)	Real
Status Good	good(Status)	Status Variable
Logarithm	log(Num;Base)	Real
Module	abs(Num)	Real
Multiplication	*	Real
Negative	(-Num)	Real
OR	or(Num;Num)	Real
Potence	۸	Real
Sine	sin(Num)	Radian
Addition	+	Real
Subtraction	-	Real
Tangent	tan(Num)	Radian
Uncertain or Bad Status	uob(Status)	Status Variable
Uncertain or Good Status	uog(Status)	Status Variable

• It provides constant variables for using in the expressions:

Constant Variable	Description
MC	Time for block execution
PI	3,14159
E	2,71828
GOOD	"Good Non Cascade Non Specific Not Limited" Status (Value =128)
BAD	"Bad Non Specific Not Limited" Status (Value= 0)
UNC	"Uncertain Non Specific Not Limited" Status (Value = 64)

- It allows make conditional expressions (if(expression; affirmative possibility; negative possibility));
- It supports up to mathematical expressions;
- It has identifier of the following error types for the equations inserted by user:
 - o Incorrect variable name
 - o Incorrect usage of mathematical expressions, for example dividing by zero.

This block becomes available to the user:

- > 10 analog inputs:
- 4 discrete inputs;
- 2 analog outputs;
- 2 discrete outputs;
- 20 auxiliary analog variables;
- > 10 auxiliary discrete variables.

The FMTH block has also a MC parameter, which represents the Macro Cycle. The user can correlate two or more fields to make a mathematical expression.

Mathematical Operations

Some of the mathematical and conditional operations supported by the FMTH block are described below

1 - AND:

- TRUE: If all arguments are TRUE
- FALSE: if all, one or more arguments are FALSE

Syntax – and(condition; condition) or and(condition; condition; condition)

Condition is a number or a conditional expression.

Example:

and(1,0) is False

2 - ARC SINE:

It calculates the arc sine of the value. This value should be between -1 and 1.

Syntax – asin(num)

Num can be a number or an expression

Example:

asin(0.5) = 0.523599

3 - ARC COSINE:

It calculates the arc cosine of the value. This value should be between -1 and 1.

Syntax - acos(num)

Num ican be a number or an expression.

Example:

acos(0.5) = 1.047198

4 - MAKING AROUND TO DOWN

It makes around the number for the nearest low integer number. The value can be in REAL format.

Syntax - floor(num)

Num is the number that will be making around

Example:

floor(2,343) is equal to 2

5 - MAKING AROUND TO UP:

It makes around tje number for the nearest upper integer number. The value can be in REAL format.

Syntax - ceil(num)

Num is the number that will be making around

Example:

ceil(2,343) is equal to 3

6 - MAKING AROUND TO THE NEAREST:

It makes around to the nearest integer number. Arredonda um número para o inteiro mais próximo. The value can be in REAL format.

Syntax - round(num)

Num is the number that will be making around

Example:

round(2,343) é igual a 2

7 - COSINE:

It calculates the cosine of the angle given in radian.

Syntax - cos(num)

Num is the angle that will be obtained the cosine.

Example:

cos(0) is equal to 1

8 - EXPONENTIAL:

It calculates *e* in the potence of num. The constant *e* is equal to 2.71828182845904, in the base of natural logarithm.

syntax - exp(num)

Num is the exponent applied to the base e.

Example:

exp(2) is equal to e^2, or 7.389056

9 - LOGARITHM:

It calculates the logarithm of the number for a specified base.

Syntax – log(num; base)

Num is the positive real number that the logarithm will be obtained.

Base is the base of the logarithm.

Example:

log(8; 2) is equal to 3

10 - MODULE:

It calculates the absolute value of the number. The absolute value of the number is the number without signal (positive or negative).

Syntax - abs(num)

Núm is the real number that the absolute value will be obtained

Example:

abs(-2) is equal to 2

11 - NEGATIVE:

The result is the number with the signal changed.

Syntax - (-num)

Num is the real number that the signal will be changed

Example:

((-1)+2)=1

Obs: all negative operations must be accomplished using parentheses. If there are no parentheses, errors can occur in the logic expression. See the example below:

(-1+2) will result -3, not 1.

12 - OR:

- TRUE if any argument is TRUE
- FALSO if all arguments are FALSE

Syntax - or(condition; condition) or or(condition; condition)

Condition is the real number of the conditional expression

Example:

or(1; 0) is equal to True

13 - POTENCE:

It provides the result of the number in the potence required.

Syntax - num^potence

Num is the base number. It can be any real number.

Potence is the exponent for that the base is elevated.

Example:

3^2 - is equal to 9

14 - SINE:

It calculates the sine of an angle given in radian.

Syntax - sin(num)

Num is the angle in radian for that the sine will be obtained.

Example:

sin(0) is equal to 0

15 - TANGENT:

It calculates the tangent for an angle given in radian.

Syntax - tan(num)

Num is the angle given in radian for that the tangent will be obtained

Example:

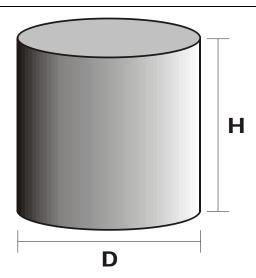
tan(0) is equal to 0

Representation of the Variables in he Mathematical Expressions

The representation of the output, input and auxiliary variables is showed in the table below

Variable	Representation
Analog Input	AIX
Discrete Input	DIX
Analog Input Status	AIXS
Discrete Input Status	DIXS
Analog Input	AOX
Discrete Input	DOX
Analog Output Status	AOXS
Discrete Output Status	DOXS
Auxiliary Analog Variable	AAX
Auxiliary Discrete Variable	DAX

X means the number of the variable, for example:


- Al1 It represents the analog input variable 1
- DA7 It represents the auxiliary discrete variable 7

NOTE for SYSCON

Before inserting the equations in the EXPR_X variables, it is necessary to click in the expression line and where the equation is edited, put the mouse cursor in the end of the line and then push the Backspace key (keyboard) from the ending to the beginning of the line. This avoids that residues damage the edition of the equations.

Example of the Calculation for the Volume of the Tube

Below there is a tube that is necessary to calculate the volume. It has the base diameter equals to 10m and its height is 30m

D = 10H = 30

Through the FAUX auxiliary variables, it is possible storage the values that will be used in the equations, and also the intermediate calculations performed.

<FAUX[1]>.. 3.1416 // it corresponds to the constant π

<FAUX[2]> 10 // it corresponds to the D diameter

<FAUX[3]> D/2 // R Ray (It will be calculated in the EXPR_1 expression)

<FAUX[4]> π^*R^2 // Base Area (It will be calculated in the EXPR_2 expression)

<FAUX[5]> 30 // it corresponds to the H height

the calculations are performed in the expressions showed below

Base Area: $A = \pi * R^2$

<EXPR_1> AA3=AA2/2

<EXPR_2> AA4=AA1*AA3^2

Volume: V = A * H

<EXPR_3> AO1=AA4*AA5

Using the values for this tube, its volume will be 2356.2 m³.

Using Conditional

This block allows using conditional in the expressions. It shows the result of a condition, specified by user, if the algorithm evaluates as true; and another value if it evaluates as false. This condition can be a value or an expression that can be evaluated as true or false.

It supports if (conditional) in sequence.

Syntax - if(condition;value_if_true;value_if_false)

- Value_if_true is the result when the condition is true.
- Value_if_false is the result when the condition is false

Example1:

if(2=1+1;3;4) the expression 2=1+1 is true, so the result will be 3 (the corresponding value when Value if true).

```
Example 2:
Algorithm: Consider the following example:
if (AA1 > 0) AND (AA1 < 500)
if (AA2 >= (AA1 * 10))
    AO1 = AA2
else
    AO1 = AA1 * 20
else if (AA1 > 500) AND ( AA1 < 1000)
    AO1 = AA1
else
    AO1 = AA3

FMATH expression:
AO1 = if (and(AA1 > 0;AA1<500) ; if (AA2 >= (AA1*10); AA2; AA1 * 20) ; if (and (AA1 > 500; AA1 < 1000);AA1;AA3) )
```

Status Handle

For the non usable inputs (bad or uncertain status), the block keeps the calculation by using the last usable value. The output status will be the worst input status by default.

The output status in the expressions can be determined by using the input status optionally

There are several status functions (good(x), bad(x), uob(x), uog(x)) in order to make easy the input status handle in the expressions. Numeric values or Constant variables, such as GOOD or BAD, can also be compared (for example, AlxS > GOOD when it is necessary to know if the quality status is good). To determine the output status only the numeric value will be used (AOxS = 128 to write GOOD in the output status).

The next example has two input values for the same variable (with measurement redundancy, for example) which it used the first good input. If the first input fails, the algorithm keeps the calculation using the other input. A way to implement the algorithm should be:

```
If (STATUS_ENTRADA_1 = GOOD)
    SAIDA_1 = ENTRADA_1 * AA1
else
    if (STATUS_ENTRADA_2 = GOOD)
        SAIDA_1 = ENTRADA_2 * AA1
    else
        SAIDA_1 = 100
if (STATUS_ENTRADA_1 = GOOD) OR (STATUS_ENTRADA_2 = GOOD)
        STATUS_SAIDA_1 = GOOD
else
        STATUS_SAIDA_1 = BAD

The block expressions should be:
<EXPR_1> AO1 = if (good(AI1S);AI1*AA1;if(goodAI2S);AI2*AA1;100))
<EXPR_2> AO1S = if (or(good(AI1S);good(AI2S));128;0)
```

Correlating the Mathematical Expressions

Each parameter in the mathematical expression has a limit of 100 characters. This avoids that long mathematical expressions be inserted in only one expression field. It is possible to insert long expressions correlating two or more expression fields. This correlation is accomplished through inserting the # character in the ending of the expression that is being correlating with the next expression field. This operator allows correlate more than two expression fields, just inserting the character # in the ending of all correlated fields except in the last one.

There is an example of correlated expression below:

```
<Expr_1> AO1 = 2+2*sin(In_1/R) + ... + #

<Expr_2> log(10;2) + ... + 2 #

<Expr_3>^2 - if(BAD(AI1S);12;14)

<Expr_4> AA2 = 2*3^2*(-2)+23
```

In the example above, the Expr_1, Expr_2 and Expr_3 fields are correlated resulting in the mathematical expression:

$$AO1 = 2+2*sin(In_1/R) + ... + log(10;2) + ... + 2^2 - if(BAD(AI1S);12;14)$$

Using Macrocycle for calculations

The macrocycle should also be used in the expressions when it is necessary to use the time as base. The MC variable has the block execution value.

Example: It is required to totalize the output when IN 1 has its value less than 1000.

The FMTH expressions are:

```
<EXPR_1>AA1=AI1*MC

<EXPR_2>AA2=AA2+AA1

<EXPR_3>AA2=if(AA2 >=1000;0;AA2)

<EXPR_4>AO1=AA2
```

Error Handle

The FMTH block uses the *Error_Code*, *Error_Line* and *Error_Col* parameters to show the type and place that the error occurred. The *Error_Line* parameter shows the line that the error occurred, and the *Error_Col* parameter shows the place (in tokens) that the error occurred. Token means any expression element (AA1, AO2, + ,= (,), are token examples). The error types are identified in the *Error_Code* parameter, and are indicated in the table below:

Code	Error						
0	No Errors						
1	Invalid Variable Name						
2	Invalid Function Name						
3	Division by Zero						
4	Incorrect use of Logarithm						
5	Square Root of a Negative Number						
6	Inexistent Arc						
7	Unidentified Error						

For example, consider the following expression: <EXPR_10> AO1 = (AA1 * 10) * 2 + AI2 ^ 2 * sen (AA3)

There is an error in the expression above: the function name "sin" is incorrect. The block shows the following message:

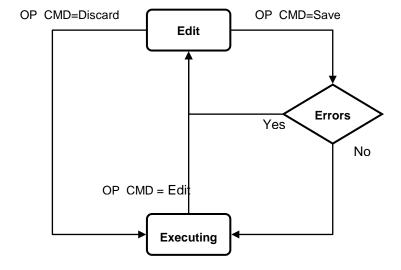
```
FMTH_ERROR_LINE = 10  // Error was found in the Expression 10.

FMTH_ERROR_COL = 15  // Error in the fifteenth token erro (from left to right)

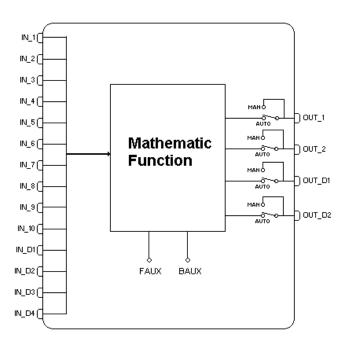
FMTH_ERROR_CODE = 2  // Error is Invalid function name
```

The syntax errors (Incorrect Variable or Function name and incorrect use of the mathematical operators, for example, 2 + + 2) are identified when the mathematical expression is done. So, these error types never appear in the block execution.

There are some execution errors that can occur during the execution time, for example, dividing the number by zero, logarithm of a negative number or square root of a negative number. When a execution error occurs, the block takes the following actions:


- The Analog Output Values (OUT_1 and OUT_2) and the Discrete Output 1 (OUT_D1) will
 repeat the last value calculated without errors and their status will be GOOD;
- The OUT_D2 discrete output will be 1, indicating that the execution error occurs, with GOOD status:
- The ERROR_CODE, ERROR_LINE and ERROR_COL parameters will show, respectively, error code, line and column that the error occurs.

Edit and Execution States


The block allows to edit mathematical expressions in online mode. In order to do this, the block has two states:

- Edit State: In this state the user can edit the expressions while the previous expressions are executed in each cycle. When inserting an expression, an error check ("Invalid Variable Name", "Invalid Function Name") is done and the Error_Code parameter shows the error type and Error_Line and Error_Code parameters show the place for the identified error. The possible errors generated during the "Edit State" will not indicated. To back to the execution mode, the user has two options that should be selected through the OP_CMD_FMTH parameter:
 - ➤ Save This command can be used when the user wants to execute the edited expressions. Therefore, before starting the executing of the edited expressions, a syntax error check is done, and if there is an error, its type and place are indicated in the Error_Code, Error_Line and Error_Code parameters, and the block continues in the edit state. If there are no errors, the block replaces the expressions that are being executed by the nex edited expressions and goes to the executing state identified by the OP_CMD_FMTH (Executing) parameter.
 - > **Discard** This command can be used when the user does not want to execute the edited expressions, so the expressions that are being executed will be kept. When using this command, the edited expression will be lost and the expressions that are being executed will be showed again.
- **Executing State** In this mode, it is impossible to edit the mathematical expressions, only the visualization of the mathematical expressions are allowed

The next state diagram shows all possible transitions:

Schematic

ldx	Parameter	Data Type	Valid Range / Options	Default Value	Units	Store/ Mode	Description
1	ST_REV	Unsigned16		0	None	S	
2	TAG_DESC	OctString(32)		Spaces	Na	S	
3	STRATEGY	Unsigned16		0	None	S	
4	ALERT_KEY	Unsigned8	1 to 255	0	None	S	
5	MODE_BLK	DS-69		O/S	Na	S	See Mode Parameter
6	BLOCK_ERR	Bitstring(2)			Е	D	
7	FMTH_ERROR_LINE	Unsigned8		0		D	Line in which occurred an error
8	FMTH_ERROR_COL	Unsigned8		0		D	Position in the line that occurred an error
9	FMTH_ERROR_CODE	Unsigned8	0 = No Errors 1 = Invalid Variable Name 2 = Invalid Function Name 3 = Division by Zero 4 = Incorrect use of Logarithm 5 = Square Root of a Negative Number 6 = Inexistent Arc 7 = Unidentified Error	0		D	Code representing an error in the mathematical expressions inserted
10	OUT_1	DS-65				N / Man	Numbered analog output 1.
11	OUT_2	DS-65				D / Man	Numbered analog output 2.
12	OUT_D1	DS-66				D / Man	Numbered discrete output 1.
13	OUT_D2	DS-66				D / Man	Numbered discrete output 2.

ldx	Parameter	Data Type	Valid Range / Options	Default Value	Units	Store/ Mode	Description
14	OP_CMD_FMTH	Unsigned8	0 = Edit 1 = Save 2 = Discard 3 = Executing			D / Man	Parameter responsible for changing the state of the block
15	EXPR_1	VisibleString (100)		Blank		S/RW	Expression input 1
16	EXPR_2	VisibleString (100)		Blank		S/RW	Expression input 2
17	EXPR_3	VisibleString (100)		Blank		S/RW	Expression input 3
18	EXPR_4	VisibleString (100)		Blank		S/RW	Expression input 4
19	EXPR_5	VisibleString (100)		Blank		S/RW	Expression input 5
20	EXPR_6	VisibleString (100)		Blank		S/RW	Expression input 6
21	EXPR_7	VisibleString (100)		Blank		S/RW	Expression input 7
22	EXPR_8	VisibleString (100)		Blank		S/RW	Expression input 8
23	EXPR_9	VisibleString (100)		Blank		S/RW	Expression input 9
24	EXPR_10	VisibleString (100)		Blank		S/RW	Expression input 10
25	IN_1	DS-65				D	Analog input 1.
26	IN_2	DS-65				D	Analog input 2.
27	IN_3	DS-65				D	Analog input 3.
28	IN_4	DS-65				D	Analog input 4.
29	IN_5	DS-65				D	Analog input 5.
30	IN_6	DS-65				D	Analog input 6.
31	IN_7	DS-65				D	Analog input 7.
32	IN_8	DS-65				D	Analog input 8.
33	IN_9	DS-65				D	Analog input 9.
34	IN_10	DS-65				D	Analog input 10.
35	IN_D1	DS-66				D	Discrete input 1.
36	IN_D2	DS-66				D	Discrete input 2.
37	IN_D3	DS-66				D	Discrete input 3.
38	IN_D4	DS-66				D	Discrete input 4.
39	FAUX	Float[20]		0		D/RW	Auxiliary analog variable to use to build the mathematical expressions in any EXPR field
40	BAUX	Unsigned8[10]		0		D/RW	Auxiliary discrete variable to use to build the mathematical expressions in any EXPR field
41	STATUS_OPTS	Bitstring(2)	See Block Options	0	Na	S/0/S	See Block Options
42	UPDATE_EVT	DS-73			Na	D	This alert is generated by any change to the static data.

ldx	Parameter	Data Type	Valid Range / Options	Default Value	Units	Store/ Mode	Description
43	BLOCK_ALM	DS-72			Na	D	The block alarm is used for all configuration, hardware and connection failure, or system problems in the block. The cause of the alert is indicated in the subcode field. The first active alert will set the Active status in the Status attribute. When the Unreported status is removed by the alert reporting task, another block alert can be reported without clearing the Active status, if the subcode has been changed.

 $\label{eq:Legend: Legend: E-Enumerated Parameter; NA - Dimensionless Parameter; RO - Read Only; D - Dynamic; N - Non volatile; \\ S - Static;$

Gray Background Line: Default Parameters in Syscon

ADT – Analog Data Transfer

Overview

The Analog Data Transfer block obtains the analog values and status from the inputs and makes available for the outputs. Optionally the block can be configured to generate in its outputs constant values to be used in the inputs of other blocks.

Description

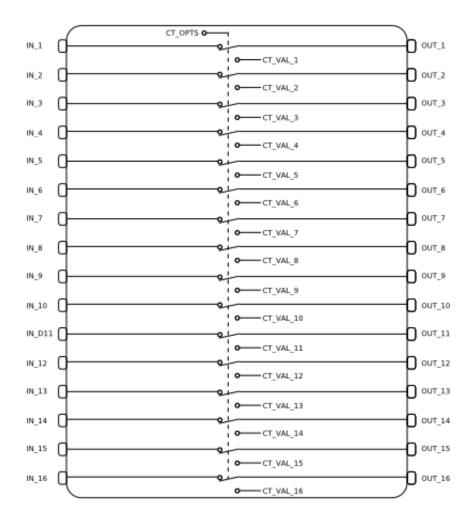
The ADT block has two functions:

- Data Transfer (default feature): Transfer the values of the analog parameters of input IN_x for the analog outputs OUT_x. This block has 16 analog inputs and outputs.
- **Constant**: Generate in its analog outputs OUT_x constant values stored in the internal parameters CT_VAL_x. The parameter CT_OPTS enables this block feature.

BLOCK ERR

The BLOCK_ERR of the ADT block will reflect the following causes:

• Out of Service – occurs when the block is in O/S mode.


Supported Modes

O/S, MAN and AUTO

Modes

The manual mode disconnects the algorithm outputs and it allows manual substitution of the OUT_x values.

Schematic

ldx	Parameter	Data Type	Valid Range	Default Value	Units	Store / Mode	Description
1	ST_REV	Uns6	0 65535	0	None	S/RO	Universal parameter
2	TAG_DESC	VisStr(32)		Space	Na	S/OOS	Universal parameter
3	STRATEGY	Uns16	0 65535	0	None	S/OOS	Universal parameter
4	ALERT_KEY	Uns8	0 to 255	0	None	S/OOS	Universal parameter
5	MODE_BLK	DS-69		target: OOS actual: OOS	Na	S	Universal parameter
6	BLOCK_ERR	Bitstr(2)		0, 0	E	D/RO	Universal parameter
7	IN_1	DS-65				D	Analogic Input IN_1
8	IN_2	DS-65				D	Analogic Input IN_2
9	IN_3	DS-65				D	Analogic Input IN_3
10	IN_4 IN_5	DS-65				D D	Analogic Input IN_4
11 12	IN_6	DS-65 DS-65				D	Analogic Input IN_5 Analogic Input IN_6
13	IN 7	DS-65				D	Analogic Input IN_7
14	IN_8	DS-65				D	Analogic Input IN_8
15	IN_9	DS-65				D	Analogic Input IN_9
16	IN_10	DS-65				D	Analogic Input IN_10
17	IN_11	DS-65				D	Analogic Input IN_11
18	IN_12	DS-65				D	Analogic Input IN_12
19	IN_13	DS-65				D	Analogic Input IN_13
20	IN_14	DS-65				D	Analogic Input IN_14
21	IN_15 IN_16	DS-65 DS-65				D D	Analogic Input IN_15 Analogic Input IN_16
23	OUT_1	DS-65				D	Analogic Input IN_16 Analogic Output OUT_1
24	OUT_2	DS-65				D	Analogic Output OUT_2
25	OUT_3	DS-65				D	Analogic Output OUT_3
26	OUT_4	DS-65				D	Analogic Output OUT_4
27	OUT_5	DS-65				D	Analogic Output OUT_5
28	OUT_6	DS-65				D	Analogic Output OUT_6
29	OUT_7	DS-65				D	Analogic Output OUT_7
30	OUT_8	DS-65				D	Analogic Output OUT_8
31	OUT_9 OUT_10	DS-65 DS-65				D D	Analogic Output OUT_9 Analogic Output OUT 10
33	OUT_10	DS-65				D	Analogic Output OUT_10 Analogic Output OUT_11
34	OUT_12	DS-65				D	Analogic Output OUT_12
35	OUT_13	DS-65				D	Analogic Output OUT_13
36	OUT_14	DS-65				D	Analogic Output OUT_14
37	OUT_15	DS-65				D	Analogic Output OUT_15
38	OUT_16	DS-65				D	Analogic Output OUT_16
39	CT_VAL_1	Float		0		S	Constant analogic value transferred to OUT_1
40	CT_VAL_2	Float		0		S	Constant analogic value transferred to OUT_2
41	CT_VAL_3	Float		0		S	Constant analogic value transferred to OUT_3
42	CT_VAL_4	Float		0		S	Constant analogic value transferred to OUT_4
43	CT_VAL_5	Float		0		S	Constant analogic value transferred to OUT_5
44	CT_VAL_6	Float		0		S	Constant analogic value transferred to OUT_6
45	CT_VAL_7	Float		0		S	Constant analogic value transferred to OUT_7
46	CT_VAL_8	Float		0		S	Constant analogic value transferred to OUT_8
47	CT_VAL_9	Float		0		S	Constant analogic value transferred to OUT_9
48	CT_VAL_10	Float		0		S	Constant analogic value transferred to OUT_10
49	CT_VAL_11	Float		0		S	Constant analogic value transferred to OUT_11
50	CT_VAL_12	Float		0		S	Constant analogic value transferred to OUT_12

ldx	Parameter	Data Type	Valid Range	Default Value	Units	Store / Mode	Description
51	CT_VAL_13	Float		0		S	Constant analogic value transferred to OUT_13
52	CT_VAL_14	Float		0		S	Constant analogic value transferred to OUT_14
53	CT_VAL_15	Float		0		S	Constant analogic value transferred to OUT_15
54	CT_VAL_16	Float		0		S	Constant analogic value transferred to OUT_16
55	CT_OPTS	Bitstr(2)	See Block Options	0		S	When the bit "CT_VAL_1 to OUT_1" is enabled the output OUT_1 receives the value of CT_VAL_1. And like this consecutively for each CT_VAL_x corresponding to each OUT_x, where x varies of 1 up to 16.
56	UPDATE_EVT	DS-73			Na	D	This alert is generated by any change to the static data.
57	BLOCK_ALM	DS-72			Na	D	The block alarm is used for all configuration, hardware, connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.

Legend: E – Enumerated Parameter; NA – Dimensionless Parameter; RO – Read Only; D – Dynamic; N – Non volatile; S – Static

DDT – Discrete Data Transfer

Overview

The Discrete Data Transfer block obtains the discrete values from the inputs and makes available for the outputs. Optionally the block can be used to make available the constants for the outputs.

Description

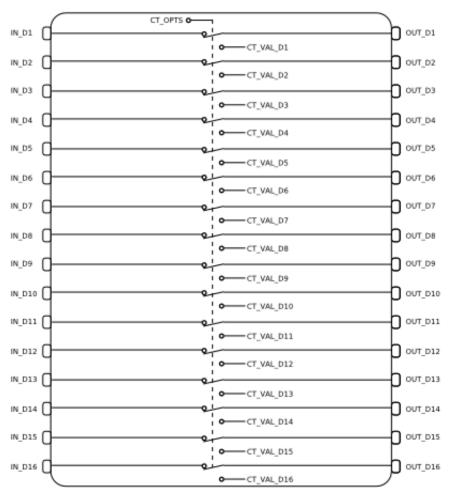
The DDT block has two functions:

- Data Transfer (default feature): Transfer the values of the discrete parameters of input IN_Dx for the discrete outputs OUT_Dx. This block has 16 discrete inputs and outputs.
- Constant: Generate in its discrete outputs OUT_Dx constant values stored in the internal parameters CT_VAL_Dx. To operate in this mode, the bit of the parameter CT_OPTS corresponding to the output which will be used as constant should be enabled. For example, for the OUT_D1 output to receive the constant value of CT_VAL_D1 the bit "CT_VAL_1 to OUT_1" from the CT_OPTS parameter should be enabled.

BLOCK_ERR

The BLOCK_ERR of the DDT block will reflect the following causes:

• Out of Service – occurs when the block is in O/S mode.


Supported Modes

O/S, MAN and AUTO

Modes

The manual mode disconnects the algorithm outputs and it allows manual substitution of the OUT_Dx values.

Schematic

Tag Desc	ldx	Parameter	Data Type	Valid Range	Default Value	Units	Store / Mode	Description
TAC_DESC	1	ST REV	Uns6			None		Universal parameter
STRATEGY	-						+	•
ALERT_KEY			` '	0 65535				'
S								'
S				0 10 200	-			'
7	5	MODE_BLK	DS-69			Na		Universal parameter
8 IN_D2 DS-66 D Discrete Input IN_D3 10 IN_D4 DS-66 D D Discrete Input IN_D4 11 IN_D5 DS-66 D D Discrete Input IN_D6 12 IN_D6 DS-66 D D Discrete Input IN_D6 13 IN_D7 DS-66 D D Discrete Input IN_D7 14 IN_D8 DS-66 D D Discrete Input IN_D8 15 IN_D8 DS-66 D D Discrete Input IN_D9 16 IN_D10 DS-66 D D Discrete Input IN_D9 16 IN_D10 DS-66 D Discrete Input IN_D10 17 IN_D11 DS-66 D Discrete Input IN_D11 18 IN_D12 DS-66 D Discrete Input IN_D11 19 IN_D13 DS-66 D Discrete Input IN_D13 20 IN_D14 DS-66 D Discrete Input IN_D13 21 IN_D15 DS-66 D Discrete Input IN_D14 22 IN_D16 DS-66 D Discrete Input IN_D15 <					0, 0	E		•
9 N. D3 DS-66 D Discrete Input IN. D3								
10		_						
11								
12							1	
14							D	
15								
16								_
17								
18								
19							1	
20		_						
22		_						
23	21	IN_D15					D	
24								
D								
26								Discrete Output OUT_D2
27							1	
28							1	
29								
30								
31							D	
33 OUT_D11 DS-66 D Discrete Output OUT_D11		_					D	Discrete Output OUT_D9
34								
35							1	
36		_						
37 OUT_D15 DS-66 D Discrete Output OUT_D15								
Description Discrete Output OUT_D16								
39 CT_VAL_D1 Unsig8 0 S Constant Discrete value transferred to OUT_D1 40 CT_VAL_D2 Unsig8 0 S Constant Discrete value transferred to OUT_D2 41 CT_VAL_D3 Unsig8 0 S Constant Discrete value transferred to OUT_D2 42 CT_VAL_D4 Unsig8 0 S Constant Discrete value transferred to OUT_D3 43 CT_VAL_D5 Unsig8 0 S Constant Discrete value transferred to OUT_D4 44 CT_VAL_D6 Unsig8 0 S Constant Discrete value transferred to OUT_D6 45 CT_VAL_D7 Unsig8 0 S Constant Discrete value transferred to OUT_D7 46 CT_VAL_D8 Unsig8 0 S Constant Discrete value transferred to OUT_D7 47 CT_VAL_D9 Unsig8 0 S Constant Discrete value transferred to OUT_D9 48 CT_VAL_D10 Unsig8 0 S Constant Discrete value transferred to OUT_D9 49 CT_VAL_D11 Unsig8 0 S Constant Discrete value transferred to OUT_D11 50 CT_VAL_D12 Unsig8 0 S Constant Discrete value transferred to OUT_D12 51 CT_VAL_D13 Unsig8 0 S Constant Discrete value transferred to OUT_D13								Discrete Output OUT_D16
40 CT_VAL_D2 Unsig8 0 S Constant Discrete value transferred to OUT_D2 41 CT_VAL_D3 Unsig8 0 S Constant Discrete value transferred to OUT_D2 42 CT_VAL_D4 Unsig8 0 S Constant Discrete value transferred to OUT_D3 43 CT_VAL_D5 Unsig8 0 S Constant Discrete value transferred to OUT_D4 44 CT_VAL_D6 Unsig8 0 S Constant Discrete value transferred to OUT_D5 45 CT_VAL_D7 Unsig8 0 S Constant Discrete value transferred to OUT_D7 46 CT_VAL_D8 Unsig8 0 S Constant Discrete value transferred to OUT_D7 47 CT_VAL_D9 Unsig8 0 S Constant Discrete value transferred to OUT_D8 48 CT_VAL_D10 Unsig8 0 S Constant Discrete value transferred to OUT_D9 49 CT_VAL_D11 Unsig8 0 S Constant Discrete value transferred to OUT_D10 50 CT_VAL_D12 Unsig8 0 S Constant Discrete value transferred to OUT_D11 50 CT_VAL_D13 Unsig8 0 S Constant Discrete value transferred to OUT_D11 51 CT_VAL_D13 Unsig8 0 S Constant Discrete value transferred to OUT_D12 51 CT_VAL_D13 Unsig8 0 S Constant Discrete value transferred to OUT_D12 51 CT_VAL_D13 Unsig8 0 S Constant Discrete value transferred to OUT_D12 52 CONSTANT DISCRETE VALUE transferred to OUT_D12 53 CONSTANT DISCRETE VALUE transferred to OUT_D11 54 CONSTANT DISCRETE VALUE transferred to OUT_D11 55 CONSTANT DISCRETE VALUE transferred to OUT_D12 56 CONSTANT DISCRETE VALUE transferred to OUT_D12 57 CONSTANT DISCRETE VALUE transferred to OUT_D13	30	CT VAL D1	l Insig8		0		S	Constant Discrete value transferred
40 CT_VAL_D2 Unsig8 0 S to OUT_D2 41 CT_VAL_D3 Unsig8 0 S Constant Discrete value transferred to OUT_D3 42 CT_VAL_D4 Unsig8 0 S Constant Discrete value transferred to OUT_D4 43 CT_VAL_D5 Unsig8 0 S Constant Discrete value transferred to OUT_D5 44 CT_VAL_D6 Unsig8 0 S Constant Discrete value transferred to OUT_D5 45 CT_VAL_D7 Unsig8 0 S Constant Discrete value transferred to OUT_D7 46 CT_VAL_D8 Unsig8 0 S Constant Discrete value transferred to OUT_D8 47 CT_VAL_D9 Unsig8 0 S Constant Discrete value transferred to OUT_D8 48 CT_VAL_D10 Unsig8 0 S Constant Discrete value transferred to OUT_D9 49 CT_VAL_D11 Unsig8 0 S Constant Discrete value transferred to OUT_D10 50 CT_VAL_D12 Unsig8 0 S Constant Discrete value transferred to OUT_D11 50 CT_VAL_D13 Unsig8 0 S Constant Discrete value transferred to OUT_D12 51 CT_VAL_D13 Unsig8 0 S Constant Discrete value transferred to OUT_D12 51 CT_VAL_D13 Unsig8 0 S Constant Discrete value transferred to OUT_D13		OT_VAL_DT	Onlingo		Ů			
41 CT_VAL_D3 Unsig8 0 S Constant Discrete value transferred to OUT_D3 42 CT_VAL_D4 Unsig8 0 S Constant Discrete value transferred to OUT_D4 43 CT_VAL_D5 Unsig8 0 S Constant Discrete value transferred to OUT_D5 44 CT_VAL_D6 Unsig8 0 S Constant Discrete value transferred to OUT_D6 45 CT_VAL_D7 Unsig8 0 S Constant Discrete value transferred to OUT_D6 46 CT_VAL_D8 Unsig8 0 S Constant Discrete value transferred to OUT_D7 46 CT_VAL_D9 Unsig8 0 S Constant Discrete value transferred to OUT_D8 47 CT_VAL_D9 Unsig8 0 S Constant Discrete value transferred to OUT_D9 48 CT_VAL_D10 Unsig8 0 S Constant Discrete value transferred to OUT_D10 49 CT_VAL_D11 Unsig8 0 S Constant Discrete value transferred to OUT_D11 50 CT_VAL_D12 Unsig8 0 S Constant Discrete value transferred to OUT_D12 51 CT_VAL_D13 Unsig8 0 S Constant Discrete value transferred to OUT_D12 51 CT_VAL_D13 Unsig8 0 S Constant Discrete value transferred to OUT_D13	40	CT_VAL_D2	Unsig8		0		S	
41 CT_VAL_D3 Unsig8 0 S to OUT_D3 42 CT_VAL_D4 Unsig8 0 S Constant Discrete value transferred to OUT_D4 43 CT_VAL_D5 Unsig8 0 S Constant Discrete value transferred to OUT_D5 44 CT_VAL_D6 Unsig8 0 S Constant Discrete value transferred to OUT_D6 45 CT_VAL_D7 Unsig8 0 S Constant Discrete value transferred to OUT_D7 46 CT_VAL_D8 Unsig8 0 S Constant Discrete value transferred to OUT_D8 47 CT_VAL_D9 Unsig8 0 S Constant Discrete value transferred to OUT_D8 48 CT_VAL_D10 Unsig8 0 S Constant Discrete value transferred to OUT_D9 49 CT_VAL_D10 Unsig8 0 S Constant Discrete value transferred to OUT_D10 50 CT_VAL_D11 Unsig8 0 S Constant Discrete value transferred to OUT_D11 50 CT_VAL_D12 Unsig8 0 S Constant Discrete value transferred to OUT_D12 51 CT_VAL_D13 Unsig8 0 S Constant Discrete value transferred to OUT_D12 51 CT_VAL_D13 Unsig8 0 S Constant Discrete value transferred to OUT_D13							_	
42 CT_VAL_D4 Unsig8 0 S to OUT_D4 43 CT_VAL_D5 Unsig8 0 S Constant Discrete value transferred to OUT_D5 44 CT_VAL_D6 Unsig8 0 S Constant Discrete value transferred to OUT_D6 45 CT_VAL_D7 Unsig8 0 S Constant Discrete value transferred to OUT_D7 46 CT_VAL_D8 Unsig8 0 S Constant Discrete value transferred to OUT_D8 47 CT_VAL_D9 Unsig8 0 S Constant Discrete value transferred to OUT_D8 48 CT_VAL_D10 Unsig8 0 S Constant Discrete value transferred to OUT_D9 49 CT_VAL_D11 Unsig8 0 S Constant Discrete value transferred to OUT_D11 50 CT_VAL_D12 Unsig8 0 S Constant Discrete value transferred to OUT_D12 51 CT_VAL_D13 Unsig8 0 S Constant Discrete value transferred to OUT_D12 51 CT_VAL_D13 Unsig8 0 S Constant Discrete value transferred to OUT_D12 52 Constant Discrete value transferred to OUT_D12 53 CONSTANT DISCRETE VALUE TRANSFERRED TO OUT_D12 54 CONSTANT DISCRETE VALUE TRANSFERRED TO OUT_D12 55 CONSTANT DISCRETE VALUE TRANSFERRED TO OUT_D12 56 CONSTANT DISCRETE VALUE TRANSFERRED TO OUT_D13 57 CONSTANT DISCRETE VALUE TRANSFERRED TO OUT_D13 58 CONSTANT DISCRETE VALUE TRANSFERRED TO OUT_D13 59 CONSTANT DISCRETE VALUE TRANSFERRED TO OUT_D13	41	CT_VAL_D3	Unsig8		0		S	
43 CT_VAL_D5 Unsig8 0 S Constant Discrete value transferred to OUT_D5 44 CT_VAL_D6 Unsig8 0 S Constant Discrete value transferred to OUT_D6 45 CT_VAL_D7 Unsig8 0 S Constant Discrete value transferred to OUT_D7 46 CT_VAL_D8 Unsig8 0 S Constant Discrete value transferred to OUT_D8 47 CT_VAL_D9 Unsig8 0 S Constant Discrete value transferred to OUT_D9 48 CT_VAL_D10 Unsig8 0 S Constant Discrete value transferred to OUT_D10 49 CT_VAL_D11 Unsig8 0 S Constant Discrete value transferred to OUT_D10 50 CT_VAL_D12 Unsig8 0 S Constant Discrete value transferred to OUT_D11 51 CT_VAL_D13 Unsig8 0 S Constant Discrete value transferred to OUT_D12 52 Constant Discrete value transferred to OUT_D12 53 Constant Discrete value transferred to OUT_D13 54 CONSTANT DISCRETE VALUE TRANSFERRED TO OUT_D11 55 CONSTANT DISCRETE VALUE TRANSFERRED TO OUT_D12 56 CT_VAL_D13 Unsig8 0 S CONSTANT DISCRETE VALUE TRANSFERRED TO OUT_D13	12	CT VAL DA	l Incia8		0		Q	
44 CT_VAL_D6 Unsig8 0 S Constant Discrete value transferred to OUT_D6 45 CT_VAL_D7 Unsig8 0 S Constant Discrete value transferred to OUT_D7 46 CT_VAL_D8 Unsig8 0 S Constant Discrete value transferred to OUT_D8 47 CT_VAL_D9 Unsig8 0 S Constant Discrete value transferred to OUT_D8 48 CT_VAL_D10 Unsig8 0 S Constant Discrete value transferred to OUT_D9 49 CT_VAL_D11 Unsig8 0 S Constant Discrete value transferred to OUT_D10 50 CT_VAL_D12 Unsig8 0 S Constant Discrete value transferred to OUT_D11 51 CT_VAL_D13 Unsig8 0 S Constant Discrete value transferred to OUT_D12 52 CONSTANT DISCRETE VALUE transferred to OUT_D11 53 CONSTANT DISCRETE VALUE transferred to OUT_D11 54 CT_VAL_D13 Unsig8 0 S CONSTANT DISCRETE VALUE transferred to OUT_D11 55 CONSTANT DISCRETE VALUE transferred to OUT_D13	42	CI_VAL_D4	Orisigo		U		3	to OUT_D4
44 CT_VAL_D6 Unsig8 0 S Constant Discrete value transferred to OUT_D6 45 CT_VAL_D7 Unsig8 0 S Constant Discrete value transferred to OUT_D7 46 CT_VAL_D8 Unsig8 0 S Constant Discrete value transferred to OUT_D8 47 CT_VAL_D9 Unsig8 0 S Constant Discrete value transferred to OUT_D8 48 CT_VAL_D10 Unsig8 0 S Constant Discrete value transferred to OUT_D9 49 CT_VAL_D11 Unsig8 0 S Constant Discrete value transferred to OUT_D10 50 CT_VAL_D12 Unsig8 0 S Constant Discrete value transferred to OUT_D11 51 CT_VAL_D13 Unsig8 0 S Constant Discrete value transferred to OUT_D12 51 CT_VAL_D13 Unsig8 0 S Constant Discrete value transferred to OUT_D12 52 CONSTANT DISCRETE VALUE transferred to OUT_D12 53 CONSTANT DISCRETE VALUE transferred to OUT_D12 54 CT_VAL_D13 Unsig8 0 S CONSTANT DISCRETE VALUE transferred to OUT_D12	43	CT VAL D5	Unsia8		0		s	Constant Discrete value transferred
45 CT_VAL_D7 Unsig8 0 S Constant Discrete value transferred to OUT_D7 46 CT_VAL_D8 Unsig8 0 S Constant Discrete value transferred to OUT_D8 47 CT_VAL_D9 Unsig8 0 S Constant Discrete value transferred to OUT_D8 48 CT_VAL_D10 Unsig8 0 S Constant Discrete value transferred to OUT_D9 49 CT_VAL_D11 Unsig8 0 S Constant Discrete value transferred to OUT_D10 50 CT_VAL_D12 Unsig8 0 S Constant Discrete value transferred to OUT_D11 51 CT_VAL_D13 Unsig8 0 S Constant Discrete value transferred to OUT_D12 52 Constant Discrete value transferred to OUT_D12 53 Constant Discrete value transferred to OUT_D12 54 CT_VAL_D13 Unsig8 0 S Constant Discrete value transferred to OUT_D13		0.7_11.12_00			_		_	
45 CT_VAL_D7 Unsig8 0 S Constant Discrete value transferred to OUT_D7 46 CT_VAL_D8 Unsig8 0 S Constant Discrete value transferred to OUT_D8 47 CT_VAL_D9 Unsig8 0 S Constant Discrete value transferred to OUT_D8 48 CT_VAL_D10 Unsig8 0 S Constant Discrete value transferred to OUT_D9 49 CT_VAL_D11 Unsig8 0 S Constant Discrete value transferred to OUT_D10 50 CT_VAL_D12 Unsig8 0 S Constant Discrete value transferred to OUT_D11 51 CT_VAL_D13 Unsig8 0 S Constant Discrete value transferred to OUT_D12 52 Constant Discrete value transferred to OUT_D12 53 COnstant Discrete value transferred to OUT_D12 54 CT_VAL_D13 Unsig8 0 S Constant Discrete value transferred to OUT_D13	44	CT_VAL_D6	Unsig8		0		S	
46 CT_VAL_D8 Unsig8 0 S Constant Discrete value transferred to OUT_D8 47 CT_VAL_D9 Unsig8 0 S Constant Discrete value transferred to OUT_D9 48 CT_VAL_D10 Unsig8 0 S Constant Discrete value transferred to OUT_D10 49 CT_VAL_D11 Unsig8 0 S Constant Discrete value transferred to OUT_D11 50 CT_VAL_D12 Unsig8 0 S Constant Discrete value transferred to OUT_D11 51 CT_VAL_D13 Unsig8 0 S Constant Discrete value transferred to OUT_D12 52 Constant Discrete value transferred to OUT_D12 53 Constant Discrete value transferred to OUT_D12 54 CT_VAL_D13 Unsig8 0 S Constant Discrete value transferred to OUT_D13	45	CT VAL D7	l Inciae		0			
46 CT_VAL_D8 Unsig8 0 S to OUT_D8 47 CT_VAL_D9 Unsig8 0 S Constant Discrete value transferred to OUT_D9 48 CT_VAL_D10 Unsig8 0 S Constant Discrete value transferred to OUT_D10 49 CT_VAL_D11 Unsig8 0 S Constant Discrete value transferred to OUT_D11 50 CT_VAL_D12 Unsig8 0 S Constant Discrete value transferred to OUT_D12 51 CT_VAL_D13 Unsig8 0 S Constant Discrete value transferred to OUT_D12 52 Constant Discrete value transferred to OUT_D12 53 Constant Discrete value transferred to OUT_D12 54 CT_VAL_D13 Unsig8 0 S Constant Discrete value transferred to OUT_D12	45	CI_VAL_D/	Unsig8		U		5	to OUT_D7
47 CT_VAL_D9 Unsig8 0 S Constant Discrete value transferred to OUT_D9 48 CT_VAL_D10 Unsig8 0 S Constant Discrete value transferred to OUT_D10 49 CT_VAL_D11 Unsig8 0 S Constant Discrete value transferred to OUT_D11 50 CT_VAL_D12 Unsig8 0 S Constant Discrete value transferred to OUT_D11 51 CT_VAL_D13 Unsig8 0 S Constant Discrete value transferred to OUT_D12 52 Constant Discrete value transferred to OUT_D12 53 Constant Discrete value transferred to OUT_D13	46	CT VAL D8	Unsig8		0		S	
47 CT_VAL_D9 Unsig8 0 S to OUT_D9 48 CT_VAL_D10 Unsig8 0 S Constant Discrete value transferred to OUT_D10 49 CT_VAL_D11 Unsig8 0 S Constant Discrete value transferred to OUT_D11 50 CT_VAL_D12 Unsig8 0 S Constant Discrete value transferred to OUT_D12 51 CT_VAL_D13 Unsig8 0 S Constant Discrete value transferred to OUT_D13		O1_V/\L_DO	Onlingo		Ů			
48 CT_VAL_D10 Unsig8 0 S Constant Discrete value transferred to OUT_D10 49 CT_VAL_D11 Unsig8 0 S Constant Discrete value transferred to OUT_D11 50 CT_VAL_D12 Unsig8 0 S Constant Discrete value transferred to OUT_D11 51 CT_VAL_D13 Unsig8 0 S Constant Discrete value transferred to OUT_D12 52 Constant Discrete value transferred to OUT_D13	47	CT_VAL_D9	Unsig8		0		S	
48 CT_VAL_D10 Unsig8 0 5 to OUT_D10 49 CT_VAL_D11 Unsig8 0 5 Constant Discrete value transferred to OUT_D11 50 CT_VAL_D12 Unsig8 0 5 Constant Discrete value transferred to OUT_D12 51 CT_VAL_D13 Unsig8 0 5 Constant Discrete value transferred to OUT_D12 52 Constant Discrete value transferred to OUT_D13	—	07 =			_			
49 CT_VAL_D11 Unsig8 0 S Constant Discrete value transferred to OUT_D11 50 CT_VAL_D12 Unsig8 0 S Constant Discrete value transferred to OUT_D12 51 CT_VAL_D13 Unsig8 0 S Constant Discrete value transferred to OUT_D12 S Constant Discrete value transferred to OUT_D13	48	CT_VAL_D10	Unsig8		0		S	
50 CT_VAL_D12 Unsig8 0 S Constant Discrete value transferred to OUT_D12 51 CT_VAL_D13 Unsig8 0 S Constant Discrete value transferred to OUT_D13	40	CT VAL D11	I Incia9		0		9	Constant Discrete value transferred
50 CT_VAL_D12 Unsig8 0 to OUT_D12 51 CT_VAL_D13 Unsig8 0 S Constant Discrete value transferred to OUT_D13	49	CI_VAL_DII	Ullsigo		U		3	to OUT_D11
51 CT_VAL_D13 Unsig8 0 S Constant Discrete value transferred to OUT_D13	50	CT_VAL_D12	Unsig8		0		S	
51 C1_VAL_D13 Ulisigo 0 5 to OUT_D13			ļ				+	Constant Discrete value transferred
	51	CT_VAL_D13	Unsig8		0		S	to OUT D13
	52	CT_VAL_D14	Unsig8		0		S	

ldx	Parameter	Data Type	Valid Range	Default Value	Units	Store / Mode	Description
							to OUT_D14
53	CT_VAL_D15	Unsig8		0		S	Constant Discrete value transferred to OUT_D15
54	CT_VAL_D16	Unsig8		0		S	Constant Discrete value transferred to OUT_D16
55	CT_OPTS	Bitstr(2)	See Block Options	0		S	When the bit "CT_VAL_1 to OUT_1" is enabled the output OUT_D1 receives the value of CT_VAL_D1. And like this consecutively for each CT_VAL_Dx corresponding to each OUT_Dx, where x varies of 1 up to 16.
56	UPDATE_EVT	DS-73			Na	D	This alert is generated by any change to the static data.
57	BLOCK_ALM	DS-72			Na	D	The block alarm is used for all configuration, hardware, connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.

Legend: E – Enumerated Parameter; NA – Dimensionless Parameter; RO – Read Only; D – Dynamic; N – Non volatile; S – Static

Flexible Function Block 1131

FFB 1131 - Flexible Function Block

Description

O FFB_1131 has as main purpose to interconnect the ladder logic (usually used for discrete control strategies) and continuous control system, configured through function blocks.

The input/output parameter definitions are performed as following the user applications.

FFB_1131 has 12 basic parameters. Besides that, it can have up to 242 additional parameters, combining DI, DO, AI and AO parameters (OUT_D, IN_D, OUT, IN), which the parameters names are also defined by user.

In Auto mode, this block updates the block inputs for the Ladder and sends the Ladder values for the block outputs. In Man mode, the block stops the block update and the user is able to change the output values.

The input/output status are mapped in boolean parameters into the Ladder. For the inputs, any status with Good quality (Good Non Cascade or Good Cascade) will be 0 (zero) in the corresponding Ladder status. Status qualities different of Good (Bad or Uncertain) will be 1 (one) in the Ladder. For the outputs, the value 0 (zero) in the Ladder will correspond to Good Non Cascade status and the value 1 (one) will correspond to Bad Non Specific status. The table below summarizes the status:

FFB Parameter	FF Status [datatype byte]	Ladder Status [Datatype boolean]
Input	Good Non Cascade or Good Cascade (>=128)	0
-	Bad or Uncertain (<128)	1
Output	Good Non Cascade Non Specific Not Limited (128)	0
-	Bad Non Specific Not Limited (0)	1

This block is available up to the following versions of controllers Firmware and Device Revision:

Controller	Firmware	Device Revision Base
DF62	V2_x_x	03
DF63	VZ_X_X	02
DF75		02
DF79	V4 v v	02
DF89	V1_x_x	01
DF73		04
DF95	V2_x_x	01
DF97		01
DF81	V1_x_x	01

Where, in the Firmware column, x_x indicates the releases of firmware version. The Device Revision Base column indicates the Device Description (DD base) of the equipment.

ATTENTION

Changes of device description in controllers are made using the Syscon Exchange procedure, where the links of the FFB will be lost.

BLOCK_ERF

BLOCK_ERR will be "Out of Service" - when the block is in O/S mode.

Supported Modes

O/S, MAN and AUTO.

Parameters

ldx	Parameter	Data Type	Valid Range / Options	Default Value	Units	Store./ Mode	Description
1	ST_REV	Unsigned16		0	None	S	
2	TAG_DESC	OctString(32)		Spaces	Na	S	
3	STRATEGY	Unsigned16		0	None	S	
4	ALERT_KEY	Unsigned8	1 to 255	0	None	S	
5	MODE_BLK	DS-69	O/S, Man, Auto	O/S	Na	S	See Mode parameter.
6	BLOCK_ERR	Bitstring(2)			Е	D/RO	
7	ALGORITHM_SEL	Unsigned32		0	None	S	Not used.
8	CONTENTS_REV	Unsigned32			None	S	Not used.
9	FILE_REV	Unsigned32			None	S	Not used.
10	FILE_LOCATOR	Unsigned32			None	S	Not used.
11	UPDATE_EVT	DS-73			na	D	This alert is generated by any change to the static data.
12	BLOCK_ALM	DS-72			na	D	The block alarm is used for all configuration, hardware and connection failure, or system problems in the block. The cause of the alert is indicated in the subcode field. The first active alert will set the Active status in the Status attribute. When the Unreported status is removed by the alert reporting task, another block alert can be reported without clearing the Active status, if the subcode has been changed.
13	OUT_D/IN_D/OUT/IN	DS-65/DS-66				D	The input/output parameters as well as
						 D	type, name and quantity are determined by user.
254	OUT_D/IN_D/OUT/IN	DS-65/DS-66				ט	J, 400

Legend: E – Enumerated Parameter; NA – Dimensionless Parameter; RO – Read Only; D – Dynamic; N – Non volatile; S – Static;

Gray Background Line: Default Parameters in Syscon

FFB2_1131 - Flexible Function Block 2

Description

O FFB2_1131 has as main purpose to interconnect the ladder logic (usually used for discrete control strategies) and continuous control system, configured through function blocks.

The parameters names and input/output parameter definitions are performed as following the user applications.

O FFB2_1131 has 12 basic parameters. Besides that, it can have up to 242 additional parameters, combining DI, DO, AI and AO (OUT_D, IN_D, OUT, IN) input/output parameters.

For additional parameters, the block supports four data structure, DS-65, DS-66, DS-158* and DS-174*. These structures are limited in input/output parameters: up to 242 parameters for DS-65 and DS-66 structures, and up to 16 parameters for DS-158 and DS-174 structures.

The following Table details information about the quantity of input/output parameters for each FFB2_1131 data structure:

Data Structures	Quantity of Default Parameters	Maximum of Input/Output Parameters supported by Structure	Maximum of Input/Output Parameters supported by FFB
IN - DS65	32	242 parameters	
OUT - DS65	32	242 parameters	
IN - DS66	32	242 parameters	
OUT - DS66	32	242 parameters	242 paramatara
IN - DS158 *	4	16 parameters	242 parameters
OUT - DS158 *	4	16 parameters	
IN - DS174 *	4	16 parameters	
OUT - DS174 *	4	16 parameters	

^{*} Structures used to optimize the communication.

For example, it is possible a FFB block with a 60 IN_DS65 + 60 IN_DS66 + 60 OUT_DS65 + 62 OUT_DS66 combination, totaling 242 flexible parameters, or then 16_IN_DS158 + 16 OUT_DS174 + 100 IN_DS66 + 110 OUT_DS66 totaling 242 parameters, or other combination within the limits mentioned in the Table above.

In Auto mode, this block updates the block inputs for the Ladder and sends the Ladder values for the block outputs. In Man mode, the block stops the block update and the user is able to change the output values.

The input/output statuses are mapped in boolean parameters into the Ladder. For the inputs, any status with Good quality (Good Non Cascade or Good Cascade) will be 0 (zero) in the corresponding Ladder status. Status qualities different of Good (Bad or Uncertain) will be 1 (one) in the Ladder. For the outputs, the value 0 (zero) in the Ladder will correspond to Good Non Cascade status and the value 1 (one) will correspond to Bad Non Specific status. The table below summarizes the status:

FFB Parameter	FF Status [datatype byte]	Ladder Status [Datatype boolean]
Input	Good Non Cascade or Good Cascade (>=128)	0
-	Bad or Uncertain (<128)	1
Output	Good Non Cascade Non Specific Not Limited (128)	0
	Bad Non Specific Not Limited (0)	1

The above rules apply to inputs and outputs of DS-65, DS-66 and DS-158 types. For inputs and outputs of DS-174 type the above rules apply to the individual status of each of the 16 variables. The Overall Status is the link communication status of the input, and the block execution mode of the output (Auto-GoodNC:Non Specific:Constant, Man-initial value GoodNC: Non Specific:Constant, O/S-Bad:Out of Service), but in both cases there is no mapping in the ladder variable.

This block is available in the following versions of controllers Firmware and Device Revision:

Controller	Firmware	Device Revision Base
DF62		04
DF63	V3_x_x	03
DF75		03
DF79	V2 x x	03
DF89	V2_X_X	02
DF73		05
DF95	V3_x_x	02
DF97		02
DF81	V2_x_x	02

Where, in the Firmware column, x_x indicates the releases of firmware version. The Device Revision Base column indicates the Device Description (DD base) of the equipment.

ATTENTION

Changes of Device Description in controllers are made using the Syscon Exchange procedure, where the links of the FFB will be lost.

BLOCK_ERR

BLOCK_ERR will be "Out of Service" - when the block is in O/S mode.

Supported Modes

O/S, MAN and AUTO

Parameters

ldx	Parameter	Data Type	Valid Range / Options	Default Value	Units	Store/ Mode	Description	
1	ST_REV	Unsigned16		0	None	S		
2	TAG_DESC	OctString(32)		Spaces	Na	S		
3	STRATEGY	Unsigned16		0	None	S		
4	ALERT_KEY	Unsigned8	1 to 255	0	None	S		
5	MODE_BLK	DS-69	O/S, Man, Auto	O/S	Na	S	See Mode parameter.	
6	BLOCK_ERR	Bitstring(2)			E	D/RO		
7	ALGORITHM_SEL	Unsigned32		0	None	S	Not used.	
8	CONTENTS_REV	Unsigned32			None	S	Not used.	
9	FILE_REV	Unsigned32			None	S	Not used.	
10	FILE_LOCATOR	Unsigned32			None	S	Not used.	
11	UPDATE_EVT	DS-73			na	D	This alert is generated by any change to the static data.	
12	BLOCK_ALM	DS-72			na	D	The block alarm is used for all configuration, hardware and connection failure, or system problems in the block. The cause of the alert is indicated in the subcode field. The first active alert will set the Active status in the Status attribute. When the Unreported status is removed by the alert reporting task, another block alert can be reported without clearing the Active status, if the subcode has been changed.	
13	OUT_D/IN_D/OUT/IN	DS-65/DS-66 DS-158/DS-174				D	The input/output parameters as well as	
							type, name and quantity are determined	
254	OUT_D/IN_D/OUT/IN	DS-65/DS-66 DS-158/DS-174				D	by user.	

Legend: E – Enumerated Parameter; NA – Dimensionless Parameter; RO – Read Only; D – Dynamic; N – Non volatile; S – Static; Gray Background Line: Default Parameters in Syscon

Modbus Function Blocks

MBCF – Modbus Configuration

Overview

This block allows configuration of several communication parameters of the Modbus protocol.

Description

This block allows setting parameters of the communication between DFI302 and Modbus slave devices through Ethernet and serial (EIA-232). User defines rate of transference of data of the serial ports, parity, timeout and number of retransmissions.

NOTE

Every time a Modbus parameter is changed it is necessary to set the ON_APPLY parameter of the MBCF block to "Apply". Otherwise these alterations will not be effective.

User must set ONLY one MBCF block for each device.

Modbus Addresses

User must attribute a Modbus address to the DFI302. However this address cannot be the same of any other device in the Modbus network in case it is connected in the serial and Ethernet mean. In this case user must set the parameter DEVICE_ADDRESS. The default value of this parameter is 247.

In applications where the DFI302 acts as master TCP/IP user will have also to inform the IP address of the devices in the parameter SLAVE ADRESSES.

Parameters MASTER SLAVE and MEDIA

These parameters set the DFI302 behavior and media where the communication is done. In the MASTER_SLAVE parameter is defined if the DFI302 will work as a slave or master Modbus device. MEDIA may be serial or TCP/IP. It is necessary that DEVICE_ADDRESS is unique within the Modbus network.

Rate of transference of the serial ports

It is possible to select the baud rate of data in the serial ports. They may be set through the parameter BAUD_RATE. It allows the selection among the following baud rates:

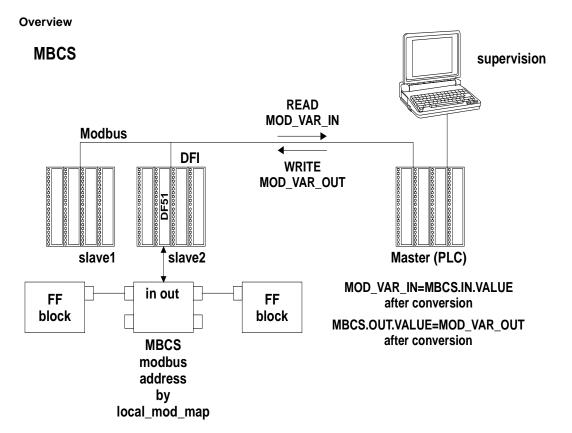
- 0:100 bps
- 1:300 bps
- 2:600 bps
- 3:1200 bps
- 4:2400 bps
- 5:4800 bps
- 6:9600 bps (default)
- 7:19200 bps
- 8:38400 bps
- 9:57600 bps
- 10:115200 bps

Parity

Parameter PARITY defines the type o parity to the serial ports.

- 0: No parity
- 1: Even Parity
- 2: Odd parity

Timeout, number of retransmissions

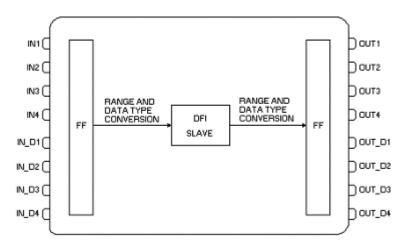

Timeout is the time waited for answer from a slave after a message having been sent to the serial port or Ethernet. The default value is 1000 ms, this parameter is directly connected with the parameter NUMBER RETRANSMISSIONS.

Number of retransmissions is the number of times the DFI302 will retry to establish communication with the slave device after not getting a reply. The time waited for this answer is set by the TIME_OUT parameter. The number of retransmissions is chosen through the NUMBER OF RETRANSMISSIONS parameter. User may select a value in the range 0 to 255 to this parameter. The default value is 1.

ldx	Parameter	Data Type (length)	Valid Range/ Options	Default Value	Units	Store/ Mode	Description
1	ST_REV	Unsigned16		0	None	S/RO	
2	TAG_DESC	OctString(32)		Spaces	Na	S	
3	STRATEGY	Unsigned16		0	None	S	
4	ALERT_KEY	Unsigned8	1 to 255	0	None	S	
5	MODE_BLK	DS-69		O/S	Na	S	See Mode Parameter
6	BLOCK_ERR	Bitstring(2)			Е	D/RO	
7	MEDIA	Unsigned8	0:Serial, 1:TCP/IP	Serial	Е	S	Define the type of Modbus channel.
8	MASTER_SLAVE	Unsigned8	0:Master, 1:Slave	Slave	Е	S	Define if DFI is master or slave.
9	DEVICE_ADDRESS	Unsigned8	1-247	1	Е	S	Define the DFI Modbus address (only for DFI slave).
10	BAUD_RATE	Unsigned8	0:110, 1:300, 2:600, 3:1200, 4:2400, 5:4800, 6:9600, 7:19200, 8:38400, 9:57600, 10:115200	19200	E	S	Define the baud rate (only for media serial).
11	STOP_BITS	Unsigned8	0:1, 1:2	1	Е	S	Define the number of stop bits (only for media serial).
12	PARITY	Unsigned8	0:None, 1:Even, 2:Odd.	Even	Е	S	Define the parity (only for media serial).
13	TIMEOUT	Unsigned16	200-65535	2000	ms	S	Time value to wait a response from a slave (for DFI master), or time to wait the OUTs are updated (for DFI slave).
14	NUMBER_RETRANS MISSIONS	Unsigned8	0-255	1		S	Number of retransmission if DFI doesn't receive response from slave.
15	SLAVE_ADDRESSES	DS-263				S	IP number and Modbus addresses of slaves (only for DFI master in TCP/IP media);
16	RESTART_MODBUS	Boolean		FALSE		S	Not used.
17	TIME_TO_RESTART	Unsigned16	100-65535 (Master) 0-65535 (Slave)	500	ms	S	When the device is working as master, it is the scan cycle of Modbus requests. When the device is working as slave, it is the delay for responses in Modbus TCP, aimed at restricting too short cycle by the master.
18	RTS_CTS	Boolean		FALSE		S	Enable or not handshaking.
19	ON_APPLY	Unsigned8	0:None, 1: Apply	None	Е	S	Apply the changes made in the Modbus blocks.
20	CHECK_COMM_STA NDBY	Unsigned8	0 ~ 255	0	NA	S/RW	It configures for the Standby if it will test the Modbus communication with the slave devices. 0: Disable test. 1 – 255: Enable test defining the time interval between each test (s).

Legend: E – Enumerated parameter; Na – Dimensionless parameter; RO – Read only; D – dynamic; N – non-volatile; S – Static Gray Background Line: Default Parameters of Syscon

MBCS - Modbus Control Slave


Description

MBCS block generates a communication strategy between a Modbus master and a FOUNDATION fieldbus slave. In the present case, the slave is the Smar's linking device DFI302 that has slave behavior for the Modbus network. It allows Modbus variables to be associated with fieldbus variables and data between these two "worlds" to be exchanged through DFI302.

NOTE

Every time a Modbus parameter is changed it is necessary to set the ON_APPLY parameter of the MBCF block to "Apply". Otherwise these alterations will not be effective.

Schematic

Inputs and Outputs

This block has 4 digital inputs, 4 analog inputs, 4 digital outputs and 4 analog outputs that may be connected to other fieldbus function blocks or to the Modbus world.

- IN1, IN2, IN3 and IN4 are analog inputs.
- IN_D1, IN_D2, IN_D3 and IN_D4 are digital inputs.
- OUT1, OUT2, OUT3 and OUT4 are analog outputs.
- OUT_D1, OUT_D2, OUT_D3 and OUT_D4 are digital outputs.

Digital outputs and Digital inputs are of the DS-66 data type. Thus they contain both a Status and a value (both Unsigned 8). The analog outputs and inputs are of the DS-65 data type, containing status and value as well. Type of values is Float. For more details (see on Chapter 1, "Data Type and Data Structure Definition")

Parameter LOCAL_MOD_MAP

This parameter defines the address range of the Modbus addresses attributed to the input and output fieldbus variables of the MBCS block. In order to set this parameter properly user needs first to check the tables below:

LOCAL_MOD_MAP (MBCS)					
	LOCAL_MOD_MAP = x	e.g.			
PARAMETER	OFFSET = 40 * x	LOCAL_MOD_MAP			
	x = 0 ~ 15	=1			
IN1-Value	40001+ OFFSET	40041			
IIVI-Value	40002+ OFFSET	40042			
IN2-Value	40003+ OFFSET	40043			
IIV2-Value	40004+ OFFSET	40044			
IN3-Value	40005+ OFFSET	40045			
iivo-value	40006+ OFFSET	40046			
IN4-Value	40007+ OFFSET	40047			
114-Value	40008+ OFFSET	40048			
OUT1-Value	40009+ OFFSET	40049			
OOT 1-Value	40010+ OFFSET	40050			
OUT2-Value	40011+ OFFSET	40051			
OO12-Value	40012+ OFFSET	40052			
OUT3-Value	40013+ OFFSET	40053			
OO13-Value	40014+ OFFSET	40054			
OUT4-Value	40015+ OFFSET	40055			
OO14-Value	40016+ OFFSET	40056			
IN1-Status	40017+ OFFSET	40057			
IN2-Status	40018+ OFFSET	40058			
IN3-Status	40019+ OFFSET	40059			
IN4-Status	40020+ OFFSET	40060			
OUT1-Status	40021+ OFFSET	40061			
OUT2-Status	40022+ OFFSET	40062			
OUT3-Status	40023+ OFFSET	40063			
OUT4-Status	40024+ OFFSET	40064			
IN_D1-Status	40025+ OFFSET	40065			
IN_D2-Status	40026+ OFFSET	40066			
IN_D3-Status	40027+ OFFSET	40067			
IN_D4-Status	40028+ OFFSET	40068			
OUT_D1-Status	40029+ OFFSET	40069			
OUT_D2-Status	40030+ OFFSET	40070			
OUT_D3-Status	40031+ OFFSET	40071			
OUT_D4-Status	40032+ OFFSET	40072			
IN_D1-Value	1+ OFFSET	41			
IN_D2-Value	2+ OFFSET	42			
IN_D2-Value	3+ OFFSET	43			

LOCAL_MOD_MAP (MBCS)						
IN_D2-Value	4+ OFFSET	44				
OUT_D1-Value	5+ OFFSET	45				
OUT_D2-Value	6+ OFFSET	46				
OUT_D3-Value	7+ OFFSET	47				
OUT_D4-Value	8+ OFFSET	48				

The second column of the table above shows the Modbus address attributed to each input and output of the MBCS block, according to the value set for LOCAL_MODE_MAP. The address has the following equation:

Where, X is the value of the LOCAL_MOD_MAP parameter that is specified by user for each MBCS block, whereas the value must be from 0 to 15.

For example, if LOCAL_MOD_MAP equal to 0, it will result in the Modbus addresses range shown in the second column with OFFSET equal to zero. For LOCAL_MOD_MAP equal to 1, it will result in OFFSET=40 and it corresponds to the Modbus addresses shown in the third column from the table above. Like this, different values of LOCAL_MOD_MAP will result in a different Modbus addresses range.

From the table above, the analog values (IN_1, ...,IN_4, OUT_1,..., OUT_4) are float of 4 bytes and have two Modbus registers. However, to configure this address in the Modbus master, it is necessary only to write the first address. For example, the address of the OUT_1 variable of the MBCS block with LOCAL_MOD_MAP equal to 1 is 40049. The IN_Dn and OUT_Dn discrete values have only one Modbus register (for example the Modbus address of IN_D1 for LOCAL_MOD_MAP equal to 1 is 41). The status values also use only one register.

This block allows Modbus Scale Conversion. To do the conversion procedure, see the item "Modbus Scale Conversion" in the Section 1.

Output Status

The output status can be set in two ways: by Modbus master or by status chosen by user. In the first case the Modbus master sends the value and status (i.e., two different Modbus variables). In the second case the master sends only the value.

When the output status is updated by master, the STATUS_OUT_Dn or SCALE_CONV_OUTn.Output_Status parameter is equal to "set by master", that is the default option of the block. In this case, the Modbus master sends the status periodically, writing a fieldbus status in the status parameter (OUTn.Status). For example, to write the "Good Non Cascade; Non Specific" status whose value is 128 (see section status composition) in the OUT_D1 parameter of the MBCS block with LOCAL_MOD_MAP equal to 1, it is necessary the master to write 128 in the 40069 Modbus address. For this case, the master also should write in the 45 Modbus address corresponding to the parameter value (OUT_D1.Value).

If the user configures a value different of "Set by master" for the STATUS_OUT_Dn or SCALE_CONV_OUTn.Output_Status parameters, then this status will be the status of the parameter for each master update. I.e., for the example above, if the user configures the STATUS_OUT_D1 parameter equal to "Good Non Cascade; Non Specific", and whenever the master to write a new value for the OUT_D1.VALUE parameter (45 Modbus address), the status will be the status corresponding to the STATUS_OUT_D1 parameter.

For the two ways, if the outputs are not updated by Modbus Master during the time interval set in TIMEOUT (TIMEOUT parameter in the MBCF block), a "bad status" will be generated (Bad:NoComm_withusablevalue).

To choose the best option of status observes the following sceneries:

- If for the logic is necessary a treatment more complete of fieldbus status, as logic of cascade treatment, failure type, etc. In these cases, the status set by master should be used.
- For simple logics of status verification only for Modbus communication, i.e., only to know if the data are being updated by master, then the status chosen by user should be used.

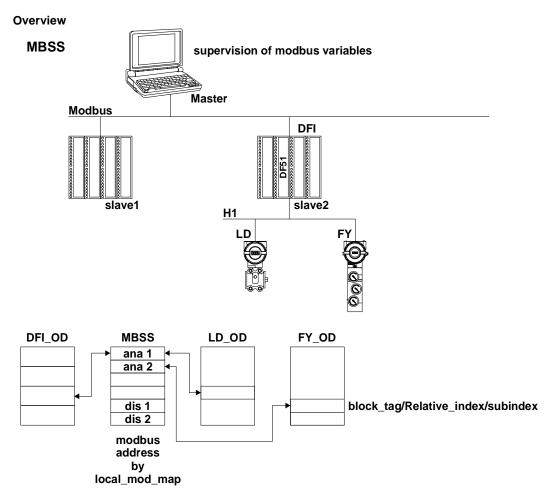
BLOCK_ERR

The BLOCK_ERR of the MBCS block will reflect the following causes:

- Other: it occurs when the conversion from Y to DATA_TYPE_IN results in a value out of range of this data type.
- Out of Service: it occurs when the block is in O/S mode.

ldx	Parameter	DataType (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
1	ST_REV	Unsigned16		0	None	S/RO	
2	TAG_DESC	OctString(32)		Spaces	Na	S	
3	STRATEGY	Unsigned16		0	None	S	
4	ALERT_KEY	Unsigned8	1 to 255	0	None	S	
5	MODE_BLK	DS-69		o/s	Na	S	See Mode Parameter.
6	BLOCK_ERR	Bitstring(2)			E	D/RO	
7	LOCAL_MOD_MAP	Unsigned8	0 to 15	0		S / O/S	Define the Modbus addresses.
8	IN1	DS-65				N	Analog input 1
9	SCALE_CONV_IN1	DS-256				S / O/S	Information to generate constants A and B in equation Y=A*X+B.
10	IN2	DS-65				N	Analog input 2
11	SCALE_CONV_IN2	DS-256				S / O/S	Information to generate constants A and B in equation Y=A*X+B.
12	IN3	DS-65				N	Analog input 3
13	SCALE_CONV_IN3	DS-256				S / O/S	Information to generate constants A and B in equation Y=A*X+B.
14	IN4	DS-65				N	Analog input 4
15	SCALE_CONV_IN4	DS-256				S / O/S	Information to generate constants A and B in equation Y=A*X+B.
16	IN_D1	DS-66				N	Discrete input 1
17	IN_D2	DS-66				N	Discrete input 2
18	IN_D3	DS-66				N	Discrete input 3
19	IN_D4	DS-66				N	Discrete input 4
20	OUT1	DS-65				N / Man	Analog output 1
21	SCALE_CONV_OUT1	DS-257	0 – Bad: Non Specific 128 – Good Non Cascade: Non Specific 192 – Good Cascade: Non Specific 252 – Set by Master			S / O/S	Information to generate constants A and B in equation Y=A*X+B plus output status. Define the status for the OUT1 parameter. If the option is "Set by Master", the status will be sent by master. If the option is different of "Set by Master", the status of the parameter will be the SCALE_CONV_OUT1 when the master is sending the value (OUT1.Value).
22	OUT2	DS-65				N / Man	Analog output 2

ldx	Parameter	DataType (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
23	SCALE_CONV_OUT2	DS-257	0 – Bad: Non Specific			S / O/S	Information to generate constants A and B in equation Y=A*X+B plus output status. Define the status for the OUT2 parameter. If the option is "Set by Master", the status will be sent by master. If the option is different of "Set by Master", the status of the parameter will be the SCALE_CONV_OUT2 when the master is sending the value (OUT2.Value).
24	OUT3	DS-65				N / Man	Analog output 3
25	SCALE_CONV_OUT3	DS-257	0 – Bad: Non Specific			S / O/S	Information to generate constants A and B in equation Y=A*X+B plus output status. Define the status for the OUT3 parameter. If the option is "Set by Master", the status will be sent by master. If the option is different of "Set by Master", the status of the parameter will be the SCALE_CONV_OUT3 when the master is sending the value (OUT3.Value).
26	OUT4	DS-65				N / Man	Analog output 4
27	SCALE_CONV_OUT4	DS-257	0 – Bad: Non Specific 128 – Good Non Cascade: Non Specific 192 – Good Cascade: Non Specific 252 – Set by Master			S/O/S	Information to generate constants A and B in equation Y=A*X+B plus output status. Define the status for the OUT4 parameter. If the option is "Set by Master", the status will be sent by master. If the option is different of "Set by Master", the status of the parameter will be the SCALE_CONV_OUT4 when the master is sending the value (OUT4.Value).
28	OUT_D1	DS-66				N / Man	Discrete output 1


	· · · · · · · · · · · · · · · · · · ·						
ldx	Parameter	DataType (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
29	STATUS_OUT_D1	Unsigned8	0 – Bad: Non Specific			S / O/S	Define the status for the OUT_D1 parameter. If the option is "Set by Master", the status will be sent by master. If the option is different of "Set by Master", the status of the parameter will be the STATUS_OUT_D1 when the master is sending the value (OUT_D1.Value).
30	OUT_D2	DS-66				N / Man	Discrete output 2
31	STATUS_OUT_D2	Unsigned8	0 – Bad: Non Specific 128 – Good Non Cascade: Non Specific 192 – Good Cascade: Non Specific 252 – Set by Master			S / O/S	Define the status for the OUT_D2 parameter. If the option is "Set by Master", the status will be sent by master. If the option is different of "Set by Master", the status of the parameter will be the STATUS_OUT_D2 when the master is sending the value (OUT_D2.Value).
32	OUT_D3	DS-66				N / Man	Discrete output 3
33	STATUS_OUT_D3	Unsigned8	0 – Bad: Non Specific			S / O/S	Define the status for the OUT_D3 parameter. If the option is "Set by Master", the status will be sent by master. If the option is different of "Set by Master", the status of the parameter will be the STATUS_OUT_D3 when the master is sending the value (OUT_D3.Value).
34	OUT_D4	DS-66				N / Man	Discrete output 4

ldx	Parameter	DataType (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
35	STATUS_OUT_D4	Unsigned8	0 – Bad: Non Specific 128 – Good Non Cascade: Non Specific 192 – Good Cascade: Non Specific 252 – Set by Master			S / O/S	Define the status for the OUT_D4 parameter. If the option is "Set by Master", the status will be sent by master. If the option is different of "Set by Master", the status of the parameter will be the STATUS_OUT_D4 when the master is sending the value (OUT_D4.Value).
36	UPDATE_EVT	DS-73			Na	D	This alert is generated by any change to the static data.
37	BLOCK_ALM	DS-72			Na	D	The block alarm is used for all configuration, hardware, and connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.

Legend: E – Enumerated parameter; Na – Dimensionless parameter; RO – Read only; D – dynamic; N – non-volatile; S – Static

Gray Background Line: Default Parameters of Syscon

MBSS – Modbus Supervision Slave

Description

MBSS block generates a communication strategy between a Modbus master and a FOUNDATION fieldbus slave. In the present case, the slave is the Smar's linking device DFI302 that has slave behavior for the Modbus network. The MBSS block allows that fieldbus variables are monitored. Unlike the MBCS block, the MBSS does not have inputs or outputs that may be connected. In another words, links to other function blocks cannot be made. It will allow only the Modbus master to monitor specific variables set. For example, suppose there is a PID function block in a FIELDBUS control strategy and it is required to visualize this value in the Modbus master. With the MBSS this value may be monitored.

NOTE

Every time a Modbus parameter is changed it is necessary to set the ON_APPLY parameter of the MBCF block to "Apply". Otherwise these alterations will not be effective.

I_IDn, F_IDn, B_IDn parameters

I_IDn are integer variables, F_IDn are float variables and D_IBn refers to Boolean variables.

These parameters are of the DS-262 data type, which has 3 elements, and their descriptions are in the Chapter 1 "Data Type and Structure Definitions".

LOCAL_MOD_MAP parameter

This parameter will attribute Modbus address to the variables you need to monitor. See the following table:

LOC	CAL_MOD_MAP (ME	BSS)
	LOCAL_MOD_MAP = x	e.g.
PARAMETER	OFFSET = 40 * x	LOCAL_MOD_MAP
	x = 0 ~ 15	=1
FVALUE1	42601+ OFFSET	42641
FVALUET	42602+ OFFSET	42642
FVALUE2	42603+ OFFSET	42643
FVALUEZ	42604+ OFFSET	42644
FVALUE3	42605+ OFFSET	42645
FVALUES	42606+ OFFSET	42646
FVALUE4	42607+ OFFSET	42647
FVALUE4	42608+ OFFSET	42648
FVALUE5	42609+ OFFSET	42649
FVALUES	42610+ OFFSET	42650
FVALUE6	42611+ OFFSET	42651
FVALUE	42612+ OFFSET	42652
FVALUE7	42613+ OFFSET	42653
FVALUE7	42614+ OFFSET	42654
FVALUE8	42615+ OFFSET	42655
FVALUE	42616+ OFFSET	42656
IVALUE1	42617+ OFFSET	42657
IVALULI	42618+ OFFSET	42658
IVALUE2	42619+ OFFSET	42659
IVALUEZ	42620+ OFFSET	42660
IVALUE3	42621+ OFFSET	42661
IVALUES	42622+ OFFSET	42662
IVALUE4	42623+ OFFSET	42663
IVALUE4	42624+ OFFSET	42664
BVALUE1	2601+ OFFSET	2641
BVALUE2	2602+ OFFSET	2642
BVALUE3	2603+ OFFSET	2643
BVALUE4	2604+ OFFSET	2644
BAD_STATUS	42625+OFFSET	42665

LOCAL_MOD_MAP= X OFFSET = 40*X

Once values for LOCAL_MOD_MAP are set, MODBUS ADDRESSES are given to the variables you wish to monitor. So, each integer, float or Boolean variable will have a Modbus address associated.

For example, suppose LOCAL_MOD_MAP = 1 and a float value will be monitored. Picking the F_ID1 and setting its parameters, we have:

- F_ID1.Tag = Tag of the float parameter necessary to monitor
- F_ID1.Index= Index of the first column of the parameter necessary to monitor.
- F_ID1.subindex = The sub index is used for parameters that have a structure. In this case it is necessary to indicate which element of the structure is being referred.

See the table above The Modbus addresses given to this parameter (remember, float values use two Modbus registers) are 42641 and 42642.

BAD_STATUS Parameter

This parameter indicates if the Fieldbus communication is OK or no. If the correspondent bit is in logic level 1 this means there was an error during writing/reading of the respective parameter. The table below presents the values for these status values.

Relation between the bits in BAD_STATUS and Modbus addresses

BIT	PARAMETER			
0	FVALUE1			
1	FVALUE2			

BIT	PARAMETER			
2	FVALUE3			
3	FVALUE4			
4	FVALUE5			
5	FVALUE6			
6	FVALUE7			
7	FVALUE8			
8	IVALUE1			
9	IVALUE2			
10	IVALUE3			
11	IVALUE4			
12	BVALUE1			
13	BVALUE2			
14	BVALUE3			
15	BVALUE4			

BLOCK ERR

The BLOCK_ERR of the MBSS block will reflect the following causes:

- Block Configuration Error: If it is requested a tag with a data type different from permitted or invalid or not found block tag;
- Out of Service: it occurs when the block is in O/S mode.

Remarks

BVALUEx parameters can address FF block parameters of the following data types: Boolean, integer8 and unsigned8. Those data types are automatically converted to bit (0 or 1) and vice versa for Modbus supervision and also converted to Boolean parameter (BVALUEx).

IVALUEx parameters can address FF block parameters of the following data types: Integer8, Integer16, Integer32, Unsigned8, Unsigned16 and Unsigned32.

Each analog parameter (IVALUEx) is mapping as two analog registers in Modbus, i.e., four bytes. Thus, when addressing a FF block parameter with one or two bytes, such parameter will be promoted to Unsigned32 or Integer32.

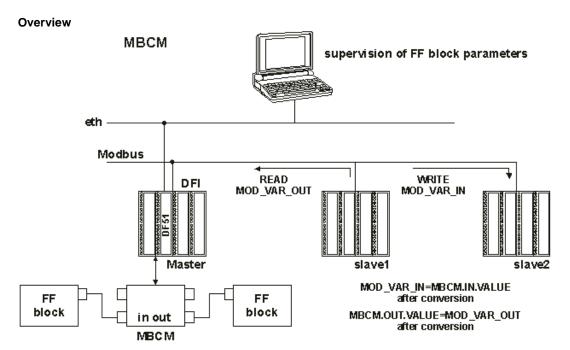
If Relative Index = 5 (MODE_BLK) e Sub Index = 0, it is performed a writing in Sub Index 1 and a reading in Sub Index 2.

Data Type and Supported Structures by MBSS

The Modbus supervision blocks (MBSS) used in the controllers configured as slave, have some restrictions about data types and structures that they support when supervising the block parameters tags. In such case, the next table shows the data types and structures which can be monitored by the MBSS block.

	DATA TYPE *	
	Boolean	
	Float	
	Unsigned 8	
	Unsigned 16	
	Unsigned 32	
	Integer8	
	Integer16	
•	Integer32	•

STRUCTURE TYPES
DS-65
DS-66
DS-68
DS-69
DS-71
DS-72
DS-74
DS-159 (DC302)
DS-160 (DC302)


^{*}For the DF51 controller the data types Swapped Float and Swapped Integer can be obtained by setting the RTS_CTS parameter to TRUE value in the MBSS block.

For further information about the blocks parameters and their data and structures types, as mentioned in the previous table, please see in this manual the Data Type field of each table presented.

	Laramotoro						
ldx	Parameter	DataType (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
1	ST_REV	Unsigned16	<u> </u>	0	None	S/RO	
2	TAG_DESC	OctString(32)		Spaces	Na	S	
3	STRATEGY	Unsigned16		0	None	S	
4	ALERT_KEY	Unsigned8	1 to 255	0	None	S	
5	MODE_BLK	DS-69		O/S	Na	S	See Mode Parameter
6	BLOCK_ERR	Bitstring(2)			Е	D/RO	
7	LOCAL_MOD_MAP	Unsigned8	0 to 15	0		S / O/S	Define the Modbus addresses.
8	 F_ID1	DS-262				S / O/S	Information to locate float parameter.
9	FVALUE1	Float		0		N	Value from requested float parameter.
10	F_ID2	DS-262				S / O/S	Information to locate float parameter.
11	FVALUE2	Float		0		N	Value from requested float parameter.
12	F ID3	DS-262				S / O/S	Information to locate float parameter.
13	FVALUE3	Float		0		N	Value from requested float parameter.
14	F_ID4	DS-262				S / O/S	Information to locate float parameter.
15	FVALUE4	Float		0		N	Value from requested float parameter.
16	F_ID5	DS-262				S / O/S	Information to locate float parameter.
17	FVALUE5	Float		0		N	Value from requested float parameter.
18	F_ID6	DS-262				S / O/S	Information to locate float parameter.
19	FVALUE6	Float		0		N	Value from requested float parameter.
20	F_ID7	DS-262		0		S / O/S	Information to locate float parameter.
21	FVALUE7	Float		0		N	Value from requested float parameter.
22	F_ID8	DS-262		0		S / O/S	Information to locate float parameter.
23	FVALUE8	Float		0		N	Value from requested float parameter.
24	I ID1	DS-262		0		S / O/S	Information to locate integer parameter.
25	IVALUE1	Integer32		0		N	Value from requested integer parameter.
26	I ID2	DS-262		U		S / O/S	Information to locate integer parameter.
27	IVALUE2	Integer32		0		N	Value from requested integer parameter.
38	I ID3	DS-262		U		S / O/S	Information to locate integer parameter.
29	IVALUE3	Integer32		0		N	Value from requested integer parameter.
30	I ID4	DS-262				S / O/S	Information to locate integer parameter.
31	IVALUE4	Integer32		0		N	Value from requested integer parameter.
32	B_ID1	DS-262				S / O/S	Information to locate boolean parameter.
33	BVALUE1	Boolean		TRUE		N	Value from requested boolean parameter.
34	B_ID2	DS-262		TINOL		S / O/S	Information to locate boolean parameter.
35	BVALUE2	Boolean		TRUE		N	Value from requested boolean parameter.
36	B_ID3	DS-262		11102		S / O/S	Information to locate boolean parameter.
37	BVALUE3	Boolean		TRUE		N	Value from requested boolean parameter.
38	B_ID4	DS-262				S / O/S	Information to locate boolean parameter.
39	BVALUE4	Boolean		TRUE		N	Value from requested boolean parameter.
40	UPDATE_EVT	DS-73		INOL	Na	D	This alert is generated by any change to the static data.
41	BLOCK_ALM	DS-72			Na	D	The block alarm is used for all configuration, hardware, and connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.
42	BAD_STATUS	BitString (2)				D/RO	This parameter indicates if the status of correspondent variable is bad or not.

Legend: E – Enumerated parameter; Na – Dimensionless parameter; RO – Read only; D – dynamic; N – non-volatile; S – Static Gray Background Line: Default Parameters of Syscon

MBCM – Modbus Control Master

Description

This block allows control of communication in a strategy where the DFI302 is a Modbus master and the slaves may exchange data between them and with the DFI302. With this block it is not only possible to read Modbus variables, but also writing variables in the Modbus world, exchange data and interact with the FOUNDATION fieldbus control strategy.

NOTE

Every time a Modbus parameter is changed it is necessary to set the ON_APPLY parameter of the MBCF block to "Apply". Otherwise these alterations will not be effective.

LOCAL_MOD_MAP parameter

All MBCM blocks added to the strategy must have different values for LOCAL_MOD_MAP. Otherwise the block will not work properly.

Inputs and Outputs

This block has 4 digital inputs and outputs and 4 analog inputs and outputs. These inputs and outputs may be connected to other fieldbus function blocks in order to be connected to Modbus I/O modules or registers

- INn: Analog input. DS-65 Data type. Value and Status. (See on Chapter 1, "Data Type and Data Structure Definition"). In this parameter user will visualize the value of the parameter set for this input and its status.
- IN_Dn: Digital input. DS-66 Data type. Value and Status. (See on Chapter 1, "Data Type and Data Structure Definition"). In this parameter user will visualize the value of the parameter set for this input and its status
- OUTn: Analog output. DS-65 Data type. Value and Status. (See on Chapter 1, "Data Type and Data Structure Definition"). In this parameter user will visualize the value of the parameter set for this output and its status.
- OUT_Dn: Digital output. DS-66 Data type. Value and Status. (see on Chapter 1, "Data Type and Data Structure Definition").In this parameter user will visualize the value of the parameter set for this output and its status

SCALE LOC INn and SCALE LOC OUTn

These parameters are of the DS-259 data type. They both convert the value to Engineering Units and address the variable in the Modbus network. The INn and OUTn inputs and outputs have SCALE_LOC_INn and SCALE_LOC_OUTn parameters associated. It is necessary to set these parameters so the monitoring and data exchanges are properly made.

Each one of these parameters consists of the following elements:

- √ From Eu 100 %
- √ From Eu 0 %
- √ To Eu 100 %
- √ To Eu 0 %
- √ Data Type √ Slave Address
- √ Modbus Address of Value
- √ Modbus Address of Status

This block allows Modbus Scale Conversion, to do the conversion procedure see the item "Modbus Scale Conversion" in the Chapter 1 for more details.

The Modbus status is related with the Modbus value. Thus, when the "MODBUS_ADDRESS_OF_STATUS" parameter was configured, it is necessary to configure also "MODBUS_ADDRESS_OF_VALUE".

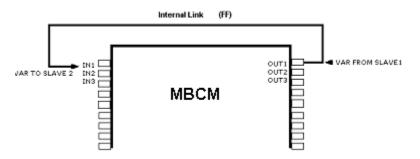
The treatment of inputs and outputs are described in the table below:

Input/Output	Status Configured (MODBUS_ADDRESS_OF_STATUS ≠ 0)	Status Not Configured (MODBUS_ADDRESS_OF_STATUS = 0)
Inputs (IN_n , IN_Dn)	The block sends to the Modbus slave device the status corresponding of its input.(The status has the FF standard format)	No status information is sent to the slave device.
Outputs (OUT_n, OUT_Dn)	The block reads from the slave device the corresponding status. (The block make the interpretation that the Modbus variable is the same format of FF Status)	The block updates the status to "Good Non Cascade" when the communication with the Modbus slave device is ok. The block update the status to "Bad No Communication with last value" when the communication with the Modbus slave device is not ok.

Float values use two Modbus registers, but it is necessary only to inform the first one.

Setting the inputs and outputs of the MBCM block

To read a Modbus variable, connect it to an output of the MBCM function block. To write in a Modbus register connect it to an input of the MBCM block.


Generally Modbus addresses are:

The standard of the Modbus protocol specifies the division of the address range to the variables.

- 0001 to 9999 => Digital Outputs
- 10001 to 19999 => Digital Inputs.
- 30001 to 39999 =>Analog Inputs.
- 40001 to 49999 => Analog Outputs

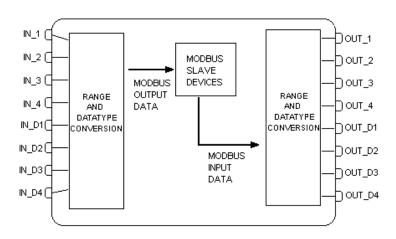
Once the variables required to be mapped are defined and referenced in the MBCM block it is now possible to set the strategy.

It is possible to connect the variables to other fieldbus function blocks (Connect the output or input of the block to blocks in the strategy), to write in Modbus registers (Connect the Input of the MBCM block to a Modbus register). Exchanging data between two slaves (set the input of the MBCM block with the slave address and specific Modbus address where the value will be written and set the output of the MBCM block with the slave address and Modbus address of the variable where the value will be read). This last application is showed below:

BAD_STATUS Parameter

This parameter indicates if the communication between slaves was established properly. If the correspondent bit is in logic level 1 this means there was an error during writing/reading of the respective parameter. The table below presents the values for these status values.

Relation between the bits in BAD_STATUS and Modbus addresses


BIT	PARAMETER
0	IN1
1	IN2
2	IN3
3	IN4
4	IN_D1
5	IN_D2
6	IN_D3
7	IN_D4
8	OUT1
9	OUT2
10	OUT3
11	OUT4
12	OUT_D1
13	OUT_D2
14	OUT_D3
15	OUT_D4

Remarks

Each bit corresponds to an OR between the value and status, indicating if communication with slave is good or bad.

- If it is only used the value, the status is considered zero.
- If it is only used the status, the value is considered zero.

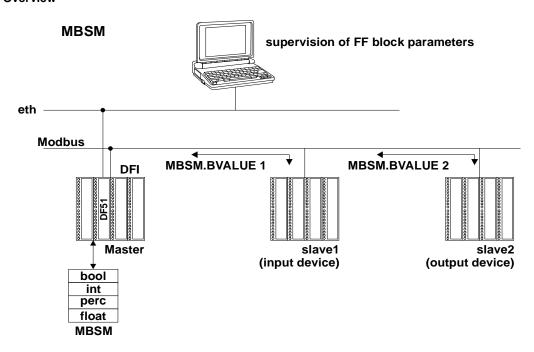
Schematic

BLOCK_ERR

The BLOCK_ERR of the MBCM block will reflect the following causes:

- Other: it occurs when the conversion from Y to DATA_TYPE_IN results in a value out of range of this data type.
- Out of Service: it occurs when the block is in O/S mode.

ldx	Parameter	DataType (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
1	ST_REV	Unsigned16		0	None	S/RO	
2	TAG_DESC	OctString(32)		Spaces	Na	S	
3	STRATEGY	Unsigned16		0	None	S	
4	ALERT_KEY	Unsigned8	1 to 255	0	None	S	
5	MODE_BLK	DS-69		O/S	Na	S	See Mode Parameter
6	BLOCK_ERR	Bitstring(2)			E	D/RO	
7	LOCAL_MOD_MAP	Unsigned8	0 to 15	0		S / O/S	Define the Modbus addresses.
8	BAD_STATUS	Bitstring(2)		0	E	D/RO	Indicate if communication from slave is good or not (each bit corresponds to a Modbus variable).
9	IN1	DS-65				N	Analog input 1
10	SCALE_LOC_IN1	DS-259				S/M	Information to generate constants A and B in equation Y=A*X+B plus the addresses in a slave device.
11	IN2	DS-65				N	Analog input 2
12	SCALE_LOC_IN2	DS-259				S/M	Information to generate constants A and B in equation Y=A*X+B plus the addresses in a slave device.
13	IN3	DS-65				N	Analog input 3
14	SCALE_LOC_IN3	DS-259				S/M	Information to generate constants A and B in equation Y=A*X+B plus the addresses in a slave device.
15	IN4	DS-65				N	Analog input 4
16	SCALE_LOC_IN4	DS-259				S/M	Information to generate constants A and B in equation Y=A*X+B plus the addresses in a slave device.
17	IN_D1	DS-66				N	Discrete input 1
18	LOCATOR_IN_D1	DS-261				S / O/S	Addresses in a slave device.
19	IN_D2	DS-66				N	Discrete input 2
20	LOCATOR_IN_D2	DS-261				S/O/S	Addresses in a slave device.
21	IN_D3	DS-66				N	Discrete input 3
22	LOCATOR_IN_D3	DS-261				S / O/S	Addresses in a slave device.
23	IN_D4	DS-66				N	Discrete input 4
24	LOCATOR_IN_D4	DS-261				S / O/S	Addresses in a slave device.
25	OUT1	DS-65				N / Man	Analog output 1
26	SCALE_LOC_OUT1	DS-259				S/M	Information to generate constants A and B in equation Y=A*X+B plus the addresses in a slave device.
27	OUT2	DS-65				N / Man	Analog output 2
28	SCALE_LOC_OUT2	DS-259				S/M	Information to generate constants A and B em equation Y=A*X+B plus the addresses in a slave device.
29	OUT3	DS-65				N / Man	Analog output 3
30	SCALE_LOC_OUT3	DS-259				S/M	Information to generate constants A and B in equation Y=A*X+B plus the addresses in a slave device.


ldx	Parameter	DataType (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
31	OUT4	DS-65				N / Man	Analog output 4
32	SCALE_LOC_OUT4	DS-259				S/M	Information to generate constants A and B in equation Y=A*X+B plus the addresses in a slave device.
33	OUT_D1	DS-66				N / Man	Discrete output 1
34	LOCATOR_OUT_D1	DS-261				S/O/S	Addresses in a slave device.
35	OUT_D2	DS-66				N / Man	Discrete output 2
36	LOCATOR_OUT_D2	DS-261				S/O/S	Addresses in a slave device.
37	OUT_D3	DS-66				N / Man	Discrete output 3
38	LOCATOR_OUT_D3	DS-261				S / O/S	Addresses in a slave device.
39	OUT_D4	DS-66				N / Man	Discrete output 4
40	LOCATOR_OUT_D4	DS-261				S / O/S	Addresses in a slave device.
41	UPDATE_EVT	DS-73			Na	D	This alert is generated by any change to the static data.
42	BLOCK_ALM	DS-72			Na	D	The block alarm is used for all configuration, hardware, and connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.

Legend: E – Enumerated parameter; Na – Dimensionless parameter; RO – Read only; D – dynamic; N – non-volatile; S – Static

Gray Background Line: Default Parameters of Syscon

MBSM – Modbus Supervision Master

Overview

Description

This block enables the DFI302 to monitor Modbus variables. The DFI302 is the master the slaves contain the Modbus variables desired to be read. Unlike the MBCM this block does not have inputs and outputs that may be connected.

NOTE

Every time a Modbus parameter is changed it is necessary to set the ON_APPLY parameter of the MBCF block to "Apply". Otherwise these alterations will not be effective.

LOCAL_MOD_MAP

All MBCM blocks you add to your strategy must have different values for LOCAL_MOD_MAP. Otherwise the block will not work properly.

Parameters FVALUEn, PVALUEn, IVALUEn and BVALUEn

User may select these parameters according to his needs. If the variable required to be monitored is a float it is necessary to use a FVALUE parameter. If it is a percentage, the PVALUEn will work. IVALUE refers to Integer values and BVALUE refers to Boolean values.

To each of these parameters are associated parameters to address them in the Modbus network so that the MBSM block knows their location.

Parameter FLOCATORn

It refers to the FVALUEn parameter.

This parameter is of the data type DS-260, so it is required to set two elements for this parameter (see on Chapter 1, "Data Type and Data Structure Definition"):

The FVALUEn parameters will display the values of the variables set in FLOCATORn. Float values use two Modbus registers, but it is necessary only to inform the first one.

Modbus Addresses

- 0001 to 9999 => Digital Outputs
- 10001 to 19999 => Digital Inputs.
- 30001 to 39999 =>Analog Inputs.
- 40001 to 49999 => Analog Outputs

Parameter PLOCATORn

It refers to the PVALUEn parameter.

These parameters are of the DS-258 data type. Each of these parameters consists of the following elements:

- From Eu 100 %
- From Eu 0 %
- To Eu 100 %
- To Eu 0 %
- Data Type:
- Slave Address:
- Modbus Address of Value:

This block allows Modbus Scale Conversion, to do the conversion procedure see the item "Modbus Scale Conversion" in the Chapter 1 for more details.

Parameter ILOCATORn

It refers to the IVALUEn parameter. (See on Chapter 1, "Data Type and Data Structure Definition"):

- Slave Address:
- Modbus Address OF Value:

The IVALUEn parameters will display the values of the variables set in ILOCATORn.

Parameter BLOCATORn

It refers to the BVALUEn parameter. This parameter is of the data type DS-260, so you will have to set two elements for this parameter (see on Chapter 1, "Data Type and Data Structure Definition"):

- Slave Address:
- Modbus Address OF Value:

The BVALUEn parameters will display the values of the variables set in BLOCATORn.

BAD_STATUS Parameter

This parameter indicates if the communication between slaves was established properly. If the correspondent bit is in logic level 1 this means there was an error during writing/reading of the respective parameter. The table below presents the values for these status values.

Relation between the bits in BAD_STATUS and Modbus addresses

Bit	Mnemonic	Parameter
0	B1	BVALUE1
1	B2	BVALUE2
2	В3	BVALUE3
3	B4	BVALUE4
4	B5	BVALUE5
5	B6	BVALUE6
6	В7	BVALUE7
7	B8	BVALUE8
8	I1	IVALUE1
9	12	IVALUE2
10	P1	PVALUE1
11	P2	PVALUE2
12	F1	FVALUE1
13	F2	FVALUE2

ldx	Parameter	DataType (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
1	ST_REV	Unsigned16		0	None	S/RO	
2	TAG_DESC	OctString(32)		Spaces	Na	S	
3	STRATEGY	Unsigned16		0	None	S	
4	ALERT_KEY	Unsigned8	1 to 255	0	None	S	
5	MODE_BLK	DS-69		O/S	Na	S	See Mode Parameter
6	BLOCK_ERR	Bitstring(2)			E	D/RO	
7	LOCAL_MOD_MAP	Unsigned8	0 to 15	0		S / O/S	Define the Modbus addresses.
8	BAD_STATUS	Bitstring(2)		0	E	D/RO	Indicate if communication from slave is good or not (each bit corresponds to a Modbus variable).
9	FLOCATOR1	DS-260				S/O/S	Information to locate float parameter
10	FVALUE1	Float		0		N	Value from requested address.
11	FLOCATOR2	DS-260				S / O/S	Information to locate float parameter
12	FVALUE2	Float		0		N	Value from requested address.
13	PLOCATOR1	DS-258				S / O/S	Information to locate percentage parameter
14	PVALUE1	Float		0		N	Value from requested address.
15	PLOCATOR2	DS-258				S / O/S	Information to locate percentage parameter
16	PVALUE2	Float		0		N	Value from requested address.
17	ILOCATOR1	DS-260				S / O/S	Information to locate integer parameter
18	ILENGTH1	Integer8	1,2,4	2		S / O/S	Data length.
19	IVALUE1	Interge32		0		N	Value from requested address.
20	ILOCATOR2	DS-260				S / O/S	Information to locate integer parameter
21	ILENGTH2	Integer8	1,2,4	2		S / O/S	Data length.
22	IVALUE2	Interge32		0		N	Value from requested address.
23	BLOCATOR1	DS-260				S / O/S	Information to locate boolean parameter
24	BVALUE1	Boolean		TRUE		N	Value from requested addresses.
25	BLOCATOR2	DS-260				S / O/S	Information to locate boolean parameter
26	BVALUE2	Boolean		TRUE		N	Value from requested addresses.
27	BLOCATOR3	DS-260				S / O/S	Information to locate boolean parameter
28	BVALUE3	Boolean		TRUE		N	Value from requested addresses.
29	BLOCATOR4	DS-260				S / O/S	Information to locate boolean parameter
30	BVALUE4	Boolean		TRUE		N	Value from requested addresses.
31	BLOCATOR5	DS-260				S / O/S	Information to locate boolean parameter
32	BVALUE5	Boolean		TRUE		N	Value from requested addresses.
33	BLOCATOR6	DS-260				S / O/S	Information to locate boolean parameter
34	BVALUE6	Boolean		TRUE		N	Value from requested addresses.
35	BLOCATOR7	DS-260				S / O/S	Information to locate boolean parameter
36	BVALUE7	Boolean		TRUE		N	Value from requested addresses.
37	BLOCATOR8	DS-260				S / O/S	Information to locate boolean parameter
38	BVALUE8	Boolean		TRUE		N	Value from requested addresses.
39	UPDATE_EVT	DS-73			Na	D	This alert is generated by any change to the static data.

ldx	Parameter	DataType (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
40	BLOCK_ALM	DS-72			Na	D	The block alarm is used for all configuration, hardware, and connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.

Legend: E – Enumerated parameter; Na – Dimensionless parameter; RO – Read only; D – dynamic; N – non-volatile; S – Static

Gray Background Line: Default Parameters of Syscon

Output Function Blocks

AO - Analog Output

Overview

The Analog Output Block is a function block used by devices that work as output elements in a control loop, like valves, actuators, positioners, etc. The AO block receives a signal from another function block and passes its results to an output transducer block through an internal channel reference.

NOTE

There is IO point use consistency between block and Ladder. The block allocates a point in an IO module if the block channel is configured and if there is a link in a specific point. For example, to use the first two points of an IO module with 8 discrete outputs in the rack 2 slot 0 with one MDO block, it will be necessary to configure the channel (in this case equal to 2009), and the MDO.IN_D1 and MDO.IN_D2 inputs must be linked in another block of the control strategy.

In this case, it will not be allowed an online change (after a download) of block channel if the Ladder is using the same point to be allocated for this block. In this case, the online change of channel can be made only if the rack, slot is not being used by the Ladder.

Description

The AO block is connected to the transducer block through the CHANNEL parameter that must match with the following parameter in the transducer block:

TERMINAL_NUMBER parameter for the FI302

The CHANNEL parameter must be set to 1 (one) if the AO block is running in the FY302 or FP302, and no configuration is necessary in the transducer block to connect it to the AO block.

Treatment of Input Values

The SP value may be controlled automatically through a cascade or remote cascade control or manually by an operator. The PV_SCALE and XD_SCALE are used to do the scaling conversion of the SP.

Treatment of Output Values

The transducer scaling (XD_SCALE) is used to convert percent of span to the number used by the transducer. This allows portions of the SP span to cause full span movement of the output.

OUT = SP% * (EU_100% - EU_0%) + EU_0% [XD_SCALE]

The bit "Increase to Close" in IO_OPTS allows the output to be inverted relative to the span of the input value. For example, if the SP is 100. (PV_SCALE=0-100%; XD_SCALE = 3-15Psi):

If the "Increase to Close" bit in IO_OPTS is clear, SP converted to OUT_SCALE will be15 psi. Therefore the actuator type will be "air to open".

If the "Increase to Close" bit in IO_OPTS is true, SP converted to OUT_SCALE will be 3 psi. Therefore the actuator type will be "air to close".

Simulate

The SIMULATE parameter is used for the diagnostics and checkout purposes. When it is active, the transducer value and status will be overridden by the simulate value and status. The SIMULATE can be disabled either by software in the SIMULATE parameter or hardware through the jumper.

The SIMULATE structure is composed by the following attributes:

- Simulate Value and Status
- Transducer Value and Status
- Simulate Enable/Disable

The Transducer Value/Status attributes of SIMULATE parameter are always showing the value that the AO block receives from the corresponding transducer block.

There is a hardware jumper to disable the SIMULATE parameter. If this jumper is placed Off, then the simulation will be disabled. In this case, the user cannot change the ENABLE/DISABLE attribute. This jumper prevents simulation from accidentally being enabled during plant operations. When the jumper is placed ON, it will cause "Simulate Active" attribute in the BLOCK_ERR of Resource block to be true.

If the following conditions exist, simulate will be actived:

- The simulate hardware jumper is not placed Off;
- The SIMULATE.ENABLE/DISABLE parameter is "Active".

When simulation is active, the READBACK and PV parameters will be calculated based on the attribute Simulate Value/Status of the SIMULATE parameter. Otherwise it will be that one supplied by the transducer block in the Transducer Value/Status attribute of the SIMULATE parameter.

Readback parameter

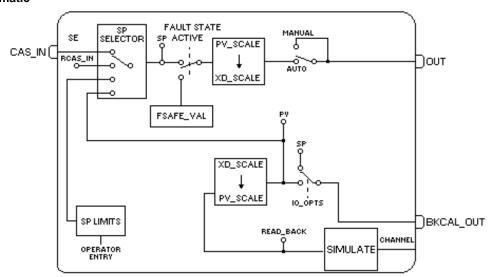
If the hardware supports a readback value, such as valve position, then the value will be read by the transducer block and it will be provided to the corresponding AO block through the Transducer Value/Status attribute of the SIMULATE parameter. If not supported, the Transducer Value/Status attribute of the SIMULATE parameter is generated from AO.OUT by the transducer block.

The READBACK parameter has a copy of the Transducer Value/Status attribute of the SIMULATE parameter if the simulation is disabled, otherwise it is a copy of the Simulate Value/Status attribute of the SIMULATE parameter

The PV is the READBACK parameter converted to the PV_SCALE, therefore the PV can be simulated through the SIMULATE parameter.

In addition, the block admits safe action as described early in the fault state processing. The AO block supports the mode-shedding feature as described early in the mode parameter.

BLOCK ERR


The BLOCK_ERR of the AO block will reflect the following causes:

- Block Configuration Error the configuration error occurs when one or more of the following situations occur:
 - When the CHANNEL or SHED_OPT parameters have an invalid value;
 - When the XD_SCALE does not have a supported engineering unit and/or range for the respective the transducer block.
 - When the transducer block is in O/S mode.
 - When it is not compatible the CHANNEL parameter and HC configuration (DFI302).
- Simulate Active When the Simulate is active.
- Local Override When the block is in LO mode because the fault state is active.
- Output Failure I/O module failure (DFI302)
- Out of Service Occur when the block is in O/S mode.

Supported Modes

O/S, IMAN, LO, MAN, AUTO, CAS and RCAS.

Schematic

ldx	Parameter	Data Type (length)	Valid Range/ Options	Default Value	Units	Store/ Mode	Description
1	ST_REV	Unsigned16		0	None	S/RO	
2	TAG_DESC	OctString(32)		Spaces	Na	S	
3	STRATEGY	Unsigned16		0	None	S	
4	ALERT_KEY	Unsigned8	1 to 255	0	None	S	
5	MODE_BLK	DS-69		O/S	Na	S	See Mode Parameter
6	BLOCK_ERR	Bitstring(2)			E	D/RO	
7	PV	DS-65			PV	D/RO	Process analog value.
8	SP	DS-65	PV_SCALE +/- 10%		PV	N / Auto	The analog set point. Can be set manually, automatically through the interface device or another field device.
9	OUT	DS-65	XD_SCALE		OUT	N / Man	The output value result to the transducer block.
			1: Disable ;				
10	SIMULATE	DS-82	2: Active	Disable		D	Allows the readback value to be manually supplied when simulate is enabled. In this case, the simulate
10	GIWOLATE	DO 02	are the Enable/Disable options.	Disable		D	value and status will be the PV value.
11	PV_SCALE	DS-68		0-100%	PV	S / Man	The high and low scale values to the SP parameter.
12	XD_SCALE	DS-68	Depends on the device type. See the corresponding manual for details.	Depends on the Device type. See descriptio n for details.	XD	S / Man	The high and low scale values, to transducer for a specified channel. The Default value for each Smar device is showed below: DFI302 0 to 100 [%]
13	GRANT_DENY	DS-70		0	Na	D	
14	IO_OPTS	Bitstring(2)	See Block Options	0	Na	s / o/s	See Block Options
15	STATUS_OPTS	Bitstring(2)	See Block Options	0	Na	S / O/S	See Block Options
16	READBACK	DS-65			XD	D/RO	Indicate the readback of the actual position of the transducer, in transducer units.
17	CAS_IN	DS-65				D	This parameter is the remote setpoint value, which must come from another Fieldbus block, or a DCS block through a defined link.
18	SP_RATE_DN	Float	Positive	+INF	PV/Sec	S	Ramp rate at which upward setpoint changes in PV units per second. It is disable if is zero or +INF. Rate limiting will apply in AUTO, CAS and RCAS modes.
19	SP_RATE_UP	Float	Positive	+INF	PV/Sec	S	Ramp rate at which downward setpoint changes in PV units per second. It is disable if is zero or +INF. Rate limiting will apply in AUTO, CAS and RCAS modes.
20	SP_HI_LIM	Float	PV_SCALE +/- 10%	100	PV	S	The setpoint high limit is the highest setpoint operator entry that can be used for the block.
21	SP_LO_LIM	Float	PV_SCALE +/- 10%	0	PV	S	The setpoint low limit is the lowest setpoint operator entry that can be used for the block.
22	CHANNEL	Unsigned16		0	None	S / O/S	For more details about .the configuration of this parameter, see Chapter 1 "CHANNEL Configuration".
23	FSTATE_TIME	Float	Positive	0	Sec	S	The time in seconds to ignore the existence of a new fault state condition. If the fault state condition does not persist for FSTATE_TIME seconds and while this time does not elapse, the block will execute in the last actual mode.
24	FSTATE_VAL	Float	PV_SCALE +/- 10%	0	PV	S	The preset analog SP value to use when fault occurs. This value will be used if the I/O option fault state to value is selected.

ldx	Parameter	Data Type (length)	Valid Range/ Options	Default Value	Units	Store/ Mode	Description
25	BKCAL_OUT	DS-65			PV	D/RO	The value and status required by an upper block's BKCAL_IN so that the upper block may prevent reset windup and provide bumpless transfer to close the loop control.
26	RCAS_IN	DS-65			PV	D	Target setpoint and status provided by a supervisory Host to an analog control or output block.
27	SHED_OPT	Unsigned8	1: NormalShed, NormalReturn 2: NormalShed, NoReturn 3: ShedToAuto, NormalReturn 4: ShedToAuto, NoReturn 5: ShedToMan, NormalReturn 6: ShedToMan, NoReturn 7: ShedToRetained Target, NormalReturn 8: ShedToRetained Target, NormalReturn NormalReturn NormalReturn	0		S	Defines action to be taken on remote control device timeout.
28	RCAS_OUT	DS-65			PV	D/RO	Block setpoint and status after ramping – provided to a supervisory Host for back calculation and to allow action to be taken under limiting conditions or mode change.
29	UPDATE_EVT	DS-73		-	Na	D	
30	BLOCK_ALM	DS-72			Na	D	

Legend: E – Enumerated parameter; Na – Dimensionless parameter; RO – Read only; D – dynamic; N – non-volatile; S – Static Gray Background Line: Default Parameters of Syscon

If DIAG.BEHAVIOR parameter is "Adapted":

The default value of CHANNEL is the lowest available number.

The default value of SHED_OPT is NormalShed/NormalReturn.

The required mode for writing is the actual mode, regardless the target mode: SP and OUT

DO - Discrete Output

Overview

The DO block converts the value in SP_D to something useful for the hardware found at the CHANNEL selection.

NOTE

There is IO point use consistency between block and Ladder. The block allocates a point in an IO module if the block channel is configured and if there is a link in a specific point. For example, to use the first two points of an IO module with 8 discrete outputs in the rack 2 slot 0 with one MDO block, it will be necessary to configure the channel (in this case equal to 2009), and the MDO.IN D1 and MDO.IN D2 inputs must be linked in another block of the control strategy.

In this case, it will not be allowed an online change (after a download) of block channel if the Ladder is using the same point to be allocated for this block. In this case, the online change of channel can be made only if the rack, slot is not being used by the Ladder.

Description

The Invert I/O option can be used to do a Boolean NOT function between the SP_D and the hardware.

The SP_D supports the full cascade sub-function. Cas mode must be used to transfer the output of another block to the SP_D of the DO.

There are additional I/O options which will cause the SP_D value to track the PV_D value when the block is in an actual mode of LO or Man.

If the hardware supports a readback value, it is used for READBACK_D, which, after accounting for the Invert I/O option, acts as the PV_D for this block. If not supported, READBACK_D is generated from OUT_D. The OUT_D and READBACK_D parameters both use XD_STATE. The PV_D and SP_D use PV_STATE.

BLOCK ERR

The BLOCK_ERR of the DO block will reflect the following causes:

- Block Configuration Error the configuration error occurs when one or more of the following situations occur:
 - When the CHANNEL or SHED_OPT parameters have an invalid value;
 - When it is not compatible the CHANNEL parameter and HC configuration (DFI302).
- Simulate Active When the Simulate is active.
- Local Override When the block is in LO mode because the fault state is active.
- Output Failure I/O module failure (DFI302)
- Out of Service Occur when the block is in O/S mode.

Supported Modes

O/S, LO, Iman, Man, Auto, Cas, and RCas. The Man mode can be used to force the output, in a PLC sense. It may be that Man mode is not permitted, but it must be supported so that Man mode may be entered when leaving O/S. The IMan mode is used to indicate that there is no path to the final element.

Schematic

ldx	Parameter	Data Type (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
1	ST_REV	Unsigned16		0	None	S/RO	
2	TAG_DESC	OctString(32)		Spaces	Na	S	
3	STRATEGY	Unsigned16		0	None	S	
4	ALERT_KEY	Unsigned8	1 to 255	0	None	S	
5	MODE_BLK	DS-69		O/S	Na	S	See Mode Parameter
6	BLOCK_ERR	Bitstring(2)			Е	D/RO	
7	PV_D	DS-66			PV	D / RO	Either the primary discrete value for use in executing the function, or a process value associated with it. May also be calculated from the
							READBACK_D value of a DO block.
8	SP_D	DS-66	PV_STATE		PV	N / Auto	The discrete setpoint of this block.
9	OUT_D	DS-66	OUT_STATE		OUT	N / Man	The primary discrete value calculated as a result of executing the function.
10	SIMULATE_D	DS-83	1: Disable ; 2: Active are the Enable/Disable options.	Disable		D	Allows the transducer discrete input or output to the block to be manually supplied when simulate is enabled. When simulation is disabled, the simulate value and status track the actual value and status.
11	PV_STATE	Unsigned16		0	PV	S	Index to the text describing the states of a discrete PV.
12	XD_STATE	Unsigned16		0	XD	S	Index to the text describing the states of a discrete for the value obtained from the transducer.
13	GRANT_DENY	DS-70		0	Na	D	Options for controlling access of host computer and local control panels to operating, tuning and alarm parameters of the block.
14	IO_OPTS	Bitstring(2)	See Block Options	0	Na	S / O/S	See Block Options
15	STATUS_OPTS	Bitstring(2)	See Block Options	0	Na	S / O/S	See Block Options
16	READBACK_D	DS-66			XD	D/RO	This indicates the readback of the actual discrete valve or other actuator position, in the transducer state.
17	CAS_IN_D	DS-66			PV	D/RW	This parameter is the remote setpoint value of a discrete block, which must come from another Fieldbus block, or a DCS block through a defined link.
18	CHANNEL	Unsigned16		0	None	S / O/S	For more details about the configuration of this parameter, see Chapter 1 "CHANNEL Configuration".
19	FSTATE_TIME	Float	Positive	0	Sec	S	The time in seconds to ignore the existence of a new fault state condition. If the fault state condition does not persist for FSTATE_TIME seconds and while this time does not elapse, the block will execute in the last actual mode.
20	FSTATE_VAL_D	Unsigned8		0	PV	s	The preset discrete SP_D value to use when fault occurs. This value will be used if the I/O option Fault State to value is selected.

ldx	Parameter	Data Type (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
21	BKCAL_OUT_D	DS-66			PV	D/RO	The output value and status provided to an upstream discrete block. This information is used to provide bumpless transfer to closed loop control.
22	RCAS_IN_D	DS-66			PV	D	Target setpoint and status provided by a supervisory Host to a discrete control or output block.
23	SHED_OPT	Unsigned8	1: NormalShed, NormalReturn 2: NormalShed, NoReturn 3: ShedToAuto, NormalReturn 4: ShedToAuto, NoReturn 5: ShedToMan, NormalReturn 6: ShedToMan, NoReturn 7: ShedToRetainedTarg et, NormalReturn 8: ShedToRetainedTarg et, NormalReturn	0		S	Defines action to be taken on remote control device timeout.
24	RCAS_OUT_D	DS-66			PV	D/RO	Block setpoint and status provided to a supervisory Host for back calculation and to allow action to be taken under limiting conditions or mode change.
25	UPDATE_EVT	DS-73			Na	D	This alert is generated by any change to the static data.
26	BLOCK_ALM	DS-72			Na	D	The block alarm is used for all configuration, hardware, and connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.

Legend: E – Enumerated parameter; Na – Dimensionless parameter; RO – Read only; D – dynamic; N – non-volatile; S – Static Gray Background Line: Default Parameters of Syscon

MAO - Multiple Analog Output

Description

The MAO block makes available to the I/O subsystem its eight input parameters IN_1 through IN_8.

For DFI working with Analog Output, the 4-20mA or 1-5V range must be worked. In this case, the input values are in percent from 0 to 100%. If it is necessary to work in another configuration, the AO block must be used.

This function block has the same fault state characteristics as the AO block. It includes option to hold the last value or go to a preset value when fault state active, individual preset values for each point, besides a delay time to go into the fault state.

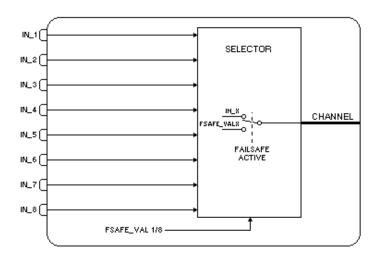
The actual mode will be LO only due to the resource block, otherwise bad status in input parameter and configuration of MO_STATUS_OPTS will not affect the mode calculation. However the functionality of fault state will be done only for that input parameter.

NOTE

There is IO point use consistency between block and Ladder. The block allocates a point in an IO module if the block channel is configured and if there is a link in a specific point. For example, to use the first two points of an IO module with 8 discrete outputs in the rack 2 slot 0 with one MDO block, it will be necessary to configure the channel (in this case equal to 2009), and the MDO.IN_D1 and MDO.IN_D2 inputs must be linked in another block of the control strategy.

In this case, it will not be allowed an online change (after a download) of block channel if the Ladder is using the same point to be allocated for this block. In this case, the online change of channel can be made only if the rack, slot is not being used by the Ladder.

BLOCK ERR


The BLOCK_ERR of the MAO block will reflect the following causes:

- Block Configuration Error the configuration error occurs when CHANNEL has an invalid value:
- Out of Service When the block is in O/S mode.

Supported Modes

O/S, LO and AUTO.

Schematic

ldx	Parameter	Data Type (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
1	ST_REV	Unsigned16		0	None	S/RO	
2	TAG_DESC	OctString(32		Spaces	Na	S	
3	STRATEGY	Unsigned16		0	None	S	
4	ALERT_KEY	Unsigned8	1 to 255	0	None	S	
5	MODE_BLK	DS-69		O/S	Na	S	See Mode Parameter
6	BLOCK_ERR	Bitstring(2)			E	D/RO	

ldx	Parameter	Data Type (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
7	CHANNEL	Unsigned16		0	None	s / o/s	For more details about the configuration of this parameter, see Chapter 1 "CHANNEL Configuration".
8	IN_1	DS-65			%	D	Numbered input 1.
9	IN_2	DS-65			%	D	Numbered input 2.
10	IN_3	DS-65			%	D	Numbered input 3.
11	IN_4	DS-65			%	D	Numbered input 4.
12	IN_5	DS-65			%	D	Numbered input 5.
13	IN_6	DS-65			%	D	Numbered input 6.
14	IN_7	DS-65			%	D	Numbered input 7.
15	IN_8	DS-65			%	D	Numbered input 8.
16	MO_OPTS	Bitstring(2)	See Block Options	0	Na	S / O/S	See Block Options
17	FSTATE_TIME	Float	Positive	0	Sec	S	The time in seconds to ignore the existence of a new fault state condition. If the fault state condition does not persist for FSTATE_TIME seconds and while this time does not elapse, the block will execute in the last actual mode.
18	FSTATE_VAL1	Float		0		S	The preset analog value to use when failure occurs in IN_1. Ignored if the "Fault state to value 1" in the MO_OPTS parameter is false.
19	FSTATE_VAL2	Float		0		S	The preset analog value to use when failure occurs in IN_2. Ignored if the "Fault state to value 2" in the MO_OPTS parameter is false.
20	FSTATE_VAL3	Float		0		S	The preset analog value to use when failure occurs in IN_3. Ignored if the "Fault state to value 3" in the MO_OPTS parameter is false.
21	FSTATE_VAL4	Float		0		S	The preset analog value to use when failure occurs in IN_4. Ignored if the "Fault state to value 4" in the MO_OPTS parameter is false.
22	FSTATE_VAL5	Float		0		S	The preset analog value to use when failure occurs in IN_5. Ignored if the "Fault state to value 5" in the MO_OPTS parameter is false.
23	FSTATE_VAL6	Float		0		S	The preset analog value to use when failure occurs in IN_6. Ignored if the "Fault state to value 6" in the MO_OPTS parameter is false.
24	FSTATE_VAL7	Float		0		S	The preset analog value to use when failure occurs in IN_7. Ignored if the "Fault state to value 7" in the MO_OPTS parameter is false.
25	FSTATE_VAL8	Float		0		S	The preset analog value to use when failure occurs in IN_8. Ignored if the "Fault state to value 8" in the MO_OPTS parameter is false.
16	FSTATE_STATUS	Unsigned8		-	None	D/RO	It shows which points are in fault state active.
27	UPDATE_EVT	DS-73			Na	D	This alert is generated by any change to the static data.
28	BLOCK_ALM	DS-72			Na	D	The block alarm is used for all configuration, hardware, and connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.

Legend: E – Enumerated parameter; Na – Dimensionless parameter; RO – Read only; D – dynamic; N – non-volatile; S – Static Gray Background Line: Default Parameters of Syscon

MDO - Multiple Discrete Output

Description

The MDO block makes available to the I/O subsystem its eight input parameters IN_D1 through IN_D8.

This function block has the same fault state characteristics as the DO block. It includes option to hold the last value or go to a preset value when fault state active, individual preset values for each point, besides a delay time to go into the fault state.

The actual mode will be LO only due to the resource block, otherwise bad status in input parameter and configuration of MO_STATUS_OPTS will not affect the mode calculation. However the functionality of fault state will be done only for that input parameter.

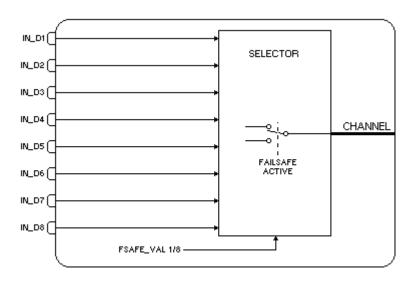
The parameter FSTATE_STATE shows which points are in fault state active.

NOTE

There is IO point use consistency between block and Ladder. The block allocates a point in an IO module if the block channel is configured and if there is a link in a specific point. For example, to use the first two points of an IO module with 8 discrete outputs in the rack 2 slot 0 with one MDO block, it will be necessary to configure the channel (in this case equal to 2009), and the MDO.IN_D1 and MDO.IN_D2 inputs must be linked in another block of the control strategy.

In this case, it will not be allowed an online change (after a download) of block channel if the Ladder is using the same point to be allocated for this block. In this case, the online change of channel can be made only if the rack, slot is not being used by the Ladder.

BLOCK_ERR


The BLOCK_ERR of the MDO block will reflect the following causes:

- Block Configuration Error the configuration error occurs when CHANNEL has an invalid value (FB700);
- Out of Service When the block is in O/S mode.

Supported Modes

O/S. LO and AUTO.

Schematic

ldx	Parameter	Data Type (length)	Valid Range/ Options	Default Value	Units	Store/ Mode	Description
1	ST_REV	Unsigned16		0	None	S/RO	
2	TAG_DESC	OctString(32		Spaces	Na	S	
3	STRATEGY	Unsigned16		0	None	S	
4	ALERT_KEY	Unsigned8	1 to 255	0	None	S	

ldx	Parameter	Data Type (length)	Valid Range/ Options	Default Value	Units	Store/ Mode	Description
5	MODE_BLK	DS-69		O/S	Na	S	See Mode Parameter
6	BLOCK_ERR	Bitstring(2)			Е	D/RO	
7	CHANNEL	Unsigned16		0	None	s / o/s	For more details about the configuration of this parameter, see Chapter 1 "CHANNEL Configuration".
8	IN_D1	DS-66				D	Numbered discrete input 1.
9	IN_D2	DS-66				D	Numbered discrete input 2.
10	IN_D3	DS-66				D	Numbered discrete input 3.
11	IN_D4	DS-66				D	Numbered discrete input 4.
12	IN_D5	DS-66				D	Numbered discrete input 5.
13	IN_D6	DS-66				D	Numbered discrete input 6.
14	IN_D7	DS-66				D	Numbered discrete input 7.
15	IN_D8	DS-66				D	Numbered discrete input 8.
16	MO_OPTS	Bitstring(2)	See Block Options	0	Na	S / O/S	See Block Options
17	FSTATE_TIME	Float	Positive	0	Sec	S	The time in seconds to ignore the existence of a new fault state condition. If the fault state condition does not persist for FSTATE_TIME seconds and while this time does not elapse, the block will execute in the last actual mode.
18	FSTATE_VAL_D1	Unsigned8		0		S	The preset discrete value to use when failure occurs in IN_D1. Ignored if the "Fault state to value 1" in the MO_OPTS parameter is false.
19	FSTATE_VAL_D2	Unsigned8		0		S	The preset discrete value to use when failure occurs in IN_D2. Ignored if the "Fault state to value 2" in the MO_OPTS parameter is false.
20	FSTATE_VAL_D3	Unsigned8		0		S	The preset discrete value to use when failure occurs in IN_D3. Ignored if the "Fault state to value 3" in the MO_OPTS parameter is false.
21	FSTATE_VAL_D4	Unsigned8		0		S	The preset discrete value to use when failure occurs in IN_D4. Ignored if the "Fault state to value 4" in the MO_OPTS parameter is false.
22	FSTATE_VAL_D5	Unsigned8		0		S	The preset discrete value to use when failure occurs in IN_D5. Ignored if the "Fault state to value 5" in the MO_OPTS parameter is false.
23	FSTATE_VAL_D6	Unsigned8		0		S	The preset discrete value to use when failure occurs in IN_D6. Ignored if the "Fault state to value 6" in the MO_OPTS parameter is false.
24	FSTATE_VAL_D7	Unsigned8		0		S	The preset discrete value to use when failure occurs in IN_D7. Ignored if the "Fault state to value 7" in the MO_OPTS parameter is false.
25	FSTATE_VAL_D8	Unsigned8		0		S	The preset discrete value to use when failure occurs in IN_D8. Ignored if the "Fault state to value 8" in the MO_OPTS parameter is false.
26	FSTATE_STATUS	Unsigned8			None	D/RO	It shows which points are in fault state active.
27	UPDATE_EVT	DS-73			Na	D	This alert is generated by any change to the static data.
28	BLOCK_ALM	DS-72			Na	D	The block alarm is used for all configuration, hardware, and connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.

Legend: E – Enumerated parameter; Na – Dimensionless parameter; RO – Read only; D – dynamic; N – non-volatile; S – Static Gray Background Line: Default Parameters of Syscon

STEP - Step Output PID

Overview

A Step Control Output block is used most commonly, when the final control element has an actuator driven by an electric motor. The final control element is positioned by rotating the motor clockwise or anticlockwise, which is accomplished by activating a discrete signal for each direction. A control valve, for example, needs a signal to open and another to close. If none of the signals is present, the valve stem would stay at the same position.

Fieldbus actuators and switchgears are the transducer blocks of this block.

Description

As shown on Fig.1, electric actuators require a switchgear module to power the electric motor and reverse it as demanded by the control loop. Most of the electric actuators require an interlock circuit to prevent the motor to overheat, or even burn, when the actuator reaches one of the travel limits or something blocks the movement in any direction, increasing the torque beyond an established limit. These actuators are normally equipped with torque switches and limit switches to provide this kind of protection.

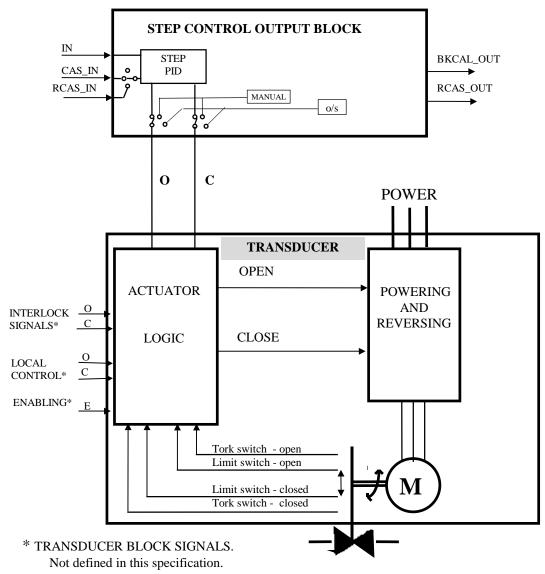


Fig.1- Electric Actuator

Using a standard PID controller in cascade with a PI Step Controller.

The slave process variable is the position of the final control element, as shown in Fig.2. Controlling the process variable regardless of the valve position measurement.

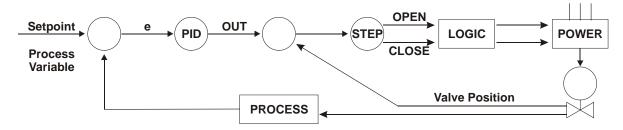


Fig. 2 - Step controller working as a positioner

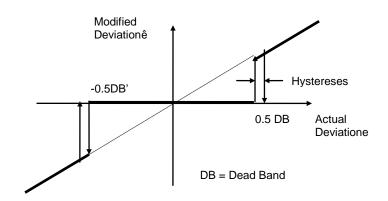


Fig. 3 - Modified deviation or gap deviation

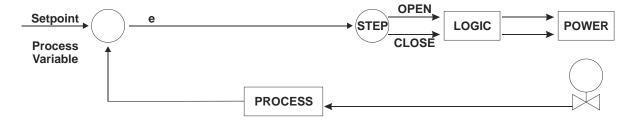


Fig. 4- Step Controller

The actuator has a Travel Time, that is the time it takes to drive the final control element from one end limit to another. For a control valve, for example, it is the time required to drive it from closed to completely open.

The proportional action will actuate the final control element in the required direction during a time proportional to:

 $t_P = [GAIN]^* (\hat{e} / 100)^* [TRAVEL_TIME].....(s)$

If the proportional action is not enough to turn $\hat{e} = 0$, the Integral Action will move the final control element at a speed of:

V = [GAIN] * ê / [RESET].....(% / s)

where the reset is the Integral time constant in seconds.

As most of the actuators work with constant and fixed speed, they can not give a speed larger than:

Maximum speed = 100% / [TRAVEL TIME]......(% / s)

while the smaller speeds required by the Integral action are obtained by giving pulses of a specified duration [PULSE_DUR]. Each pulse will move the final control element a Δx % in the required direction.

```
\Delta x \% = [PULSE_DUR] * 100\% / [TRAVEL_TIME]....(%)
```

The pulse frequency is given by:

```
f = V / \Delta x \%.....(pulses / s)
```

The Derivative or Rate action is given by:

```
t_D = [GAIN] * (de/dt) * [RATE]
```

Where Rate is the derivative time constant in seconds and dê/dt can be calculated in several ways, including derivative gain, filtering, etc.

The PID Step Controller activates the OPEN or CLOSE signals according to the modified deviation, ê, the PID parameters and the other parameters in the following way:

The signal is activated during a time equivalent to:

```
= t_P + t_D
```

If the modified deviation is still different of zero, the Integral or Reset action will give pulses with a duration defined by [PULSE_DUR], with a frequency calculated by "f." t and f are dynamically modified by ê.

In order to avoid the Reset wind-up, the actuation time in one direction must be integrated and limited.

If the actuation time in one direction is larger than the [TRAVEL_TIME], there is no use in making the respective output signal to pulse, therefore it is recommendable to maintain it continuously activated.

The block provides a full PV and Deviation alarm support.

The meaning of possible values for OUT_D are:

 $OUT_D.value = 0 \rightarrow Stop$

OUT_D.value = 1 → Close

OUT_D.value = 2 → Open

As the STEP block requires two discrete outputs, when setting the CHANNEL parameter, indeed two outputs are allocated. The value of CHANNEL points to the CLOSE output, and the next channel points to the OPEN output.

Supported Modes

Out-of-service, Manual, Auto, CAS and RCAS are supported.

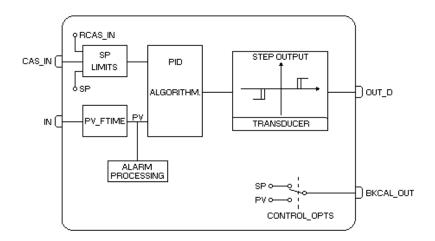
In Out-of-service mode, the status of the output will be Out-of -service.

In Manual mode, the OUT_D can be set by the operator. The block stops output calculation.

In Auto mode the block operates normally.

In CAS (cascade), the Setpoint is supplied by another function block through the CAS_IN parameter.

In RCAS the block setpoint is set by a control application running on a computer, DCS or PLC.


Status Handling

The status of OUT_Di shall reflect the worst quality of the status of any connected input.

Initial Value Handling

The initial value of OUT_Di should be zero, that is, no action in both directions and the Integral action value should also go to zero.

Schematic

ldx	Parameter	Data Type (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
1	ST_REV	Unsigned16		0	None	S/RO	
2	TAG_DESC	OctString(32)		Spaces	Na	S	
3	STRATEGY	Unsigned16		0	None	S	
4	ALERT_KEY	Unsigned8	1 to 255	0	None	S	
5	MODE_BLK	DS-69		O/S	Na	S	See Mode Parameter
6	BLOCK_ERR	Bitstring(2)			E	D/RO	
7	PV	DS-65			PV	D/RO	Process analog value. This is the IN value after pass over the PV filter.
8	SP	DS-65	PV_SCALE +/- 10%		PV	N / Auto	The analog set point. Can be set manually, automatically through the interface device or another field device.
9	OUT_D	DS-66				N / Man	The output value result of the Step Output PID calculation.
10	PV_SCALE	DS-68		0-100%	PV	S / Man	The high and low scale values to the PV and SP parameter.
11	XD_STATE	Unsigned16		0	XD	S	Index to the text describing the states of a discrete for the value obtained from the transducer.
12	GRANT_DENY	DS-70		0	na	D	Options for controlling access of host computer and local control panels to operating, tuning and alarm parameters of the block.
13	CONTROL_OPTS	Bitstring(2)	See Block Options	0	na	S / O/S	See Block Options
14	STATUS_OPTS	Bitstring(2)	See Block Options	0	Na	S / O/S	See Block Options
15	IN	DS-65			PV	D	The primary input value of the block, or PV value.
16	PV_FTIME	Float	Non-Negative	0	Sec	S	Time constant of a single exponential filter for the PV, in seconds.
17	JOG_TIME	Float	Positive	0	Sec	S	Duration of OUT_D in the active state when commanded by the operator to jog open or jog closed.
18	CAS_IN	DS-65				D	This parameter is the remote setpoint value, which must come from another Fieldbus block, or a DCS block through a defined link.
19	SP_RATE_DN	Float	Positive	+INF	PV/Se c	S	Ramp rate at which upward setpoint changes in PV units per second. It is disable if is zero or +INF. Rate limiting will apply only in AUTO mode.
20	SP_RATE_UP	Float	Positive	+INF	PV/Se c	S	Ramp rate at which downward setpoint changes in PV units per second. It is disable if is zero or +INF. Rate limiting will apply only in AUTO mode.

-							
ldx	Parameter	Data Type (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
21	SP_HI_LIM	Float	PV_SCALE +/- 10%	100	PV	Ø	The setpoint high limit is the highest setpoint operator entry that can be used for the block.
22	SP_LO_LIM	Float	PV_SCALE +/- 10%	0	PV	S	The setpoint low limit is the lowest setpoint operator entry that can be used for the block.
23	GAIN	Float		0	None	S	Proportional term of the PID. It is the Kp value.
24	RESET	Float	Positive	+INF	sec	S	Integral term of the PID. It is the Tr value.
25	BAL_TIME	Float	Positive	0	sec	S	This specifies the time for the internal working value of bias or ratio to return to the operator set bias or ratio, in seconds. In the PID block, it may be used to specify the time constant at which the integral term will move to obtain balance when the output is limited and the mode is Auto, Cas, or RCas.
26	RATE	Float	Positive	0	sec	S	Derivative term of the PID. It is the Td value.
27	IO_OPTS	Bitstring(2)	See Block Options	0	na	S/O/S	See Block Options
28	CHANNEL	Unsigned16		0	None	S / O/S	For more details about the configuration of this parameter, see Chapter 1 "CHANNEL Configuration". In the DFI302, this parameter is selecting two discrete outputs. The first one is the CLOSE output and the next point in the same group will be the OPEN output. The CHANNEL parameter will be addressing the
29	FSTATE_TIME	Float	Positive	0	Sec	S	CLOSE output, despite of it is allocating the OPEN output too. The time in seconds from detection of fault of the output block remote setpoint to the output action of the block output if the condition still exists.
30	FSTATE_VAL_D	Unsigned8		0		S	The preset discrete SP_D value to use when fault occurs. This value will be used if the I/O option Fault State to value is selected.
31	BKCAL_OUT	DS-65			PV	D/RO	The value and status required by an upper block's BKCAL_IN so that the upper block may prevent reset windup and provide bumpless transfer to closed loop control.
32	RCAS_IN	DS-65			PV	D	Target setpoint and status provided by a supervisory Host to a analog control or output block.
33	SHED_OPT	Unsigned8	1: NormalShed, NormalReturn 2: NormalShed, NoReturn 3: ShedToAuto, NormalReturn 4: ShedToAuto, NoReturn 5: ShedToMan, NormalReturn 6: ShedToMan, NoReturn 7: ShedToRetainedTar get, NormalReturn 8: ShedToRetainedTar get, NormalReturn 8: ShedToRetainedTar get, NormalReturn 8: ShedToRetainedTar	0		S	Defines action to be taken on remote control device timeout.
34	RCAS_OUT	DS-65			PV	D/RO	Block setpoint and status after ramping - provided to a supervisory Host for back calculation and to allow action to be taken under limiting conditions or mode change.
35	TRAVEL_TIME	Float	Positive	60	Sec	S / Man	The time required by the actuator to drive the final control element from one end position to another, in seconds.

ldx	Parameter	Data Type (length)	Valid Range/ Options	Default Value	Units	Store / Mode	Description
36	PULSE_DUR	Float	Positive	1	Sec	S / Man	It is the width, in seconds, of the pulses given due to the integral action.
37	DEAD_BAND	Float	Non-negative	0	%	S / Man	It is the interval where changes in the Input will not change the output
38	HYSTERESIS	Float	Non-negative	0	%	S / Man	Difference between the switching points.
39	UPDATE_EVT	DS-73			Na	D	This alert is generated by any change to the static data.
40	BLOCK_ALM	DS-72			Na	D	The block alarm is used for all configuration, hardware, connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.
41	ALARM_SUM	DS-74	See Block Options		Na	S	The current alert status, unacknowledged states, unreported states, and disabled states of the alarms associated with the function block.
42	ACK_OPTION	Bitstring(2)	0: Auto ACK Disable 1: Auto ACK Enable	0	Na	S	Selection of whether alarms associated with the block will be automatically acknowledged
43	ALARM_HYS	Float	0 to 50 %	0.5%	%	S	Alarm hysteresis parameter. In order to clear the alarm the amount the PV must return within the alarm limit plus hysteresis.
44	HI_HI_PRI	Unsigned8	0 to 15	0		S	Priority of the high high alarm.
45	HI_HI_LIM	Float	OUT_SCALE, +INF	+INF	PV	S	The setting for high high alarm in engineering units.
46	HI_PRI	Unsigned8	0 to 15	0		S	Priority of the high alarm.
47	HI_LIM	Float	OUT_SCALE, +INF	+INF	PV	S	The setting for high alarm in engineering units.
48	LO_PRI	Unsigned8	0 to 15	0		S	Priority of the low alarm.
49	LO_LIM	Float	OUT_SCALE, -INF	-INF	PV	S	The setting for low alarm in engineering units.
50	LO_LO_PRI	Unsigned8	0 to 15	0		S	Priority of the low low alarm.
51	LO_LO_LIM	Float	OUT_SCALE, -INF	-INF	PV	S	The setting for low low alarm in engineering units.
52	DV_HI_PRI	Unsigned8	0 to 15	0		S	Priority of the deviation high alarm.
53	DV_HI_LIM	Float	0 to PV span, +INF	+INF	PV	S	The setting for deviation high alarm in engineering units.
54	DV_LO_PRI	Unsigned8	0 to 15	0		S	Priority of the deviation low alarm.
55	DV_LO_LIM	Float	-INF, -PV span to 0	-INF	PV	S	The setting for deviation low alarm in engineering units.
56	HI_HI_ALM	DS-71			PV	D	The status for high high alarm and its associated time stamp.
57	HI_ALM	DS-71			PV	D	The status for high alarm and its associated time stamp.
58	LO_ALM	DS-71			PV	D	The status for low alarm and its associated time stamp.
59	LO_LO_ALM	DS-71			PV	D	The status for low low alarm and its associated time stamp.
60	DV_HI_ALM	DS-71			PV	D	The status for deviation high alarm and its associated time stamp.
61	DV_LO_ALM	DS-71			PV	D	The status for deviation low alarm and its associated time stamp.

Legend: E – Enumerated parameter; Na – Dimensionless parameter; RO – Read only; D – dynamic; N – non-volatile; S – Static Gray Background Line: Default Parameters of Syscon

ROMAO – ROM Analog Output

Description

This block has all characteristics of the standard AO block in addition the features related to alarms and I/O mapping via CHANNEL_TAG parameter.

CHANNEL_TAG Parameter

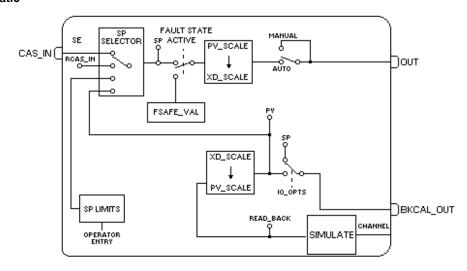
This parameter allows association with the physical points of analog output, which occurs when the value of this parameter coincides with a compatible VAR_NAME in terms of type, ie, analog output. The output physical point has to be associated to just one CHANNEL_TAGs of output function block.

The configuration of the CHANNEL_TAG parameter indirectly implies in the configuration of the CHANNEL parameter, which depends on the match with a valid VAR_NAME. So, the CHANNEL parameter becomes a read-only parameter to the user.

BLOCK ERR

It indicates a problem in the output point, which can be: Configuration Error and Output Failure.

Diagnostic and troubleshooting


The diagnostics are based on the value of **BLOCK_ERR** parameter, as follows:

- BLOCK_ERR = Block configuration: if tag configured for CHANNEL_TAG was not found in an output transducer block, for example TB4AO;
- BLOCK_ERR = Out-of-service: It indicates that Actual Mode is O/S.

Supported Modes

Auto, Man, O/S.

Schematic

ldx	Type/ View	Parameter	Data Type	Valid Range	Initial Value	Units	Store/ Mode	Description
31	4	CHANNEL_TAG	VisibleString[32]		Blanks		_	Tag of analog output point in the transducer block to effect the association to the physical point. Blank tag means that the point is not configured.

Legend: E – Enumerated parameter; Na – Dimensionless parameter; RO – Read only; D – dynamic; N – non-volatile; S – Static Gray Background Line: Default Parameters of Syscon

MAO16 - 16 Multiple Analog Output

Description

- This block expects to receive values in percentage (0% to 100%).
- The scale will be defined by TB4AO, if it block was used. Otherwise the percentage will be converted to 4-20mA scale.
- The cascade and fault state are available in this block.

CHANNEL_TAG_16 Parameter

This parameter allows association with the physical points of analog output, which occurs when the value of this parameter coincides with a compatible VAR_NAME in terms of type, i.e., analog output. The output physical point has to be associated to just one CHANNEL TAG of function block.

MAP_MM_16 Parameter

Indicates which of the 16 points configured in CHANNEL_TAG_16 are not associated to analog output points in the transducer block that can be for the following reasons:

- (1) VAR_NAME equals to the CHANNEL_TAG configured was not found,
- (2) Type incompatible with the analog output.
- (3) The output point is already associated to a function block.

FORCE ENB 16 Parameter

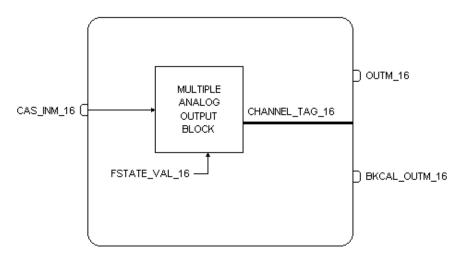
When in Cas mode, this parameter enables/disables the point updating, i.e., the transference from the CAS_IN_16 input parameter to the SP_16 parameter and then to the OUTM_16 parameter.

When in Auto mode, this parameter enables/disables the point updating, i.e., the transference from the point of SPM_16 parameter to the OUTM_16 parameter.

When in LO mode (i.e., in *fault state*), this parameter enables/disables the transference of the corresponding point of FSTATE_VAL16 parameter to the OUTM_16 parameter, if the cause of fault state does not due to the RS.SET_FSTATE. Otherwise, the point will be in fault state.

The scan of the physical point and the transducer block updating continue to be performed and with the value that is in SP_16. The transducer block also will indicate this same value.

So this parameter allows similar functionality to the Auto/Man mode individually for each point.


Conditions to Fault State:

- 1. Target mode is Cas and Overall Status of CAS_IN_16 is bad
- 2. Overall Status of CAS_IN_16 is GoodCas:IFS
- 3. Individual point status is GoodCas:IFS, so only the point will be in Fault State.

Supported Modes

Cas, Auto, LO, O/S.

Schematic

ldx	Type/ View	Parameter	Data Type	Valid Range	Initial Value	Units	Store/ Mode	Description
1	1,2,3,4	ST_REV	Unsigned16		0	None	S/RO	
2		TAG_DESC	OctString(32)		Spaces	Na	S	
3	4	STRATEGY	Unsigned16		255	None	s	
4	4	ALERT_KEY	Unsigned8		1	None	s	
5	1,3	MODE_BLK	DS-69		Auto	Na	s	
6	1,3	BLOCK_ERR	Bitstring(2)			E	D/RO	
7	2,4	FORCE_ENB_16	Bit String[2]		0		S	Controls the updating of each of the 16 analog points when the block is in AUTO mode. A value of 1 will stop the updating of the output point.
8		CHANNEL_TAG_16	VisibleString[16][32]		Blanks		S	TAGs of the output points to be mapped in the transducer block. Blank Tag means that the output point is not configured. The MAP_MM_16 parameter indicates if any Tags specified here are not found in a transducer block.
9	1,3	SPM_16	DS-174			%	N / Auto	Setpoint parameter with 16 float values and status.
10	I,1,3	CAS_INM_16	DS-174			%	N	Cascade input parameter with 16 float values and status.
11	O,1,3	OUTM_16	DS-174			%	N / Man	Output parameter with 16 float values and status.
12	1,3	MAP_MM_16	BitString[2]		0	Na	D / RO	Indicates which of 16 points configured in CHANNEL_TAG_16 are not associated to an input point in the transducer block: (1) tag was not found in the transducer block, (2) type incompatible, (3) physical point is already associated to another CHANNEL_TAG.
13	4	MO_FSTATE_OPTS_16	BitString[2]		0	Na	s	Action to be taken on each of the 16 outputs, when there is fault state. (0: Freezes, 1: Goes to the fault state value configured in FSTATE_VAL_16)
14	4	MO_POWERUP_OPTS_16	BitString[2]		0	Na	S	Bit in 1 indicates that the value of fault state configured in FSTATE_VAL_16 has to be used in power up.
15	4	FSTATE_TIME	Float	Positive	0	Sec	S	Time in seconds between the detection of the fault state condition up to the fault state action.
16	4	FSTATE_VAL_16	Float[16]		0	%	S	Value to be used in case of active fault state, when the corresponding bit in MO_FSTATE_OPTS is 1.
17	1,3	FSTATE_ST_16	BitString[2]				D/RO	Shows which points are in active fault state that is indicated by bit in 1.

ldx	Type/ View	Parameter	Data Type	Valid Range	Initial Value	Units	Store/ Mode	Description
18	O,3	BKCAL_OUTM_16	DS-174				D/RO	Output parameter of back calculation with 16 float values and status.
19		UPDATE_EVT	DS-73			Na	D	This alert is generated by any change to the static data.
20		BLOCK_ALM	DS-72			Na	D	The block alarm is used for all configuration, hardware, connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.

Legend: E – Enumerated parameter; Na – Dimensionless parameter; RO – Read only; D – dynamic; N – non-volatile; S – Static Gray Background Line: Default Parameters of Syscon

MBO64 - 64 Multiple Binary Output

Description

The cascade and fault state features are available in this block.

CHANNEL_TAG_64A/B parameter

This parameter allows association with the physical points of binary output, which occurs when the value of this parameter coincides with a VAR_NAME with type compatible, i.e., binary output.

A single physical output point can be associated to only one CHANNEL_TAG in function block.

MAP_MM_64 parameter

It indicates which of 64 points configured in CHANNEL_TAG_64A/B is not associated to binary output point in transducer block, which can be for the following reasons:

- (1) VAR_NAME equals to CHANNEL_TAG configured was not found,
- (2) Type is incompatible with the binary output.
- (3) Output point is already associated to some function block.

FORCE_ENB_B64 parameter

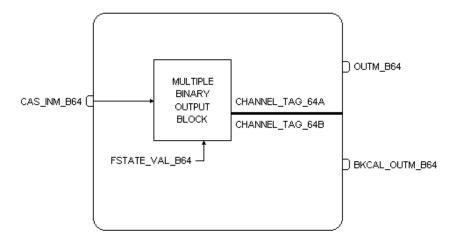
When in Cas mode, this parameter enables/disables the point updating in OUTM_B64, i.e., the transference from the CAS_IN_B64 input parameter to the OUTM_B64 parameter. In the same way for the Auto mode in the transference from SP_B64 point to OUTM_B64. The physical point scanning and the transducer block updating continue to be performed and with the value of OUTM_B64. The transducer block also will indicate this same value. So this parameter allows similar functionality to the Auto/Man mode individually for each point.

Conditions to Fault State:

Cause of Fault State	Previous Actual Mode	Next Actual Mode	FSTATE_ST_64	Description
CAS_IN_B64.Status=Bad	Cas	LO	All points configured, which are not in force mode, have the corresponding bit in 1, indicating that they are in fault state.	Force mode has priority over this cause of Fault State.
CAS_IN_B64.Status=Good:IFS	Cas	LO	All points configured, which are not in force mode, have the corresponding bit in 1, indicating that they are in fault state.	Force mode has priority over this cause of Fault State.
RS.FAULT_STATE = Active	Any	LO	All points configured have the corresponding bit in 1, indicating that they are in fault state.	This cause of Fault State has priority over FORCE_ENB_B64.

Decision

- FSTATE_VAL_B64 and FORCE_VAL_B64 (to be added) are values that will be used by SPM_B64, when the point is in fault state and force mode, respectively.


Conditions to Fault State:

- 1. Target mode is Cas and CAS_IN_B64 status is bad
- 2. Status of CAS_IN_B64 is GoodCas:IFS
- 3. RS.FAULT_STATE = Active

Supported Modes

Cas, Auto, LO, O/S.

Schematic

ldx	Type/ View	Parameter	Data Type	Range Valid	Initial Value	Units	Store/ Mode	Description
1	1,2,3,4	ST_REV	Unsigned16		0	None	S/RO	
2		TAG_DESC	OctString(32)		Spaces	Na	S	
3	4	STRATEGY	Unsigned16		255	None	S	
4	4	ALERT_KEY	Unsigned8		1	None	S	
5	1,3	MODE_BLK	DS-69		Auto	Na	S	
6	1,3	BLOCK_ERR	Bitstring(2)			Е	D/RO	
7	2,4	FORCE_ENB_B64	Bit String[8]		0		s	It controls the updating of each of the 64 binary points when the block is in Auto. A value of 1 in bit stops updating the output point.
8		CHANNEL_TAG_64A	VisibleString[32] [32]		Blanks		s	Tags of the first group of 32 output points that must be mapped to points on the transducer block. Blank tag means that the output point is not configured. The MAP_MM_64 parameter indicates if some configured tag does not have corresponding in transducer block.
9		CHANNEL_TAG_64B	VisibleString[32] [32]		Blanks		s	Tags of the second group of 32 output points that must be mapped to points on the transducer block. Blank tag means that the output point is not configured. The MAP_MM_64 parameter indicates if some configured tag does not have corresponding in transducer block.
10	1,3	SPM_B64	DS-158			Na	N / Auto	Setpoint parameter with 64 binary values and status.
11	1,1,3	CAS_INM_B64	DS-158			Na	N	Cascade input parameter with 64 binary values and status.
12	O,1,3	OUTM_B64	DS-158			none	N / Man	Output parameter with 64 binary values and status.

ldx	Type/ View	Parameter	Data Type	Range Valid	Initial Value	Units	Store/ Mode	Description
13	1,3	MAP_MM_64	BitString[8]		0	Na	D/RO	Indicates which of 64 points configured in CHANNEL_TAG_64A/B is not associated to an input point on transducer block: (1) tag was not found on transducer block, (2) incompatible type. (3) physical point is already associated to another CHANNEL_TAG.
14	4	MO_FSTATE_OPTS_64	BitString[8]		0	Na	S	Action to be taken on each of the 64 outputs, when there is fault state. (0: Freezes, 1: Goes to the fault state value configured in FSTATE_VAL_B64)
15	4	MO_POWERUP_OPTS_64	BitString[8]		0	Na	S	Bit in 1 indicates that the value of fault state configured in FSTATE_VAL_B64 has to be used in power up.
16	4	FSTATE_TIME	Float	Positive	0	Sec	S	Time in seconds between the detection of the fault state condition up to the fault state action.
17	4	FSTATE_VAL_B64	BitString[8]		0		S	Value to be used in case of active fault state, when the corresponding bit in MO_FSTATE_OPTS_64 is 1.
18	1,3	FSTATE_ST_64	BitString[8]				D/RO	It shows which points are in fault state active, that is indicated by bit in 1.
19	O,3	BKCAL_OUTM_B64	DS-158				D/RO	Output parameter of back calculation with 64 binary values and status.
20		UPDATE_EVT	DS-73			Na	D	This alert is generated by any change to the static data.
21		BLOCK_ALM	DS-72			Na	D	The block alarm is used for all configuration, hardware, connection failure or system problems in the block. The cause of the alert is entered in the subcode field. The first alert to become active will set the Active status in the Status attribute. As soon as the Unreported status is cleared by the alert reporting task, another block alert may be reported without clearing the Active status, if the subcode has changed.

Legend: E – Enumerated parameter; Na – Dimensionless parameter; RO – Read only; D – dynamic; N – non-volatile; S – Static Gray Background Line: Default Parameters of Syscon

Block Options

Resource Block Options

HARD_TYPES

Hardware types supported

Bit	Meaning
0	Scalar input (LSB)
1	Scalar output
2	Discrete input
3	Discrete output
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	

CYCLE_TYPE and CYCLE_SEL

Types of cycle supported

Bit	Meaning
0	Scheduled (LSB)
1	Block Execution
2	Manufac Specific
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	

FEATURES and FEATURE_SEL

Things that this resource supports

Bit	Meaning
0	Unicode
1	Reports
2	Fault State
3	Soft Write lock
4	Hard Write lock
5	Output readback (*)
6	Direct Write
7	Change of bypass in an automatic mode (*)
8	MVC supported (*)
9	
10	
11	
12	
13	
14	
15	

Order of Resource Block Alerts

For ALARM_SUM and ACK_OPTION

Bit	Meaning
0	Writes have been enabled
1	
2	
3	
4	
5	
6	
7	Block alarm
8	
9	
10	
11	
12	
13	
14	
15	

(*) This feature depends on the Hardware Type

RES_OPTS

	_	
Bit	Mnemonic	Meaning
0	Sched and Link Optimization	Enable function block optimization.
1	Reserved	
2	Reserved	
3	Reserved	
4	Reserved	
5	Reserved	
6	Reserved	
7	Reserved	
8	Reserved	
9	Reserved	
10	Reserved	
11	Reserved	
12	Reserved	
13	Reserved	
14	Reserved	
15	Reserved	

RES_STATUS

Bit	Mnemonic	Meaning
0	Schedule Overflow	Indicates that the resource cannot attend the current macrocycle.
1	Download in Progress	Indicates the HSE download is in progress.
2	CPU Overload	Indicates when CPU Overload is higher than 80%.
3	Reserved	
4	Reserved	
5	Reserved	
6	Reserved	
7	Reserved	
8	Reserved	
9	Reserved	
10	Reserved	
11	Reserved	
12	Reserved	
13	Reserved	
14	Reserved	
15	Reserved	

FEATURES and FEATURE_SEL

Unicode strings

This feature is not supported.

Reports supported

It is necessary to set this feature in order to enable alert reporting in the resource.

Fault State supported

If this feature is selected in FEATURE_SEL, setting the SET_FSTATE parameter will force all output function blocks (AO and DO) in the resource to go to fault state.

Individual output function block will go to Fault State due to a loss of communication to CAS_IN or IFS status in CAS_IN, regardless the selection of this feature.

Soft Write lock supported

It is necessary to select this feature to set the WRITE_LOCK parameter.

Hard Write lock supported

This feature is not supported.

Output readback supported

Only the FY302 and FP302 support output readback and this feature is used regardless the selection in FEATURE SEL.

Direct write to output hardware

This feature is not supported.

Change of BYPASS in an automatic mode

If this feature is selected in FEATURE_SEL, it is allowed to write in BYPASS in an automatic mode, otherwise only in Man or O/S modes.

MVC supported

The selection of this feature allows optimize communication performance by transferring a grouped data as a single variable list in either publisher/subscriber transactions for function block links, or report distribution to a host device.

IO OPTS

Bit	Meaning	Al	DI	AO	DO	STEP
0	Invert (LSB)		Х		Х	
1	SP tracks PV if Man			Х	Х	
2	SP tracks PV if LO			Х	Х	
3	SP tracks Rcas or Cas if LO or Man			Х	Х	
4	Increase to close			Х		
5	Faultstate Type			Х	Х	Х
6	Faultstate restart			Х	Х	Х
7	Target to Man			Х	Х	Х
8	PV for BKCal_Out			Х	Х	
9	Low cutoff	Х				
10	Low cutoff					
11	Reserved					
12	Reserved					
13	Reserved					
14	Reserved					
15	Reserved					

Invert

Indicate whether the discrete input value should be logically inverted before it is stored in the process variable.

SP-PV Track in Man

Permit the setpoint to track the process variable when the target mode of the block is Man.

SP-PV Track in LO

Permit the setpoint to track the process variable when the actual mode of the block is LO. IMan is not possible in an I/O block.

SP tracks RCAS or CAS if LO or MAN

Permit the set point to track the Rcas or Cas parameter based on the retained target mode when the actual mode of the block is LO or Man.

Increase to close

Indicate whether the output value should be inverted before it is communicated to the I/O channel.

Faultstate Type

The output action to take when failure occurs. (0: freeze, 1: go to preset value)

Faultstate restart

Use the value of FSTATE_VAL if the device is restarted, otherwise use the non-volatile value. This does not act like Fault State, just uses the value.

Target to Man if FAULT STATE activated

Set the target mode to Man, thus losing the original target, if Fault State is activated. This latches an output block into the manual mode.

Use PV for BKCAL_OUT

The BKCAL_OUT value is normally the working SP. This option changes it to the PV.

Low cutoff

The AI low cutoff algorithm is enabled.

CONTROL OPTS

Bit	Meaning	PID	EPID	APID	CHAR	STEP
0	Bypass Enable (LSB)	Х	Х	Х	Х	
1	SP-PV Track in Man	Х	Х	Х		Х
2	SP-PV Track in Rout	Х	Х	Х		
3	SP-PV Track in LO or Iman	Х	Х	Х		Х
4	SP Track Retained Target	Х	Х	Х		Х
5	Direct Acting	Х	Х	Х		Х
6	Balance Ramp					
7	Track Enable	Х	Х	Х		
8	Track in Manual	Х	Х	Х		
9	PV for BKCAL_OUT	Х	Х	Х		Х
10	Bias may be adjusted					
11	Convert IN_1 to Out_Scale					
12	Restrict SP limits if Cas or Rcas	Х	Х	Х		Х
13	No OUT limits in Manual	Х	Х	Х		
14	Reserved					
15	Reserved					

Bypass Enable

This parameter, if true, allows BYPASS to be set. Some control algorithm applications cannot provide closed loop control if bypassed.

SP-PV Track in Man

Permit the setpoint to track the process variable when the target mode of the block is Man.

SP-PV Track in Rout

Permit the setpoint to track the process variable when the actual mode of the block is ROut.

SP-PV Track in LO or IMan

Permit the setpoint to track the process variable when the actual mode of the block is LO or IMan.

SP Track retained target

Permit the setpoint to track the Rcas or Cas parameter based on the retained target mode when the actual mode of the block is IMAN, LO, Man or ROut. When SP-PV Track options are enable, then SP track retained target will have precedence in the selection of the value to track when the actual mode is MAN, IMAN, ROUT and LO.

Direct Acting

Define the relationship between a change in PV and corresponding change in output. When Direct is selected, an increase in PV results in an increase in the output.

Track Enable

This enables the external tracking function. If true, the value in TRK_VAL will replace the value of OUT if TRK_IN_D becomes true and the target mode is not Man.

Track in Manual

This enables TRK_VAL to replace the value of OUT when the target mode is Man and TRK_IN_D is true. The actual mode will then be LO.

PV for BKCAL_OUT

The BKCAL _OUT and RCAS_OUT values are normally the working SP. If this option is enabled, then the PV value will be used after the CASCADE is closed.

Convert IN_1 to Out_Scale

This feature is not used.

Restrict SP to limits if Cas or Rcas

Normally the setpoint will not be restricted to the setpoint limits except when entered by a human interface device. However, if this option is selected, the setpoint will be restricted to the setpoint absolute limits in the Cas and Rcas modes.

No OUT limits in Manual

Do not apply OUT_HI_LIM or OUT_LO_LIM when target and actual mode are Man. Trust the operator to do the right thing.

STATUS OPTS

Bit	Meaning	Al	DI	PUL	PID	EPID	APID	SPLT	AALM	ISEL	SPG	TIME	LLAG	DENS	FFET	AO	DO	STEP	INTG
0	IFS if BAD IN (LSB)				Х	Х	Х												
1	IFS if BAD CAS_IN				Х	Х	Х	Х											
2	Use Uncertain as Good				Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			Х	
3	Propagate Fail Forward	Х	Х	Х															
4	Propagate Fail Backward															Х	X	Х	
5	Target to Manual if BAD IN				Х	Х	Х											Х	
6	Uncertain if Limited	Х		Х															
7	BAD if Limited	Х		Х															
8	Uncertain if Man mode	Х	Х	Х															Х
9	No select if No AUTO				Х	Х	Х											Х	
10	No select if no Cas																		
11	Reserved																		
12	Reserved																		
13	Reserved																		
14	Reserved																		
15	Reserved																		

IFS if BAD IN

Set Initiate Fault State status in the OUT parameter if the status of the IN parameter is BAD.

IFS if BAD CAS_IN

Set Initiate Fault State status in the OUT parameter if the status of the CAS_IN parameter is BAD.

Use Uncertain as Good

If the status of the IN parameter is Uncertain, treat it as Good. Otherwise, treat it as BAD.

Propagate Fail Forward

If the status from the sensor is Bad, Device failure or Bad, Sensor failure, propagate it to OUT without generating an alarm. The use of these sub-status in OUT is determined by this option. Through this option, the user may determine whether alarming (sending of an alert) will be done by the block or propagated downstream for alarming.

Propagate Fail Backward

If the status from the actuator is Bad, Device failure or Fault State Active or Local Override is active, propagate this as Bad, Device Failure or Good Cascade, Fault State Active or Local Override to BKCAL_OUT respectively without generating an alarm. The use of these sub-status in BKCAL_OUT is determined by this option. Through this option, the user may determine whether alarming (sending of an alert) will be done by the block or propagated upstream for alarming.

Target to Manual if BAD IN

Set the target mode to Man if the status of the IN parameter is BAD. This latches a PID block into the Man state if the input ever goes bad.

Uncertain if Limited

Set the output status of an input or calculation block to uncertain if the measured or calculated value is limited.

BAD if Limited

Set the output status to Bad if the sensor is at a high or low limit.

Uncertain if Man Mode

Set the output status of an input or calculation block to uncertain if the actual mode of the block is Man.

ALARM_SUM and ACK_OPTION

Valid for all blocks, except for Resource Block.

Bit	Description	Meaning	Al	PUL	DI	APID	PID/EPID	AALM	SPG	DENS	STEP
0	Unack Alarm1	Discrete alarm			Х						
1	Unack Alarm2	High High alarm	Х	х		Х	Х	Х			Х
2	Unack Alarm3	High alarm	Х	х		х	Х	х		х	Х
3	Unack Alarm4	Low Low alarm	Х	Х		Х	Х	х			Х
4	Unack Alarm5	Low alarm	Х	Х		Х	Х	Х		Х	Х
5	Unack Alarm6	Deviation High alarm				Х	Х		Х		Х
6	Unack Alarm7	Deviation Low alarm				Х	Х		Х		Х
7	Unack Alarm8	Block alarm	Х	Х	Х	Х	Х	х	Х	Х	Х
8	Unack Alarm9	Not used									
9	Unack Alarm10	Not used									
10	Unack Alarm11	Not used									
11	Unack Alarm12	Not used									
12	Unack Alarm13	Not used									
13	Unack Alarm14	Not used									
14	Unack Alarm15	Not used									
15	Unack Alarm16	Not used									

PID_OPTS

Bit	Meaning	APID	EPID
0	IFS if Bad TRK_IN_D	Х	Х
1	IFS if Bad TRK_VAL	Х	Х
2	Man if Bad TRK_IN_D	Х	Х
3	Man if Bad TRK_VAL	Х	Х
4	Target to Manual if BAD TRK_IN_D	Х	Х
5	Target to Manual if BAD TRK_VAL	Х	Х
6	Target to Man if Tracking Active	х	Х
7	Target to Man if Power Up	х	Х
8	Reserved		
9	Reserved		
10	Reserved		
11	Reserved		
12	Reserved		
13	Reserved		
14	Reserved		
15	Reserved		

INTEG_OPTS

Bit	Meaning	INTG
0	Input 1 accumulate	х
1	Input 2 accumulate	х
2	Flow forward	х
3	Flow reverse	Х
4	Use Uncertain	Х
5	Use Bad	Х
6	Carry	Х
7	Reserved	
8	Reserved	
9	Reserved	
10	Reserved	
11	Reserved	
12	Reserved	
13	Reserved	
14	Reserved	
15	Reserved	

INVERT_OPTS

Bit	Meaning	TIMER	AALM	EAI
0	Invert IN_D1	х		
1	Invert IN_D2	х		
2	Invert IN_D3	х		
3	Invert IN_D4	х		
4	Invert OUT_D	х	Х	
5	Invert OUT_ALM		х	х
6	Reserved			
7	Reserved			
8	Reserved			
9	Reserved			
10	Reserved			
11	Reserved			
12	Reserved			
13	Reserved			
14	Reserved			
15	Reserved			

INPUT_OPTS

Bit	Meaning	ARTH
0	IN Use uncertain	Х
1	IN_LO Use uncertain	х
2	IN_1 Use uncertain	х
3	IN_1 Use bad	х
4	IN_2 Use uncertain	х
5	IN_2 Use bad	х
6	IN_3 Use uncertain	х
7	IN_3 Use bad	x
8	Reserved	
9	Reserved	
10	Reserved	
11	Reserved	
12	Reserved	
13	Reserved	
14	Reserved	
15	Reserved	

OSDL_OPTS

Bit	Meaning	OSDL
0	IFS if BAD IN	х
1	IFS if BAD CAS_IN	х
2	Use Uncertain as Good	х
3	IFS for only selected output	х
4	Reserved	
5	Reserved	
6	Reserved	
7	Reserved	
8	Reserved	
9	Reserved	
10	Reserved	
11	IFS if BAD IN_1	х
12	Keep last value if not select	x
13	IFS for only selected output	х
14	Use OUT for BKCAL_OUT	х
15	Use OUT_1 for BKCAL_OUT	х

MO_STATUS_OPTS

Bit	Meaning	MAI	MAO	MDI	MDO
0	IFS if BAD IN_1	Х	х	Х	Х
1	IFS if BAD IN_2	Х	Х	Х	Х
2	IFS if BAD IN_3	Х	Х	Х	Х
3	IFS if BAD IN_4	Х	х	Х	Х
4	IFS if BAD IN_5	Х	Х	Х	Х
5	IFS if BAD IN_6	Х	Х	Х	Х
6	IFS if BAD IN_7	Х	Х	Х	Х
7	IFS if BAD IN_8	Х	Х	Х	Х
8	Reserved				
9	Reserved				
10	Reserved				
11	Reserved				
12	Reserved				
13	Reserved				
14	Reserved				
15	Reserved				

MO_OPTS

Bit	Meaning	MAI	MAO	MDI	MDO
0	Fault state to value 1	Х	х	Х	Х
1	Fault state to value 2	Х	х	х	Х
2	Fault state to value 3	Х	х	Х	Х
3	Fault state to value 4	Х	х	х	Х
4	Fault state to value 5	Х	х	Х	Х
5	Fault state to value 6	Х	х	х	Х
6	Fault state to value 7	Х	х	Х	Х
7	Fault state to value 8	Х	Х	Х	Х
8	Use fault state value on restart 1	Х	х	х	Х
9	Use fault state value on restart 2	Х	х	х	Х
10	Use fault state value on restart 3	Х	х	х	Х
11	Use fault state value on restart 4	Х	х	х	Х
12	Use fault state value on restart 5	Х	х	х	Х
13	Use fault state value on restart 6	Х	х	Х	Х
14	Use fault state value on restart 7	Х	х	Х	Х
15	Use fault state value on restart 8	Х	х	х	Х

CT_OPTS

Bit	Meaning	ADT	DDT
0	CT_VAL_1 to OUT_1	Х	Х
1	CT_VAL_2 to OUT_2	Х	Х
2	CT_VAL_3 to OUT_3	X	X
3	CT_VAL_4 to OUT_4	X	X
4	CT_VAL_5 to OUT_5	X	X
5	CT_VAL_6 to OUT_6	X	X
6	CT_VAL_7 to OUT_7	Х	Х
7	CT_VAL_8 to OUT_8	Х	Х
8	CT_VAL_9 to OUT_9	X	X
9	CT_VAL_10 to OUT_10	X	X
10	CT_VAL_11 to OUT_11	X	X
11	CT_VAL_12 to OUT_12	X	X
12	CT_VAL_13 to OUT_13	X	X
13	CT_VAL_14 to OUT_14	X	X
14	CT_VAL_15 to OUT_15	X	X
15	CT_VAL_16 to OUT_16	X	X

Hardware Configuration Block Options

MODULE_STATUS_R0_3

Bit	Meaning
0	Status of module in rack 0 slot 0
1	Status of module in rack 0 slot 1
2	Status of module in rack 0 slot 2
3	Status of module in rack 0 slot 3
4	Status of module in rack 1 slot 0
5	Status of module in rack 1 slot 1
6	Status of module in rack 1 slot 2
7	Status of module in rack 1 slot 3

Bit	Meaning
0	Status of module in rack 2 slot 0
1	Status of module in rack 2 slot 1
2	Status of module in rack 2 slot 2
3	Status of module in rack 2 slot 3
4	Status of module in rack 3 slot 0
5	Status of module in rack 3 slot 1
6	Status of module in rack 3 slot 2
7	Status of module in rack 3 slot 3

MODULE_STATUS_R4_7

Bit	Meaning
0	Status of module in rack 4 slot 0
1	Status of module in rack 4 slot 1
2	Status of module in rack 4 slot 2
3	Status of module in rack 4 slot 3
4	Status of module in rack 5 slot 0
5	Status of module in rack 5 slot 1
6	Status of module in rack 5 slot 2
7	Status of module in rack 5 slot 3

Bit	Meaning
0	Status of module in rack 6 slot 0
1	Status of module in rack 6 slot 1
2	Status of module in rack 6 slot 2
3	Status of module in rack 6 slot 3
4	Status of module in rack 7 slot 0
5	Status of module in rack 7 slot 1
6	Status of module in rack 7 slot 2
7	Status of module in rack 7 slot 3

MODULE_STATUS_R8_11

Bit	Meaning
0	Status of module in rack 8 slot 0
1	Status of module in rack 8 slot 1
2	Status of module in rack 8 slot 2
3	Status of module in rack 8 slot 3
4	Status of module in rack 9 slot 0
5	Status of module in rack 9 slot 1
6	Status of module in rack 9 slot 2
7	Status of module in rack 9 slot 3

Bit	Meaning
0	Status of module in rack 10 slot 0
1	Status of module in rack 10 slot 1
2	Status of module in rack 10 slot 2
3	Status of module in rack 10 slot 3
4	Status of module in rack 11 slot 0
5	Status of module in rack 11 slot 1
6	Status of module in rack 11 slot 2
7	Status of module in rack 11 slot 3

MODULE_STATUS_R12_14

Bit	Meaning
0	Status of module in rack 12 slot 0
1	Status of module in rack 12 slot 1
2	Status of module in rack 12 slot 2
3	Status of module in rack 12 slot 3
4	Status of module in rack 13 slot 0
5	Status of module in rack 13 slot 1
6	Status of module in rack 13 slot 2
7	Status of module in rack 13 slot 3

Bit	Meaning
0	Status of module in rack 14 slot 0
1	Status of module in rack 14 slot 1
2	Status of module in rack 14 slot 2
3	Status of module in rack 14 slot 3
4	
5	
6	
7	

ELEM_MISMAT_BS_1[4]

Bit	ELEM_MISMAT_BS_1[0]	ELEM_MISMAT_BS_1[1]	ELEM_MISMAT_BS_1[2]	ELEM_MISMAT_BS_1[3]
0	Rack0 Slot0 (LSB)*	Rack2 Slot0 (LSB)*	Rack4 Slot0 (LSB)*	Rack6 Slot0 (LSB)*
1	Rack0 Slot1	Rack2 Slot1	Rack4 Slot1	Rack6 Slot1
2	Rack0 Slot2	Rack2 Slot2	Rack4 Slot2	Rack6 Slot2
3	Rack0 Slot3	Rack2 Slot3	Rack4 Slot3	Rack6 Slot3
4	Rack1 Slot0	Rack3 Slot0	Rack5 Slot0	Rack7 Slot0
5	Rack1 Slot1	Rack3 Slot1	Rack5 Slot1	Rack7 Slot1
6	Rack1 Slot2	Rack3 Slot2	Rack5 Slot2	Rack7 Slot2
7	Rack1 Slot3	Rack3 Slot3	Rack5 Slot3	Rack7 Slot3

ELEM_MISMAT_BS_2[4]

Bit	ELEM_MISMAT_BS_2[0]	ELEM_MISMAT_BS_2[1]	ELEM_MISMAT_BS_2[2]	ELEM_MISMAT_BS_2[3]
0	Rack8 Slot0 (LSB)*	Rack10 Slot0 (LSB)*	Rack12 Slot0 (LSB)*	Rack14 Slot0 (LSB)*
1	Rack8 Slot1	Rack10 Slot1	Rack12 Slot1	Rack14 Slot1
2	Rack8 Slot2	Rack10 Slot2	Rack12 Slot2	Rack14 Slot2
3	Rack8 Slot3	Rack10 Slot3	Rack12 Slot3	Rack14 Slot3
4	Rack9 Slot0	Rack11 Slot0	Rack13 Slot0	Rack15 Slot0
5	Rack9 Slot1	Rack11 Slot1	Rack13 Slot1	Rack15 Slot1
6	Rack9 Slot2	Rack11 Slot2	Rack13 Slot2	Rack15 Slot2
7	Rack9 Slot3	Rack11 Slot3	Rack13 Slot3	Rack15 Slot3

MO_FSTATE_OPTS_16[2]

Bit	Meaning
0	Fault state to point 1 (LSB)*
1	Fault state to point 2
2	Fault state to point 3
3	Fault state to point 4
4	Fault state to point 5
14	Fault state to point 15
15	Fault state to point 16

MO_FSTATE_OPTS_64[8]

Bit	Meaning	
0	Fault state to point 1 (LSB)*	
1	Fault state to point 2	
2	Fault state to point 3	
3	Fault state to point 4	
4	Fault state to point 5	
62	Fault state to point 63	
63	Fault state to point 64	

MO_POWERUP_OPTS_16[2]

Bit	Meaning
0	Use fault state value for point 1 on restart (LSB)*
1	Use fault state value for point 2 on restart
2	Use fault state value for point 3 on restart
3	Use fault state value for point 4 on restart
4	Use fault state value for point 5 on restart
14	Use fault state value for point 15 on restart
15	Use fault state value for point 16 on restart

MO_POWERUP_OPTS_64[8]

Bit	Meaning
0	Use fault state value for point 1 on restart (LSB)*
1	Use fault state value for point 2 on restart
2	Use fault state value for point 3 on restart
3	Use fault state value for point 4 on restart
4	Use fault state value for point 5 on restart
	:
62	Use fault state value for point 15 on restart
63	Use fault state value for point 16 on restart

FSTATE_ST_16[2]

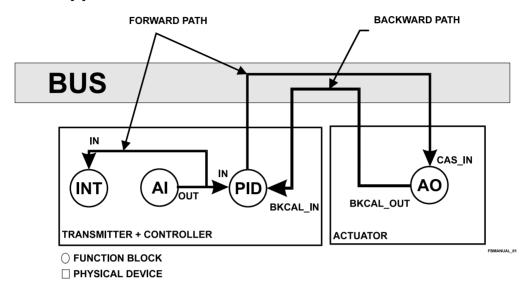
Bit	Meaning
0	Fault state active status for point 1 (LSB)*
1	Fault state active status for point 2
2	Fault state active status for point 3
	:
14	Fault state active status for point 15
15	Fault state active status for point 16

FSTATE_ST_64[8]

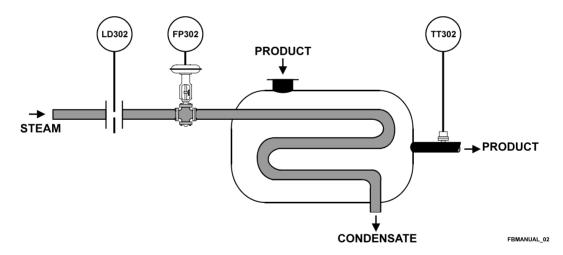
Bit	Meaning
0	Fault state active status for point 1 (LSB)*
1	Fault state active status for point 2
2	Fault state active status for point 3
62	Fault state active status for point 63
63	Fault state active status for point 64

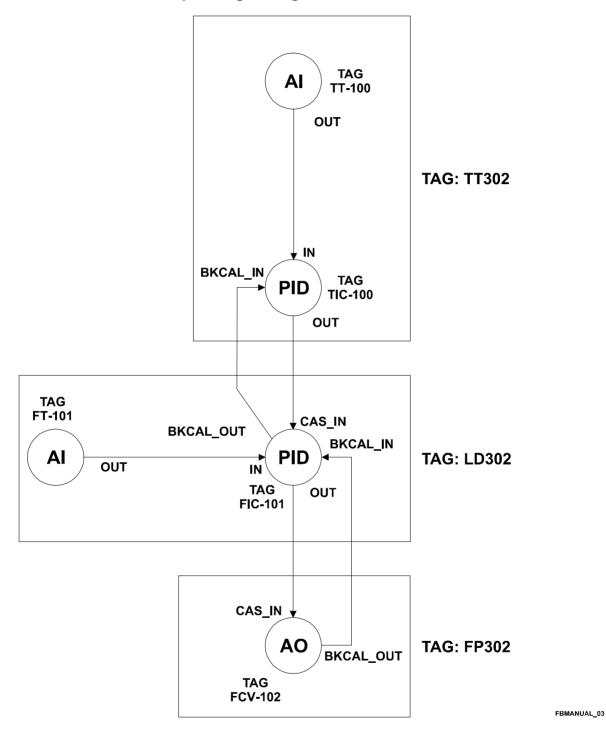
MAP_MM_16

Bit	MAP_MM_64[0]	MAP_MM_64[1]
0	Point 1 (LSB)*	Point 9 (LSB)*
1	Point 2	Point 10
2	Point 3	Point 11
3	Point 4	Point 12
4	Point 5	Point 13
5	Point 6	Point 14
6	Point 7	Point 15
7	Point 8	Point 16


MAP_MM_64

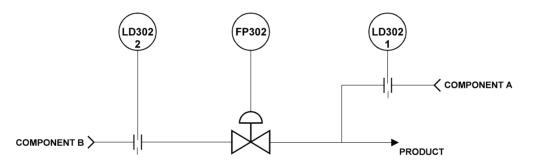
Bit	MAP_MM_64[0]	MAP_MM_64[1]	MAP_MM_64[2]	MAP_MM_64[3]
0	Point 1 (LSB)*	Point 9 (LSB)*	Point 17 (LSB)*	Point 25 (LSB)*
1	Point 2	Point 10	Point 18	Point 26
2	Point 3	Point 11	Point 19	Point 27
3	Point 4	Point 12	Point 20	Point 28
4	Point 5	Point 13	Point 21	Point 29
5	Point 6	Point 14	Point 22	Point 30
6	Point 7	Point 15	Point 23	Point 31
7	Point 8	Point 16	Point 24	Point 32


Bit	MAP_MM_64[4]	MAP_MM_64[5]	MAP_MM_64[6]	MAP_MM_64[7]
0	Point 33 (LSB)*	Point 41 (LSB)*	Point 49 (LSB)*	Point 57 (LSB)*
1	Point 34	Point 42	Point 50	Point 58
2	Point 35	Point 43	Point 51	Point 59
3	Point 36	Point 44	Point 52	Point 60
4	Point 37	Point 45	Point 53	Point 61
5	Point 38	Point 46	Point 54	Point 62
6	Point 39	Point 47	Point 55	Point 63
7	Point 40	Point 48	Point 56	Point 64


EXAMPLES

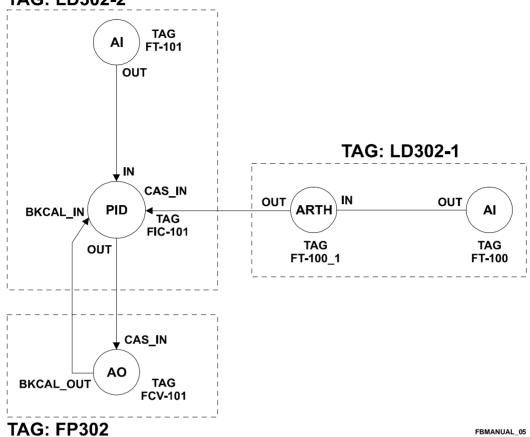
Simple Control Application

Cascade Control



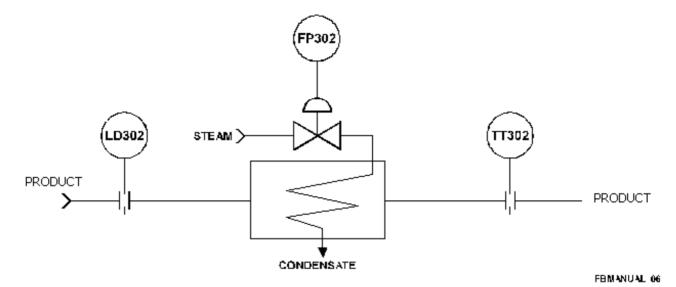
3.2

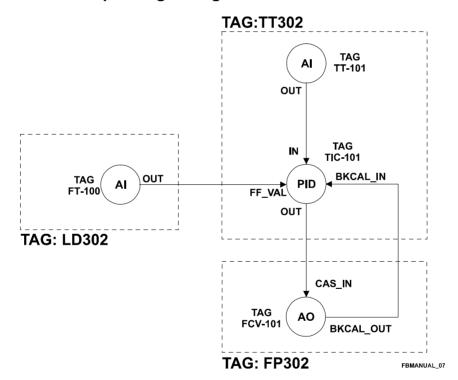
Parameterization


Device	Block	Block Tag	Parameter	Element	Value
TT302	Al	TT-100	MODE_BLK	Target	AUTO
	PID	TIC-100	MODE_BLK	Target	AUTO
			PV_SCALE		0-600 °C
			OUT_SCALE		0-200 kg/h
LD302	Al	FT-101	MODE_BLK	Target	AUTO
			L_TYPE		Indirect, square root
			XD_SCALE		0-200 in H2O
			OUT_SCALE		0-200 kg/h
	PID	FIC_101	MODE_BLK	Target	CAS
			PV_SCALE		0-200 kg/h
			OUT_SCALE		0-100%
FP302	AO	FCV-102	MODE_BLK	Target	CAS
			PV_SCALE		0-100%
			XD_SCALE		3-15 psi

Ratio Control

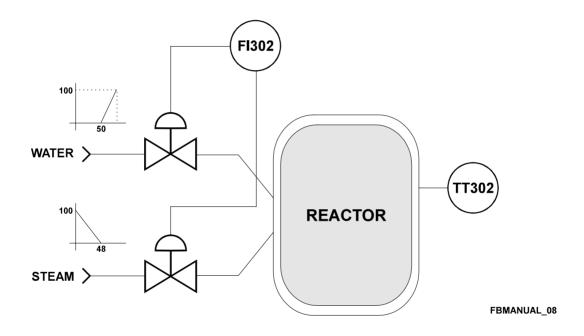
FBMANUAL_04

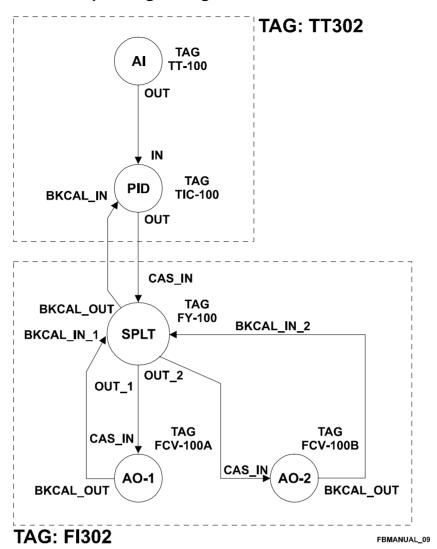

TAG: LD302-2


FBMANUAL_05

Device	Block	Block Tag	Parameter	Element	Value
LD302-1	Al	FT-100	MODE_BLK	Target	AUTO
	ARTH	FY-100_1	MODE_BLK	Target	AUTO
			ARITH_TYPE		7
			GAIN		Adjusted by user to the desired rate p
			RANGE_LO		0
			RANGE_HI		-10 (for g = 1)
LD302-2	Al	FT-101	MODE_BLK	Target	AUTO
	PID	FIC-101	MODE_BLK	Target	Cas
			PV_SCALE		0-200 in H2O
			OUT_SCALE		0-100 %
FP302	AO	FCV-101	MODE_BLK	Target	Cas
			PV_SCALE		0-100 %
			XD_SCALE		3-15 psi

Feedforward Control

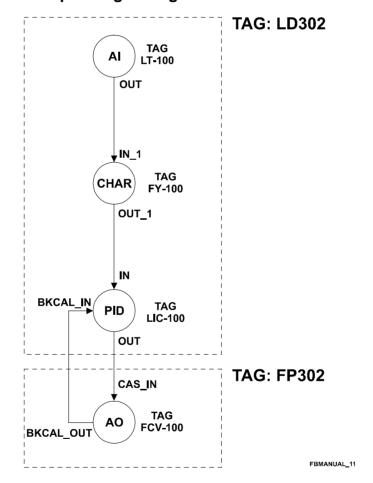

Corresponding Configuration



Parameterization

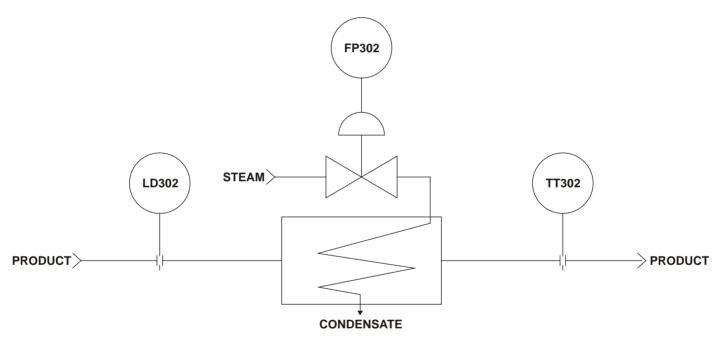
Device	Block	Block Tag	Parameter	Element	Value
TT302	Al	TT-101	MODE_BLK	Target	AUTO
	PID	TIC-101	MODE_BLK	Target	AUTO
			PV_SCALE		0-600 °C
			FF_SCALE		0-500 GAL/min
			FF_GAIN		0.1
LD302	Al	FT-100	MODE_BLK	Target	AUTO
			L_TYPE		Indirect, square root
			XD_SCALE		0-125 in H2O
			OUT_SCALE		0-500 GAL/min
FP302	AO	FCV-101	MODE_BLK	Target	CAS
			PV_SCALE		0-100%
			XD_SCALE		3-15 psi

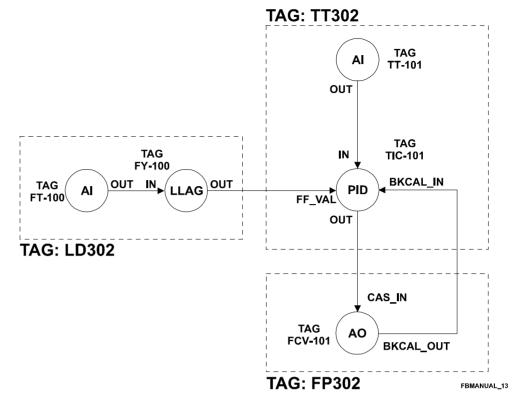
Split Range Control



Device	Block	Block Tag	Parameter	Element	Value
TT302	Al	TT-100	MODE_BLK	Target	AUTO
	PID	TIC-100	MODE_BLK	Target	AUTO
			PV_SCALE		0-600 °C
			OUT_SCALE		0-100 %
	SPLT	FY-100	MODE_BLK	Target	Cas
			LOCKVAL		Yes
			IN_ARRAY		0, 48, 50, 100
			OUT_ARRAY		100, 0, 0, 100
Fl302	AO	FCV-100A	MODE_BLK	Target	Cas
			PV_SCALE		0-100 %
			XD_SCALE		4-20 mA
	AO 2	FCV-100B	MODE_BLK	Target	Cas
			PV_SCALE		0-100 %
			XD_SCALE		4-20 mA

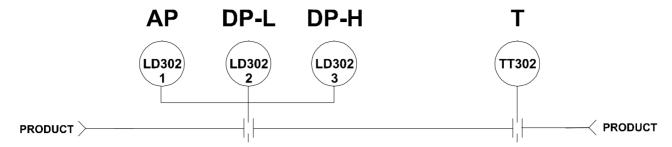
Level Control


Corresponding Configuration

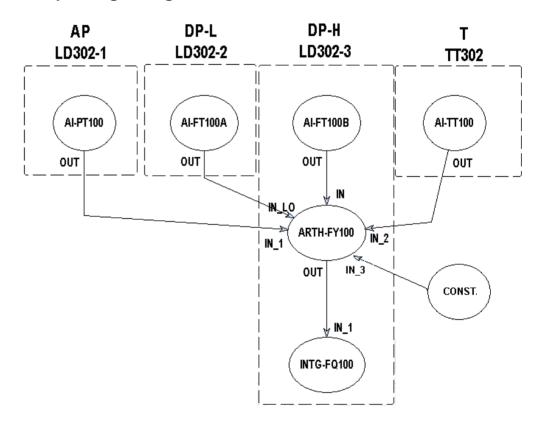

Parameterization

Device	Block	Block Tag	Parameter	Element	Value
LD302	Al	LT-100	MODE_BLK	Target	AUTO
	CHAR	FY-100	MODE_BLK	Target	AUTO
			X_RANGE		inH2O
			Y_RANGE		gal
			CURVE_X		0,40,80,100,120,160,200
			CURVE_Y		0, 14.23, 37.35, 50, 62.64, 85.76, 100
	PID	ID LIC-100	MODE_BLK	Target	AUTO
			PV_SCALE		0-100 gal
			OUT_SCALE		0-100 %
FP302	AO	FCV-100	MODE_BLK	Target	Cas
			PV_SCALE		0-100 %
			XD_SCALE		3-15 psi

Rate Control Loop with Lead - Lag

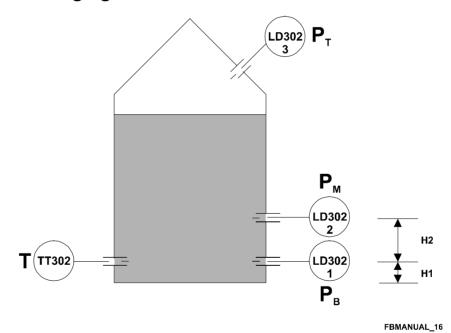


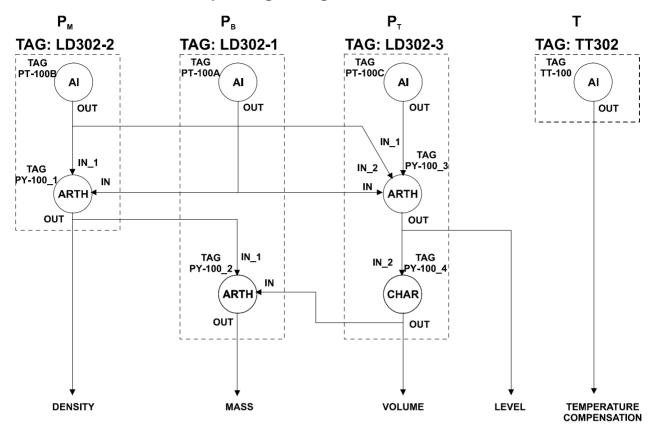
FBMANUAL_12


Device	Block	Block Tag	Parameter	Element	Value
TT302	Al	TT-101	MODE_BLK	Target	AUTO
	PID	TIC-101	MODE_BLK	Target	AUTO
			PV_SCALE		0-100 gal
			OUT_SCALE		0-100 %
			FF_SCALE		0-500 GAL/min
			FF_GAIN		0.1
LD302	Al	FT-100	MODE_BLK	Target	AUTO
			XD_SCALE		0-125 inH2O
			OUT_SCALE		0-500GAL/min
			L_TYPE		Indirect, square root
	LLAG	FY-100	MODE_BLK	Target	AUTO
			OUT_RANGE		GAL/min
			LEAD_TIME		60
			LAG_TIME		60
FP302	AO	FCV-101	MODE_BLK	Target	Cas
			PV_SCALE		0-100 %
			XD_SCALE		3-15 psi

Flow Compensation Configuration with Totalization

FBMANUAL_14

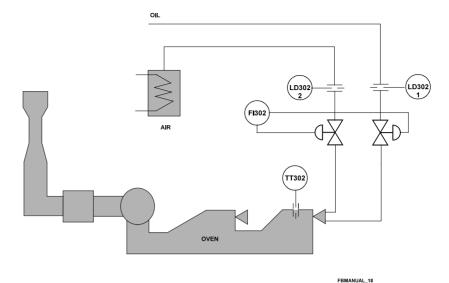

Corresponding Configuration



Device	Block	Block Tag	Parameter	Element	Value
LD302-1	Al	PT-100	MODE_BLK	Target	AUTO
			L_TYPE		Direct
			XD_SCALE	UNIT	Pa
LD302-2	Al	FT-100A	MODE_BLK	Target	AUTO
			XD_SCALE		0-20 H2O
			OUT_SCALE		0-156 Cutf/min
			L_TYPE		SQR ROOT
LD302-3	Al	FT-100B	MODE_BLK	Target	AUTO
			XD_SCALE		0-200 in H2O

Device	Block	Block Tag	Parameter	Element	Value
			OUT_SCALE		0-495 Cutf/min
			L_TYPE		SQR ROOT
	ARTH	FY-100	MODE_BLK	Target	AUTO
			PV_RANGE		GAL/min
			OUT_RANGE		GAL/min
			ARITH_TYPE		2 (flow comp. square root – AGA3)
			GAIN_IN_1		1
			GAIN		1
			RANGE_LO		400
			RANGE_HI		600
			COMP_HI_LIM		+ INF
			COMP_LO_LIM		- INF
	INT	FQ-100	MODE_BLK	Target	AUTO
			OUT_RANGE		GAL
TT302	Al	TT-100	MODE_BLK	Target	AUTO
			XD_SCALE	UNIT	K

Hydrostatic Tank Gauging

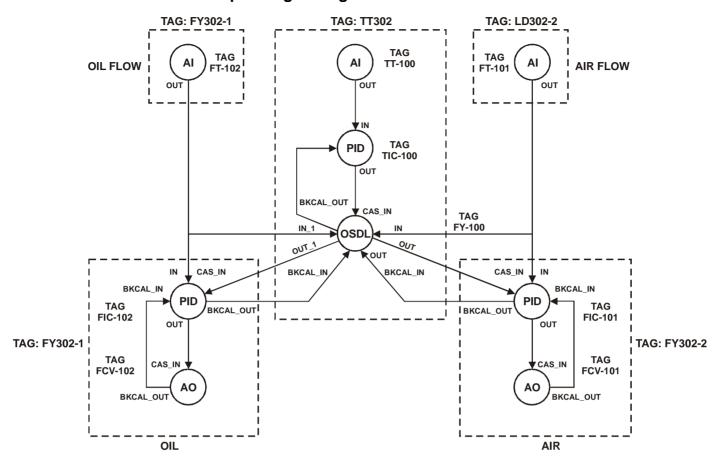


FBMANUAL_17

Device	Block	Block Tag	Parameter	Element	Value
LD302-2	Al	PT-100B	MODE_BLK	Target	AUTO
			XD_SCALE	UNIT	Pa
			OUT_SCALE		0-156 Cutf/min
			L_TYPE		SQR ROOT
	ARTH	PY-100_1	MODE_BLK	Target	AUTO
			OUT_RANGE		Kg/m ³
			ARITH_TYPE		7 (traditional summer)
			GAIN_IN_1		1
			GAIN		1/ (H2*g)
			RANGE_LO	Target	20
			RANGE_HI		-10
LD302-1	Al	PT-100A	MODE_BLK	Target	AUTO
			XD_SCALE	UNIT	Pa
	ARTH	PY-100_2	MODE_BLK	Target	AUTO
			PV_RANGE		m ³
			OUT_RANGE		Ton
			ARITH_TYPE		5 (traditional mult. div.)
			GAIN_IN_2		1
			GAIN		1
			COMP_HI_LIM		+ INF
			COMP_LO_LIM		- INF

Device	Block	Block Tag	Parameter	Element	Value
LD302-3	Al	PT-100C	MODE_BLK	Target	AUTO
			XD_SCALE	UNIT	Pa
	ARTH	PY-100_3	MODE_BLK	Target	AUTO
			PV_RANGE		mH2O
			OUT_RANGE		m
			ARITH_TYPE		9 (HTG comp. level)
			GAIN		H2
			BIAS		H1
			RANGE_LO		20
			RANGE_HI		-10
	CHAR	PY-100_4	MODE_BLK	Target	AUTO
			X_RANGE		m
			Y_RANGE		M^3
			CURVE_X		0 ,20,40,50,70,80,100
			CURVE_Y		0,20,40,50,70,80,100
TT302	Al	TT-100	MODE_BLK	Target	AUTO

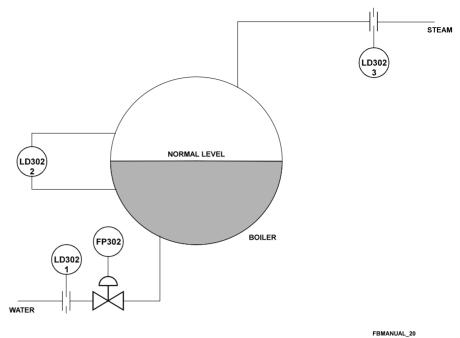
Combustion Control with Double Cross Limits


This type of control tries to keep the air-fuel ratio strictly within the limits. A sudden change on the load would require a corresponding air and fuel variation.

The master controller supplies Setpoint values to air and fuel flow controllers while it is stabilized. During the transitions, the air flow determines the maximum upper and lower limits that the fuel flow cannot exceed. The same occurs for the air flow, whose limits are fixed by those of the fuel flow. In this way, even when there is a large shift in the master signal the air/fuel ratio is maintained very close to the desired value.

The "double cross limits" prevents that the fastest variable unbalance the desired ratio. This strategy is implemented using the OSDL Block, that generates the setpoint for the air and fuel controllers based on the output of the master controller, air flow (Qa -> IN parameter) and fuel flow (Qc -> IN 1 parameter).

This configuration allows the air flow setpoint to vary just between (Qc-LO_BIAS) and (Qc+HI_BIAS) and the fuel flow setpoint to vary just between (Qa-LO_BIAS_1) and (Qa+HI_BIAS_1).


When the double crossed limit is interfered with, then an unexpected change in the consumption upsets the desired ratio and in the same way when there is a transient in the master signal of the air/fuel flow it is able to be maintained very close to the desired ratio.

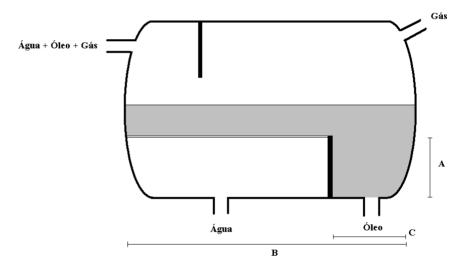
Device	Block	Block Tag	Parameter	Element	Value
LD302-1	Al	FT-102	MODE_BLK	Target	AUTO
			XD_SCALE		0-300 mm H2O
			OUT_SCALE		0-100 %
LD302-2	Al	FT-101	MODE_BLK	Target	AUTO
			XD_SCALE		0-200 inH2O
			OUT_SCALE		0-100 %
TT302	Al	TT-100	MODE_BLK	Target	AUTO
			XD_SCALE		0-600 °C
			L_TYPE		direct
	PID	TIC-100	MODE_BLK	Target	AUTO
			PV_SCALE		0-600 °C
			OUT_SCALE		0-100 %
			CONTROL_OPTS	Direct- acting	Reverse
	OSDL	FY-100	MODE_BLK	Target	CAS
			OUT_TYPE		Dynamic limiter
			HI_GAIN		1
			HI_BIAS		5%
			LO_GAIN		1
			LO_BIAS		2%
			HI_GAIN_1		1
			HI_BIAS_1		2%

Device	Block	Block Tag	Parameter	Element	Value
			LO_GAIN_1		1
			LO_BIAS_1		5%
			GAIN		1
			GAIN_1		1
FY302-1	PID	FIC_102	MODE_BLK	Target	CAS
			PV_SCALE		0-100 %
			OUT_SCALE		0-100 %
			CONTROL_OPTS	Direct- acting	Reverse
	AO	FCV-102	MODE_BLK	Target	CAS
			PV_SCALE		0-100 %
			XD_SCALE		0-100 %
FY302-2	PID	FIC-101	MODE_BLK	Target	CAS
			PV_SCALE		0-100 %
			OUT_SCALE		0-100 %
			CONTROL_OPTS	Direct- acting	Reverse
	AO	FCV-101	MODE_BLK	Target	CAS
			PV_SCALE		0-100 %
			XD_SCALE		0-100 %

3 Element Boiler Level/Feedwater Control

This control loop uses feed forward control combined with cascade control. In this case the feed forward steam flow correction is done for steam flow and the feedback is done through the transmitter and the level controller LIC-100, whilst the feed water flow is maintained by the secondary cascade control loop of water.

In this loop the drum level controller LIC-100 provides the setpoint for the feedwater controller FIC-100 in cascade. Any disturbance in feed water flow is corrected by a feed forward arrangement in FIC-100. By connecting FT-101 to the FF_VAL input of FIC-100, any change in flow adjusts the FIC-100 output directly. The FF_SCALE is set -100 to +100 % to provide a fixed 50 % bias, giving a 50 % setpoint when load and manipulated flow are perfectly matched.

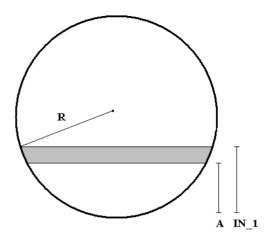

Device	Block	Block Tag	Parameter	Element	Value
LD302-2	Al	LT-100	MODE_BLK	Target	AUTO
			XD_SCALE		642 -140 mmH2O
			OUT_SCALE		0-100 %
	PID	LIC-100	MODE_BLK	Target	AUTO
			PV_SCALE		0-100 %
			OUT_SCALE		0-150 Ton/hr
			CONTROL_OPTS	Direct-	Reverse
				acting	
LD302-3	Al	FT-101	MODE_BLK	Target	AUTO
			XD_SCALE		0-9500 mm H2O
			OUT_SCALE		0-150 Ton/hr
			L_TYPE		Indirect, Square Root
	INTG	FQ-101	MODE_BLK	Target	AUTO
			TIME_UNIT1		Hours
			OUT_RANGE		Ton
LD302-1	Al	FT-100	MODE_BLK	Target	AUTO
			XD_SCALE		0-3500 mmH2O
			OUT_SCALE		0-150 m ³ /hr

Device	Block	Block Tag	Parameter	Element	Value
			L_TYPE		Indirect, Square Root
	INTG	FQ-100	MODE_BLK	Target	AUTO
			TIME_UNIT1		Hours
			OUT_RANGE		m ³
FP302	PID	FIC-100	MODE_BLK	Target	CAS
			PV_SCALE		0-150 m ³ /hr
			OUT_SCALE		0-100 %
			CONTROL_OPTS	Direct- acting	Reverse
			FF_SCALE		-100 to + 100 %
			FF_GAIN		1
	AO	FCV_100	MODE_BLK	Target	CAS
			PV_SCALE		0-100 %
			XD_SCALE		3-15 psi

Application of the Flexible Mathematical Function Block

The FMTH will be used to solve the following problem:

It is necessary to obtain the volume of oil in a cylindrical tank represented by dark region in the figure below

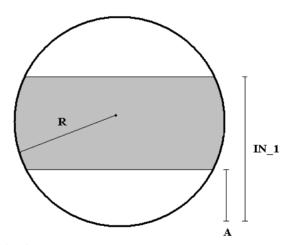


Initially the considerations are:

- The A, B and C lengths are known;
- The Cylindrical Ray R is known;
- There is a sensor to measure the length that is the oil, and in this configuration this value is entering by the IN_1 input;
- The interface between water and oil has inconsiderable thickness;
- The interface is always in the height A.

There are three situations:

- Situation 1: The oil height is low than the ray of transversal section and higher tham the A height:

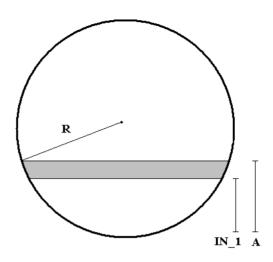

The area of the dark region of the figure above is given by:

$$Ar = R^{2} * \left(\arccos(\frac{R - In_1}{R}) - \arccos(\frac{R - A}{R}) \right) + \left((R - A) * \sqrt{R^{2} - (R - A)^{2}} - (R - In_1) * \sqrt{R^{2} - (R - In_1)^{2}} \right)$$

So, the oil volume will be:

$$V = Ar * B + \left(R^2 * \arccos(\frac{R-A}{R}) - (R-A) * \sqrt{R^2 - (R-A)^2}\right) * C$$

- Situation 2: The oil height is higher than the ray of the transversal section


The area of the dark region is:

$$Ar = R^{2} * \left(2\pi - \arccos(\frac{In_{1} - R}{R}) - \arccos(\frac{R - A}{R})\right) + \left((R - A) * \sqrt{R^{2} - (R - A)^{2}} + (In_{1} - R) * \sqrt{R^{2} - (In_{1} - R)^{2}}\right)$$

So, the oil voume will be:

$$V = Ar * B + \left(R^2 \arccos(\frac{R-A}{R})) - (R-A) * \sqrt{R^2 - (R-A)^2}\right) * C$$

- Situation 3: The oil height is low than A height

Similarly to the Situation 1, it has

$$Ar = R^{2} * \left(\arccos(\frac{R-A}{R}) - \arccos(\frac{R-In_1}{R}) \right) + \left((R-In_1) * \sqrt{R^{2} - (R-In_1)^{2}} - (R-A) * \sqrt{R^{2} - (R-A)^{2}} \right)$$

So, the oil volume will be:

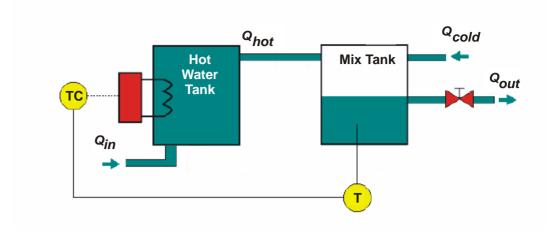
$$V = \left(R^{2} \arccos(\frac{R-A}{R})\right) - (R-A) * \sqrt{R^{2} - (R-A)^{2}}\right) * C - Ar * C$$

Through the expressions aboe, the block can be configured of the following way:

$$AA2 = AA11*a\cos((AA7)/AA5) - (AA7)*(AA11 - (AA7)*(AA7))^0.5$$

 $AA7 = if(AI1 \le AA5; AA5 - AI1; AI1 - AA5)$
 $AA3 = if(AI1 \le AA6; AA1 - AA2; if(AI1 \le AA5; AA2 - AA1; AA8 - AA1 - AA2))$
 $AO1 = if(AI1 \le AA6; (AA1 - AA3)*AA10; AA3*AA9 + AA1*AA10)$

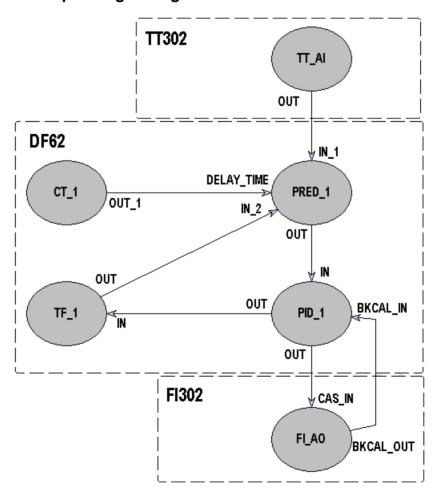
Where:


- AA1 = AA11*acos((AA5-AA6)/AA5)-(AA5-AA6)*(AA11-(AA5-AA6)*(AA5-AA6))^0.5
- AA5 = R
- AA6 = A
- $AA8 = \pi^*R^2$
- AA9 = B
- -AA10 = C
- AA11 = R^2

Smith Predictor and Transfer Function Block Application

In the next process, there is a mix between fluids that are water in different temperatures. The left fluid is sent by the first tank (Hot water Tank) and the other fluid is in the second tank (Mix Tank). The fluid that is sent to the first tank is heat by electrical resistances and it is transferred to the next tank (mix tank). The mix tank receives a cold water flow. The cold water flow (*Qcold*) and the hot water flow (*Qhot*) are kept constant.

The purpose is to control the mix tank temperature by setting the resistances power.


A great delay between the actuation and the system measurement was identified through experimental tests. This delay occurs due to the distance between the first and the second tanks.

The transfer function for the system is:

$$G(s) = \frac{0.89}{s + 0.89} * e^{-10s}$$

Corresponding Configuration

Device	Block	Block Tag	Parameter	Element	Value
			MODE_BLK	Target	AUTO
TT302	Al	TT-AI	OUT_SCALE		0-100%
			L_TYPE		Indirect
FI302	AO	FI-AO	MODE_BLK	Target	Cas
			MODE_BLK	Target	AUTO
	PID	PID_1	SP		30%
	PID		GAIN		GAIN
			RESET		RESET
	СТ	CT_1	MODE_BLK	Target	AUTO
			CT_VAL_1		10
			MODE_BLK	Target	AUTO
DF62			TF_A		0
			TF_B		0
	TF	TF_1	TF_C		0.89
			TF_D		0
			TF_E		1
			TF_F		0.89
	PRED	DDED 1	MODE_BLK	Target	AUTO
	PKED	PRED_1	PRED_SELECTOR		Smith Predictor